Association of SIRT1 Promoter Polymorphisms with Type 2 Diabetes Mellitus and Pregnancy-Related Complications in the Greek Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Clinical Samples
2.2. Genomic DNA Extraction
2.3. Genetic Analysis: Restriction Fragment Length Polymorphism (RFLP)
2.4. Statistical Analysis
3. Results
Genotype Distribution of rs3758391 and rs12778366 Polymorphisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunton, S. Pathophysiology of Type 2 Diabetes: The Evolution of Our Understanding. J. Fam. Pract. 2016, 65, supp_az_0416. [Google Scholar]
- Borse, S.P.; Chhipa, A.S.; Sharma, V.; Singh, D.P.; Nivsarkar, M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med. Princ. Pract. 2021, 30, 109–121. [Google Scholar] [CrossRef]
- Demir, S.; Nawroth, P.P.; Herzig, S.; Ekim Üstünel, B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. Adv. Sci. 2021, 8, 2100275. [Google Scholar] [CrossRef]
- Morris, A.P. Progress in Defining the Genetic Contribution to Type 2 Diabetes Susceptibility. Curr. Opin. Genet. Dev. 2018, 50, 41–51. [Google Scholar] [CrossRef]
- Paulo, M.S.; Abdo, N.M.; Bettencourt-Silva, R.; Al-Rifai, R.H. Gestational Diabetes Mellitus in Europe: A Systematic Review and Meta-Analysis of Prevalence Studies. Front. Endocrinol. 2021, 12, 691033. [Google Scholar] [CrossRef]
- Bellamy, L.; Casas, J.-P.; Hingorani, A.D.; Williams, D. Type 2 Diabetes Mellitus After Gestational Diabetes: A Systematic Review and Meta-Analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Magriplis, E.; Panagiotakos, D.; Papakonstantinou, E.; Mitsopoulou, A.-V.; Karageorgou, D.; Dimakopoulos, I.; Bakogianni, I.; Chourdakis, M.; Micha, R.; Michas, G.; et al. Prevalence of Type 2 Diabetes Mellitus in a Representative Sample of Greek Adults and Its Association with Modifiable Risk Factors: Results from the Hellenic National Nutrition and Health Survey. Public Health 2021, 197, 75–82. [Google Scholar] [CrossRef]
- Tranidou, A.; Dagklis, T.; Magriplis, E.; Apostolopoulou, A.; Tsakiridis, I.; Chroni, V.; Tsekitsidi, E.; Kalaitzopoulou, I.; Pazaras, N.; Chourdakis, M. Pre-Pregnancy Adherence to Mediterranean Diet and Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Greece. Nutrients 2023, 15, 848. [Google Scholar] [CrossRef]
- Redondo, M.J.; Hagopian, W.A.; Oram, R.; Steck, A.K.; Vehik, K.; Weedon, M.; Balasubramanyam, A.; Dabelea, D. The Clinical Consequences of Heterogeneity Within and Between Different Diabetes Types. Diabetologia 2020, 63, 2040–2048. [Google Scholar] [CrossRef]
- Wong, Y.H.; Wong, S.H.; Wong, X.T.; Yap, Q.Y.; Yip, K.Y.; Wong, L.Z.; Chellappan, D.K.; Bhattamisra, S.K.; Candasamy, M. Genetic Associated Complications of Type 2 Diabetes Mellitus. Panminerva Med. 2022, 64, 274–288. [Google Scholar] [CrossRef]
- Gutierrez-Aguilar, R.; Benmezroua, Y.; Balkau, B.; Marre, M.; Helbecque, N.; Charpentier, G.; Polychronakos, C.; Sladek, R.; Froguel, P.; Neve, B. Minor Contribution of SMAD7 and KLF10 Variants to Genetic Susceptibility of Type 2 Diabetes. Diabetes Metab. 2007, 33, 372–378. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Capra, F.; Veglia, F.; Ferrari, M.; Xiang, K.S.; Bell, G.I.; Baroni, M.G.; Galton, D.J.; Weaver, J.U.; Hitman, G.A.; et al. Genetic Contribution of Polymorphism of the GLUT1 and GLUT4 Genes to the Susceptibility to Type 2 (Non-Insulin-Dependent) Diabetes Mellitus in Different Populations. Acta Diabetol. 1996, 33, 193–197. [Google Scholar] [CrossRef]
- Lowe, W.L.; Scholtens, D.M.; Sandler, V.; Hayes, M.G. Genetics of Gestational Diabetes Mellitus and Maternal Metabolism. Curr. Diab Rep. 2016, 16, 15. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.-M.; Hu, Y.-Y.; Ouyang, L.; Sun, Z.-H.; Yin, X.-F.; Li, N.; He, Q.-Y.; Wang, Y. Inhibition of Nuclear Deacetylase Sirtuin-1 Induces Mitochondrial Acetylation and Calcium Overload Leading to Cell Death. Redox Biol. 2022, 53, 102334. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef]
- Garcia Morato, J.; Hans, F.; von Zweydorf, F.; Feederle, R.; Elsässer, S.J.; Skodras, A.A.; Gloeckner, C.J.; Buratti, E.; Neumann, M.; Kahle, P.J. Sirtuin-1 Sensitive Lysine-136 Acetylation Drives Phase Separation and Pathological Aggregation of TDP-43. Nat. Commun. 2022, 13, 1223. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, H.; Liu, T.; Zhou, Z.; Feng, B.; Wang, Y.; Qian, Z.; Hou, X.; Zou, J. Bmal1 Downregulation Leads to Diabetic Cardiomyopathy by Promoting Bcl2/IP3R-Mediated Mitochondrial Ca2+ Overload. Redox Biol. 2023, 64, 102788. [Google Scholar] [CrossRef]
- Maiese, K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, MTOR, and SIRT1 in Degenerative Disease and Cancer. Curr. Neurovasc Res. 2017, 14, 299–304. [Google Scholar] [CrossRef]
- Osum, M.; Serakinci, N. Impact of Circadian Disruption on Health; SIRT1 and Telomeres. DNA Repair 2020, 96, 102993. [Google Scholar] [CrossRef]
- Chen, H.; Lin, X.; Yi, X.; Liu, X.; Yu, R.; Fan, W.; Ling, Y.; Liu, Y.; Xie, W. SIRT1-Mediated P53 Deacetylation Inhibits Ferroptosis and Alleviates Heat Stress-Induced Lung Epithelial Cells Injury. Int. J. Hyperth. 2022, 39, 977–986. [Google Scholar] [CrossRef]
- Yarmohammadi, F.; Ebrahimian, Z.; Karimi, G. MicroRNAs Target the PI3K/Akt/P53 and the Sirt1/Nrf2 Signaling Pathways in Doxorubicin-Induced Cardiotoxicity. J. Biochem. Mol. Toxicol. 2023, 37, e23261. [Google Scholar] [CrossRef]
- Han, J.; Wei, M.; Wang, Q.; Li, X.; Zhu, C.; Mao, Y.; Wei, L.; Sun, Y.; Jia, W. Association of Genetic Variants of SIRT1 With Type 2 Diabetes Mellitus. Gene Expr. 2015, 16, 177–185. [Google Scholar] [CrossRef]
- Rai, E.; Sharma, S.; Kaul, S.; Jain, K.; Matharoo, K.; Bhanwer, A.S.; Bamezai, R.N.K. The Interactive Effect of SIRT1 Promoter Region Polymorphism on Type 2 Diabetes Susceptibility in the North Indian Population. PLoS ONE 2012, 7, e48621. [Google Scholar] [CrossRef]
- Sadeghi, M.B.; Nakhaee, A.; Saravani, R.; Sadeghi, M.H.; Sargazi, S.; Nia, M.H. SIRT1 Functional Polymorphisms (Rs12778366, Rs3758391) as Genetic Biomarkers of Susceptibility to Type 2 Diabetes Mellitus in Iranians: A Case-Control Study and Computational Analysis. Int. J. Diabetes Dev. Ctries. 2021, 41, 447–455. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, G.; Tang, H.; Dong, L.; Gao, C.; Yang, X.; Peng, Y.; Xu, Y. Influence of SIRT1 Polymorphisms for Diabetic Foot Susceptibility and Severity. Medicine 2018, 97, e11455. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L.-X.; Wang, Y.-T.; Li, Y.; Chen, M.H.-L. Genetic Polymorphisms and the Risk of Diabetic Foot: A Systematic Review and Meta-Analyses. Int. J. Low. Extrem. Wounds 2022, 21, 574–587. [Google Scholar] [CrossRef]
- Shimoyama, Y.; Suzuki, K.; Hamajima, N.; Niwa, T. Sirtuin 1 Gene Polymorphisms Are Associated with Body Fat and Blood Pressure in Japanese. Transl. Res. 2011, 157, 339–347. [Google Scholar] [CrossRef]
- Zillikens, M.C.; van Meurs, J.B.J.; Rivadeneira, F.; Amin, N.; Hofman, A.; Oostra, B.A.; Sijbrands, E.J.G.; Witteman, J.C.M.; Pols, H.A.P.; van Duijn, C.M.; et al. SIRT1 Genetic Variation Is Related to BMI and Risk of Obesity. Diabetes 2009, 58, 2828–2834. [Google Scholar] [CrossRef]
- Naqvi, A.; Hoffman, T.A.; DeRicco, J.; Kumar, A.; Kim, C.-S.; Jung, S.-B.; Yamamori, T.; Kim, Y.-R.; Mehdi, F.; Kumar, S.; et al. A Single-Nucleotide Variation in a P53-Binding Site Affects Nutrient-Sensitive Human SIRT1 Expression. Hum. Mol. Genet. 2010, 19, 4123–4133. [Google Scholar] [CrossRef]
- Consiglio, C.R.; Juliana da Silveira, S.; Monticielo, O.A.; Xavier, R.M.; Brenol, J.C.T.; Chies, J.A.B. SIRT1 Promoter Polymorphisms as Clinical Modifiers on Systemic Lupus Erythematosus. Mol. Biol. Rep. 2014, 41, 4233–4239. [Google Scholar] [CrossRef]
- Kaabi, Y.; Abdelmola, A.; Abdelwahab, S.; Alshaikh, N.; Halawi, M.; Kuriri, H. Common Genetic Variants in SIRT1 Gene Promoter and Type 2 Diabetes Mellitus in Saudi Arabia. Clin. Lab. 2024, 70, 411–416. [Google Scholar] [CrossRef]
- Ahmed, R.; Safa, M.R.; Zahid, Z.I.; Chowdhury, M.I.; Hasan, A.B.M.K.; Mostaid, S.; Reza, H.M. Association of SIRT1 Rs3758391 Polymorphism with T2DM in Bangladeshi Population: Evidence from a Case-Control Study and Meta-Analysis. Health Sci. Rep. 2025, 8, e70495. [Google Scholar] [CrossRef]
- Cruz, M.; Valladares-Salgado, A.; Garcia-Mena, J.; Ross, K.; Edwards, M.; Angeles-Martinez, J.; Ortega-Camarillo, C.; Escobedo de la Peña, J.; Burguete-Garcia, A.I.; Wacher-Rodarte, N.; et al. Candidate Gene Association Study Conditioning on Individual Ancestry in Patients with Type 2 Diabetes and Metabolic Syndrome from Mexico City. Diabetes Metab. Res. Rev. 2010, 26, 261–270. [Google Scholar] [CrossRef]
- Tavakoli Faradonbeh, R.; Zakerkish, M.; Karimi Akhormeh, A.; Mohammadtaghvaei, N.; Jalali, M.T.; Yaghooti, H. Association of the Rs3758391 Polymorphism in the SIRT1 Gene with Diabetic Nephropathy and Decreased Estimated Glomerular Filtration Rate (GFR) in a Population from Southwest Iran. Int. J. Diabetes Dev. Ctries. 2020, 40, 99–105. [Google Scholar] [CrossRef]
- Kovanen, L.; Donner, K.; Partonen, T. SIRT1 Polymorphisms Associate with Seasonal Weight Variation, Depressive Disorders, and Diastolic Blood Pressure in the General Population. PLoS ONE 2015, 10, e0141001. [Google Scholar] [CrossRef]
- Botden, I.P.G.; Zillikens, M.C.; de Rooij, S.R.; Langendonk, J.G.; Danser, A.H.J.; Sijbrands, E.J.G.; Roseboom, T.J. Variants in the SIRT1 Gene May Affect Diabetes Risk in Interaction with Prenatal Exposure to Famine. Diabetes Care 2012, 35, 424–426. [Google Scholar] [CrossRef]
- Dong, Y.; Guo, T.; Traurig, M.; Mason, C.C.; Kobes, S.; Perez, J.; Knowler, W.C.; Bogardus, C.; Hanson, R.L.; Baier, L.J. SIRT1 Is Associated with a Decrease in Acute Insulin Secretion and a Sex Specific Increase in Risk for Type 2 Diabetes in Pima Indians. Mol. Genet. Metab. 2011, 104, 661–665. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, Z.; Zhou, Y.; Zhang, J.; Yan, B. Genetic Variants of SIRT1 Gene Promoter in Type 2 Diabetes. Int. J. Endocrinol. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Dmitrenko, O.; Karpova, N.; Nurbekov, M. Increased Preeclampsia Risk in GDM Pregnancies: The Role of SIRT1 Rs12778366 Polymorphism and Telomere Length. Int. J. Mol. Sci. 2025, 26, 2967. [Google Scholar] [CrossRef]
rs12778366 | |||||
Group | Genotype | Count (n) | Percentage (%) | Chi2/p-Value | OR (95% CI)/Power |
T2DM (n = 66) | TT | 51 | 77.3 | 1.52/0.218 *,1 | 1.70 (0.81–3.56)/29.4% |
TC | 15 | 22.7 | |||
Control (n = 81) | TT | 54 | 66.6 | ||
TC | 27 | 33.4 | |||
rs3758391 | |||||
Group | Genotype | Count (n) | Percentage (%) | Chi2/p-Value | OR (95% CI)/Power |
T2DM (n = 66) | CC | 24 | 36.3 | 6.82/0.088 *,2 | 74.2% |
CT | 36 | 54.5 | |||
TT | 6 | 9.1 | |||
Control (n = 81) | CC | 45 | 55.5 | ||
CT | 27 | 33.4 | |||
TT | 9 | 11.1 |
rs12778366 | |||||
Group | Genotype | Count (n) | Percentage (%) | Chi2/p-Value | OR (95% CI)/Power |
T2DM (n = 66) | TT | 51 | 77.3 | 4.23/0.237 *,1 | 53.9% |
TC | 15 | 22.7 | |||
GDM (n = 36) | TT | 24 | 66.6 | ||
TC | 12 | 33.4 | |||
Preeclampsia (n = 12) | TT | 6 | 50 | ||
TC | 6 | 50 | |||
Control (n = 33) | TT | 24 | 72.8 | ||
TC | 9 | 27.2 | |||
rs3758391 | |||||
Group | Genotype | Count (n) | Percentage (%) | Chi2/p-Value | OR (95% CI)/Power |
T2DM (n = 66) | CC | 24 | 36.3 | 9.90/0.129 *,2 | 88.2% |
CT | 36 | 54.5 | |||
TT | 6 | 9.1 | |||
GDM (n = 36) | CC | 21 | 58.3 | ||
CT | 12 | 33.4 | |||
TT | 3 | 8.3 | |||
Preeclampsia (n = 12) | CC | 6 | 50 | ||
CT | 3 | 25 | |||
TT | 3 | 25 | |||
Control (n = 33) | CC | 18 | 54.5 | ||
CT | 12 | 36.4 | |||
TT | 3 | 9.1 |
Study Location | Polymorphism(s) | Condition | Population Details | Key Findings | References |
---|---|---|---|---|---|
Greece (Current Study) | rs12778366, rs3758391 | T2DM, GDM, preeclampsia | 66 patients with T2DM, 36 with GDM, 12 with preeclampsia, and 112 matched controls | No statistically significant association found | Current Study (2025) |
Saudi Arabia | rs12778366, rs3758391 | T2DM | 221 patients, 224 controls | Genotype frequencies were similar between T2DM and controls; no significant association | Kaabi et al., 2024 [31] |
China | rs3740051, rs35995735 | T2DM | 218 patients, 358 controls | Significant association (ORs 1.75 and 3.58), relevant haplotype risk | Pang et al., 2023 [38] |
Russia | rs12778366, rs7895833 | GDM, preeclampsia | 61 patients with GDM and PE, 63 patients with GDM (controls) | The rs12778366 is associated with shorter telomeres and an increased risk of developing PE. | Dmitrenko et al., 2025 [39] |
Bangladesh | rs3758391 | T2DM | 72 T2DM patients, 90 healthy controls | T allele associated with increased T2DM risk (OR = 3.88, p = 0.012) | Ahmed et al., 2025 [32] |
Iran | rs12778366, rs3758391 | T2DM | 403 patients with T2DM and 410 healthy controls | The C allele of rs12778366 and the T allele of rs3758391 were linked to an increased risk of T2DM | Sadeghi et al., 2021 [24] |
Southwestern Iran | rs3758391 | T2DM | 132 patients with T2DM with or without nephropathy | The TT genotype and the T allele carrier of rs3758391 were strongly associated with T2DM | Faradonbeh et al., 2020 [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letsiou, S.; Prountzou, E.; Vougiouklaki, D.; Trapali, M.; Papapanou, M.; Siateli, Z.; Ladias, K.; Houhoula, D.; Halvatsiotis, P. Association of SIRT1 Promoter Polymorphisms with Type 2 Diabetes Mellitus and Pregnancy-Related Complications in the Greek Population. Genes 2025, 16, 886. https://doi.org/10.3390/genes16080886
Letsiou S, Prountzou E, Vougiouklaki D, Trapali M, Papapanou M, Siateli Z, Ladias K, Houhoula D, Halvatsiotis P. Association of SIRT1 Promoter Polymorphisms with Type 2 Diabetes Mellitus and Pregnancy-Related Complications in the Greek Population. Genes. 2025; 16(8):886. https://doi.org/10.3390/genes16080886
Chicago/Turabian StyleLetsiou, Sophia, Eirini Prountzou, Despina Vougiouklaki, Maria Trapali, Michail Papapanou, Zoe Siateli, Konstantinos Ladias, Dimitra Houhoula, and Panagiotis Halvatsiotis. 2025. "Association of SIRT1 Promoter Polymorphisms with Type 2 Diabetes Mellitus and Pregnancy-Related Complications in the Greek Population" Genes 16, no. 8: 886. https://doi.org/10.3390/genes16080886
APA StyleLetsiou, S., Prountzou, E., Vougiouklaki, D., Trapali, M., Papapanou, M., Siateli, Z., Ladias, K., Houhoula, D., & Halvatsiotis, P. (2025). Association of SIRT1 Promoter Polymorphisms with Type 2 Diabetes Mellitus and Pregnancy-Related Complications in the Greek Population. Genes, 16(8), 886. https://doi.org/10.3390/genes16080886