Genomics in Pancreas–Kidney Transplantation: From Risk Stratification to Personalized Medicine
Abstract
1. Introduction
2. Non-HLA Genetic Factors in Solid Organ Transplantation
3. Recipient and Donor Non-HLA Genetics in Pancreas–Kidney Transplantation
3.1. Recipient Genetics in Pancreas–Kidney Transplantation
3.1.1. Monogenic Diseases of Pancreas and Transplantation
3.1.2. Complex Genetic Diseases of Pancreas and Transplantation
3.2. Donor Genetics in Pancreas–Kidney Transplantation
4. Genetic Factors and Biomarkers for Pancreas Transplantation
Study | Study Type | Transplant Type and Cohort | Population | Genes Targets | Methods | Outcomes | Main Findings | Strengths and Limitations |
---|---|---|---|---|---|---|---|---|
Pelletier et al. [32] | Candidate gene association | SPK (n = 19), Kidney (n = 82) | Patients at a single U.S. transplant center | TNF-α, IL-10, IFN-γ, TGF-β polymorphisms | Genotyping of cytokine gene polymorphisms by polymerase chain reaction (PCR) | Graft rejection (acute rejection incidence, recurrence, severity, and graft function) | High TNF-α and IL-10 phenotypes linked to higher AR risk | Strengths: functional genotyping; clearly defined outcomes. Limitations: small, single-center cohort study; lack of validation |
Balakrishnan et al. [60] | Candidate gene association; prospective pre/post-transplant lipid assessment | SPK (n = 84), PA (n = 9) | Adult T1DM patients awaiting pancreas transplantation at a single U.S. transplant center | APOE alleles: ε2, ε3, ε4 | Genotyping of ApoE alleles by PCR and restriction fragment length polymorphism (PCR-RFLP) | Lipid profiles (Triglycerides, HDL-C, and cholesterol-to-HDL ratio before and after transplantation) | E4 allele linked to higher TG, lower HDL, and a higher C/H ratio pre-transplant; no E2 effect; differences were resolved post-transplant | Strengths: within-subject design; functional genotyping; clear lipid endpoints. Limitations: small size, single-center study; lack of multivariable adjustment; historic data |
Hankey et al. [66] | Observational, descriptive study analyzing tissue expression of MIC antigens in human allograft biopsies | SPK (n = 10), Kidney (n = 19) | Patients who received kidney or pancreatic transplants and underwent biopsy for clinical indications | MICA, MICB | Indirect immunohistochemistry (IHC) using a monoclonal antibody directed against MICA and MICB | Graft rejection (MIC expression presence and localization correlated with histopathological diagnoses) | MIC was absent/minimal in non-rejecting renal biopsies, but MIC was strongly expressed in acute and chronic rejection renal biopsies. MIC found in pancreatic biopsies with or without rejection | Strengths: specific monoclonal antibodies; inclusion of renal and pancreatic samples; use of controls; histological correlation. Limitations: descriptive design; limited sample size; no longitudinal or clinical outcome data; single-center study |
Cashion et al. [78] | Observational gene expression study | SPK (n = 3), PA (n = 9), PAK (n = 3) | Adult pancreas transplant recipients and controls with/without T1DM | GNMZ, PRF1 | Quantitative real-time PCR (qRT-PCR) of peripheral blood | Graft rejection (gene expression levels correlated with biopsy-proven rejection) | Higher granzyme B, perforin, and HLA-DRA levels in the rejection group (not statistically significant). Granzyme B was significantly higher vs. diabetic controls. Granzyme B may be useful for non-invasive rejection monitoring | Strengths: precise gene expression measurement via qRT-PCR; inclusion of diabetic and non-diabetic controls. Limitations: small sample size; lack of statistical significance between rejection and non-rejection groups |
Becker et al. [63] | Experimental animal study | PTA (n = 8–10 per group) * | Inbred Lewis rats used as donors and recipients | HO-1 | Induction of HO-1 using cobalt protoporphyrin (CoPP) in donor rats prior to pancreas procurement; grafts stored in HTK solution and transplanted into recipients | Graft survival (endocrine and exocrine function, serum lipase activity, histopathological examination, HO-1 gene expression levels, and cytokine profiles) | CoPP pretreatment resulted in 100% graft survival after prolonged cold ischemia, compared to 37.5% in controls. Enhanced HO-1 gene expression (130-fold increase) in the donor pancreas. Improved endocrine function and reduced serum lipase activity. Preservation of graft architecture | Strengths: controlled experimental design with defined pretreatment and post-transplant assessments; comprehensive evaluation. Limitations: study conducted in a rat model; results may not directly translate to human pancreas transplantation |
Luan et al. [73] | Pilot feasibility study evaluating mRNA-based stratification of pancreas transplant biopsies | SPK (n = 14), PAK (n = 12) | Pancreas transplant recipients | CD20 | qRT-PCR of biopsy tissue | Graft loss (gene expression profiles, cluster analysis, and correlation with clinical outcomes) | Unsupervised 2D hierarchical clustering segregated biopsies into two main clusters: Cluster A: 85.7% graft survival; Cluster B: 31.6% graft survival. Detection of CD20/MS4A1 mRNA and protein in some biopsies in Cluster B | Strengths: Utilization of archived pancreas biopsy specimens. Identification of potential molecular markers associated with graft survival. Limitations: small sample size and variability in immunosuppressive protocols over time |
Cashion et al. [80] | Longitudinal observational study | SPK (n = 4), PAK (n = 5), PTA (n = 4) | Adult recipients of pancreas allografts | GNMZ, PRF1, HLA-DRA | qRT-PCR analysis of peripheral blood mononuclear cells | Graft rejection (levels of granzyme B, perforin, and HLA-DRα mRNA; correlation with biopsy-proven acute rejection episodes; response to immunosuppressive therapy) | A significant increase in biomarker levels was observed up to 5 weeks before clinical diagnosis of acute rejection. Biomarker levels decreased following intensified immunosuppressive therapy in all patients with biopsy-proven rejection | Strengths: Longitudinal design with multiple follow-up points. Direct correlation of biomarker levels with histologically confirmed rejection episodes. Limitations: Small sample. Variability in baseline biomarker levels among individuals |
Oetting et al. [71] | Multi-center, observational cohort study | SPK (n = 62), Kidney (n = 907) | Clinically well-defined kidney transplant recipients from multiple centers | F5 | Genotyping of 23 previously reported SNPs associated with acute rejection; statistical analyses including race-adjusted and multivariable models | Acute rejection (association between SNPs and biopsy-proven acute rejection episodes) | Only one SNP, rs6025 (Leiden mutation) in the coagulation Factor V gene, showed a significant association with AR (p = 0.011 in race-adjusted analysis; p = 0.0003 in multivariable analysis). | Strengths: large, multi-center cohort and rigorous statistical analyses, including race-adjusted and multivariable models. Limitations: Study focused on a limited number of SNPs; other potentially relevant genetic variants were not assessed |
Rahsaz et al. [61] | Pilot, observational study | SPK (n = 7), PAK (n = 3), PTA (n = 11) | Adult pancreas transplant recipients and healthy individuals from Iran | VDR (Fokl polymorphism) | Genotyping of the vitamin D receptor (VDR) gene (FokI polymorphism) | Acute rejection (association between VDR FokI genotype and incidence of acute rejection episodes) | All patients with acute rejection had the FF genotype; no homozygous ff genotype was identified. The frequency of the FF genotype was higher in the rejection group compared to the non-rejection group (71% vs. 60%) | Strengths: Focus on a specific genetic polymorphism. Comparison with a healthy control group to assess genotype distribution. Limitations: Small sample size limits statistical power. Lack of long-term follow-up to assess graft survival |
Poitou et al. [38] | Single-center observational study | SPK (n = 4), Kidney (n = 2) | Patients with MODY3 and RCAD | HNF1A, HNF1B | Clinical evaluation, genetic testing, and follow-up post kidney and/or pancreas transplant | Diabetes after transplant (transplant success, graft survival, and post-transplant metabolic control) | All patients with MODY3 developed diabetic nephropathy, while only about half of the RCAD patients had diabetic kidney damage. Transplantation was safe and effective in MODY3 and RCAD patients | Strengths: Distinct clinical profiles for MODY3 vs. RCAD; both groups showed good transplant outcomes, with genetic diagnosis important for management. Limitations: single-center; small sample size |
Martins et al. [67] | Observational cohort study | SPK (n = 105) | Patients undergoing SPK for T1DM | GAD2 | Measurement of pancreatic autoantibodies (e.g., GAD, IA-2) pre- and post-transplant; clinical follow-up | Glycemic control (correlation between autoantibody presence and graft function, rejection episodes, and graft survival) | The presence or persistence of pancreatic autoantibodies post-transplant may not predict graft loss consistently; clinical relevance debated | Strengths: Longitudinal monitoring of autoantibodies. Clinical correlation with graft outcomes. Limitations: variability in autoantibody assays and timing |
Hamilton et al. [59] | Genetic association study with clinical follow-up | SPK (n = 315), PAK (n = 68), PTA (n = 38), SPT (n = 14) | Pancreas transplant recipients, primarily with T1DM | CAV1 (rs3801995, rs992) | Genotyping for CAV1 polymorphisms; analysis of graft function and survival over time | Graft survival (association between CAV1 genetic variants and long-term pancreas graft function and survival) | Specific CAV1 variants correlate with improved or reduced long-term pancreas transplant function, suggesting their genetic influence on graft outcomes | Strengths: integration of genetic data with clinical transplant outcomes; focus on long-term function. Limitations: limited sample size |
Gunasekaran et al. [72] | Observational cohort study with immunological analysis | SPK (n = 39) | Patients undergoing SPK transplantation | COL4A1, FN1, GAD, ICA, PAP-1 | Measurement of antibodies and T-cell responses against tissue-restricted self-antigens; clinical correlation with episodes of acute rejection | Graft rejection (association between immune response to self-antigens and acute rejection episodes; graft function) | Development of immune responses to tissue-restricted self-antigens is associated with acute rejection in SPK recipients, suggesting its role in graft injury | Strengths: detailed immunological profiling, direct clinical correlation, and focus on novel antigen targets. Limitations: small sample size; single-center study |
Roufosse et al. [74] | Molecular and histopathological observational study | SPK (n = 29), PAK (n = 8), PTA (n = 4) | Pancreas transplant recipients undergoing biopsy for suspected rejection | AMR 34-gene score | Molecular profiling (e.g., gene expression analysis) of pancreas allograft biopsies; histological examination; correlation with clinical rejection data | Graft loss (challenges related to immunodeficiency impacting transplant success, infection risk, and graft function) | Molecular markers can reliably detect AMR in pancreas allografts, improving diagnostic accuracy beyond traditional histology alone | Strengths: use of advanced molecular techniques; integration with clinical and histological data. Limitations: small biopsy sample size; single-center study |
Coimbra et al. [48] | Case report | SPK (n = 1) | Patients with common variable immunodeficiency (CVID) undergoing SPK transplant | TNFRSF13B, BACH2 (VOUS) | Genetic analysis; clinical monitoring of transplant outcomes; management of immunodeficiency-related complications | Graft rejection (challenges related to immunodeficiency impacting transplant success, infection risk, and graft function) | TNFRSF13B mutation-related CVID can complicate post-transplant management, increasing the infection risk and influencing graft outcomes | Strengths: detailed genetic and clinical correlation in transplant context; highlights rare but important complications. Limitations: Single case report |
Brown et al. [75] | Molecular observational study with gene expression profiling | SPK (n = 14), PAK (n = 12) | Pancreas transplant recipients undergoing biopsy for rejection assessment | 37 genes in Grade 3 ACR, 56 in Grade 2 ACR | Molecular scoring based on gene expression analysis from allograft biopsy samples; correlation with histology and clinical outcomes | Rejection severity (quantitative molecular scores correlated with the severity of rejection and response to immunosuppressive treatment) | Molecular scoring provides a sensitive, quantitative measure of rejection severity and can predict resistance to treatment, improving management decisions | Strengths: Objective molecular assessment, integration with clinical and histological data, and potential for personalized treatment. Limitations: small sample size; requires specialized molecular techniques |
5. Non-HLA Genomic Mismatch and Challenges in Pancreas–Kidney Transplantation
5.1. Non-HLA Genomic Mismatch
5.2. Challenges in Pancreas–Kidney Transplantation
Clinical Stage | Genetic Markers | Clinical Application | Decision Impact | References |
---|---|---|---|---|
1. Recipient Risk Stratification | HNF1A, HNF1B, INS, KCNJ11, GCK | Identify MODY/neonatal diabetes in atypical T1DM cases | Avoid unnecessary SPK; manage with oral agents if C-peptide is preserved and autoantibodies are absent. Consider SPK if renal involvement is severe | [38,39,40,41,42] |
TNF-α | Assess immune activation and rejection risk | Adjust immunosuppression; consider thrombosis prophylaxis | [32] | |
F5 | Evaluate thrombotic risk and rejection susceptibility | Guide perioperative anticoagulation and risk management | [71] | |
VDR FokI FF | Assess susceptibility to acute rejection | Modify immunosuppressive therapy accordingly | [61] | |
APOE | Identify cardiometabolic risk | Intensify cardiovascular monitoring; initiate lipid-lowering therapy | [60] | |
2. Donor Risk Stratification | CAV1 (rs3801995, rs9920) | Predict fibrosis, ischemia–reperfusion injury, and immune reactivity | Guide donor selection; personalize the immunosuppressive regimen | [59] |
HO- | Evaluate ischemia–reperfusion injury risk | Implement protective measures during procurement and reperfusion | [63] | |
VDR FokI FF | Assess immune activation risk | Influence donor–recipient matching and immunosuppression | [61] | |
APOE | Identify dyslipidemia risk post-transplant | Inform metabolic monitoring and intervention | [60] | |
MICA | Detect alloimmune response risk | Support immunological risk stratification | [66] | |
3. Monitoring and Surveillance | CD20, 34-gene AMR panel | Detect antibody-mediated rejection noninvasively | Enable early therapeutic intervention; reduce biopsies | [73,74] |
tCRM score | Quantify rejection severity and treatment resistance | Guide treatment decisions and monitoring | [75] | |
GNMZ, PRF1, HLA-DR | Monitor T-cell activation and immune status | Allow the real-time assessment of rejection | [78,79,80] | |
Donor-derived cfDNA | Detect allograft injury and rejection beyond 45 days | Provide high-sensitivity, noninvasive surveillance | [81] | |
MBL2 | Assess innate immune function and allograft stress | Tailor follow-up intensity; consider immune modulation | [76,77] | |
MICA/MICB | Indicate early graft injury and immune activation | Assist in timely clinical intervention | [66] |
6. Ethical Considerations in Pancreas–Kidney Transplantation
7. Future Vision
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HLA | Human leukocyte antigen |
SNP | Single-nucleotide polymorphism |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
SPK | Simultaneous pancreas–kidney transplant |
ESKD | End-stage kidney disease |
GWAS | Genome-wide association studies |
MICA | Major histocompatibility complex class I-related chain A |
MODY | Maturity-onset diabetes of the young |
iGeneTRAiN | International Genetics & Translational Research in Transplantation Network |
RCAD | Renal cysts and diabetes syndrome |
GAD | Glutamic acid decarboxylase |
IA2 | Insulinoma-associated protein 2 |
GNMZ | Granzyme B |
PRF1 | Perforin 1 |
APOE | Apolipoprotein E |
VDR | Vitamin D receptor |
F5 | Factor V Leiden |
tCRM | Tissue common response module |
dd-cfDNA | Donor-derived cell-free DNA |
MBL | Mannose-binding lectin |
VEGF | Vascular endothelial growth factor |
CAV1 | Caveolin-1 |
HO-1 | Heme oxygenase-1 |
PRS | Polygenic risk scores |
References
- Viste, A.; Moudry-Munns, K.; Sutherland, D.E. Prognostic risk factors for graft failure following pancreas transplantation: Results of multivariate analysis of data from the International Pancreas Transplant Registry. Transpl. Int. 1990, 3, 98–102. [Google Scholar] [CrossRef]
- Weiss, A.S.; Smits, G.; Wiseman, A.C. Twelve-month pancreas graft function significantly influences survival following simultaneous pancreas-kidney transplantation. Clin. J. Am. Soc. Nephrol. 2009, 4, 988–995. [Google Scholar] [CrossRef]
- Nakai, I.; Kaufman, D.B.; Field, M.J.; Morel, P.; Sutherland, D.E. Differential effects of preexisting uremia and a synchronous kidney graft on pancreas allograft functional survival in rats. Transplantation 1992, 54, 17–25. [Google Scholar] [CrossRef]
- Bansal, V.; Boucher, C. Sequencing Technologies and Analyses: Where Have We Been and Where Are We Going? iScience 2019, 18, 37–41. [Google Scholar] [CrossRef]
- Caliskan, Y.; Karahan, G.; Akgul, S.U.; Mirioglu, S.; Ozluk, Y.; Yazici, H.; Demir, E.; Dirim, A.B.; Turkmen, A.; Edwards, J.; et al. LIMS1 risk genotype and T cell-mediated rejection in kidney transplant recipients. Nephrol. Dial. Transplant. 2021, 36, 2120–2129. [Google Scholar] [CrossRef]
- Caliskan, Y.; Lee, B.; Whelan, A.; Abualrub, F.; Lentine, K.L.; Jittirat, A. Evaluation of Genetic Kidney Diseases in Living Donor Kidney Transplantation: Towards Precision Genomic Medicine in Donor Risk Assessment. Curr. Transplant. Rep. 2022, 9, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Obayemi, J.; Keating, B.; Callans, L.; Lentine, K.L.; Schnitzler, M.A.; Caliskan, Y.; Xiao, H.; Dharnidharka, V.R.; Mannon, R.B.; Axelrod, D.A. Impact of CYP3A5 Status on the Clinical and Financial Outcomes Among African American Kidney Transplant Recipients. Transplant. Direct 2022, 8, e1379. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.P.; Daloul, R.; Lentine, K.L.; Gohh, R.; Anand, P.M.; Rasouly, H.M.; Sharfuddin, A.A.; Schlondorff, J.S.; Rodig, N.M.; Freese, M.E.; et al. Genetic evaluation of living kidney donor candidates: A review and recommendations for best practices. Am. J. Transplant. 2023, 23, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, Y.; Lentine, K.L. Untangling genetic and environmental risks in kidney transplant outcomes: The interplay of self-identified race, genetic ancestry, monogenic risk alleles, and socioeconomic factors. Am. J. Transplant. 2024, 24, 894–896. [Google Scholar] [CrossRef]
- Caliskan, Y.; Ozluk, Y.; Kurashima, K.; Mirioglu, S.; Dirim, A.B.; Hurdogan, O.; Oto, O.A.; Syn, M.; Nazzal, M.; Jain, A.; et al. LIM Zinc Finger Domain Containing 1 Risk Genotype of Recipient Is Associated with Renal Tubular Inflammation in Kidney Transplantation. Genes 2024, 15, 773. [Google Scholar] [CrossRef]
- Soraru, J.; Chakera, A.; Isbel, N.; Mallawaarachichi, A.; Rogers, N.; Trnka, P.; Patel, C.; Mallett, A.J. The Evolving Role of Diagnostic Genomics in Kidney Transplantation. Kidney Int. Rep. 2022, 7, 1758–1771. [Google Scholar] [CrossRef]
- Li, Y.; Nieuwenhuis, L.M.; Keating, B.J.; Festen, E.A.M.; de Meijer, V.E. The Impact of Donor and Recipient Genetic Variation on Outcomes After Solid Organ Transplantation: A Scoping Review and Future Perspectives. Transplantation 2022, 106, 1548. [Google Scholar] [CrossRef]
- Finger, E.B.; Matar, A.J.; Dunn, T.B.; Humar, A.; Gruessner, A.C.; Gruessner, R.W.G.; Ramanathan, K.; Humphreville, V.; Matas, A.J.; Sutherland, D.E.R.; et al. Evolution of Pancreas Transplantation At A Single Institution-50+ Years and 2500 Transplants. Ann. Surg. 2024, 280, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Luan, F.L.; Kommareddi, M.; Cibrik, D.M.; Samaniego, M.; Ojo, A.O. The time interval between kidney and pancreas transplantation and the clinical outcomes of pancreas after kidney transplantation. Clin. Transplant. 2012, 26, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, Z.; Banu, K.; Gibson, I.W.; Colvin, R.B.; Yi, Z.; Zhang, W.; De Kumar, B.; Reghuvaran, A.; Pell, J.; et al. Multiscale genetic architecture of donor-recipient differences reveals intronic LIMS1 mismatches associated with kidney transplant survival. J. Clin. Investig. 2023, 133, e170420. [Google Scholar] [CrossRef]
- Cao, R.; Schladt, D.P.; Dorr, C.; Matas, A.J.; Oetting, W.S.; Jacobson, P.A.; Israni, A.; Chen, J.; Guan, W. Polygenic risk score for acute rejection based on donor-recipient non-HLA genotype mismatch. PLoS ONE 2024, 19, e0303446. [Google Scholar] [CrossRef]
- Kamburova, E.G.; Kardol-Hoefnagel, T.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; van der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; Hack, C.E.; et al. Development and Validation of a Multiplex Non-HLA Antibody Assay for the Screening of Kidney Transplant Recipients. Front. Immunol. 2018, 9, 3002. [Google Scholar] [CrossRef] [PubMed]
- Hauer, V.; Risti, M.; Miranda, B.L.M.; da Silva, J.S.; Cidral, A.L.; Pozzi, C.M.; Contieri, F.L.d.C.; Sadissou, I.A.; Donadi, E.A.; Augusto, D.G.; et al. The association of HLA-G polymorphisms and the synergistic effect of sMICA and sHLA-G with chronic kidney disease and allograft acceptance. PLoS ONE 2019, 14, e0212750. [Google Scholar] [CrossRef]
- Senev, A.; Ray, B.; Lerut, E.; Hariharan, J.; Heylen, C.; Kuypers, D.; Sprangers, B.; Emonds, M.-P.; Naesens, M. The Pre-Transplant Non-HLA Antibody Burden Associates With the Development of Histology of Antibody-Mediated Rejection After Kidney Transplantation. Front. Immunol. 2022, 13, 809059. [Google Scholar] [CrossRef]
- Gratwohl, A.; Döhler, B.; Stern, M.; Opelz, G. H-Y as a minor histocompatibility antigen in kidney transplantation: A retrospective cohort study. Lancet 2008, 372, 49–53. [Google Scholar] [CrossRef]
- Mujić Franić, A.; Lilić, M.; Katalinić, N.; Glavaš-Obrovac, L. Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment. Int. J. Mol. Sci. 2024, 25, 12103. [Google Scholar] [CrossRef]
- Bhutani, S.; Harris, S.; Carr, M.; Russell-Lowe, M.; Worthington, J.; Wu, H.H.L.; Chinnadurai, R.; Poulton, K. Evaluating the Clinical Relevance of Antibodies against Non-Human Leukocyte Antigen in Kidney Transplantation. Antibodies 2024, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Goutaudier, V.; Danger, R.; Catar, R.A.; Racapé, M.; Philippe, A.; Elias, M.; Raynaud, M.; Aubert, O.; Bouton, D.; Girardin, F.; et al. Evaluation of non-invasive biomarkers of kidney allograft rejection in a prospective multicenter unselected cohort study (EU-TRAIN). Kidney Int. 2024, 106, 943–960. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.C.; Wadia, P.P.; Coram, M.; Grumet, F.C.; Kambham, N.; Miller, K.; Pereira, S.; Vayntrub, T.; Miklos, D.B. H-Y antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation 2008, 86, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Steers, N.J.; Li, Y.; Drace, Z.; D’Addario, J.A.; Fischman, C.; Liu, L.; Xu, K.; Na, Y.-J.; Neugut, Y.D.; Zhang, J.Y.; et al. Genomic Mismatch at LIMS1 Locus and Kidney Allograft Rejection. N. Engl. J. Med. 2019, 380, 1918–1928. [Google Scholar] [CrossRef]
- Hernandez-Fuentes, M.P.; Franklin, C.; Rebollo-Mesa, I.; Mollon, J.; Delaney, F.; Perucha, E.; Stapleton, C.; Borrows, R.; Byrne, C.; Cavalleri, G.; et al. Long- and short-term outcomes in renal allografts with deceased donors: A large recipient and donor genome-wide association study. Am. J. Transplant. 2018, 18, 1370–1379. [Google Scholar] [CrossRef]
- O’Brien, R.P.; Phelan, P.J.; Conroy, J.; O’Kelly, P.; Green, A.; Keogan, M.; O’Neill, D.; Jennings, S.; Traynor, C.; Casey, J.; et al. A genome-wide association study of recipient genotype and medium-term kidney allograft function. Clin. Transplant. 2013, 27, 379–387. [Google Scholar] [CrossRef]
- Keating, B.J.; van Setten, J.; Jacobson, P.A.; Holmes, M.V.; Verma, S.S.; Chandrupatla, H.R.; Nair, N.; Gao, H.; Li, Y.R.; Chang, B.-L.; et al. International Genetics & Translational Research in Transplantation Network (iGeneTRAiN) Design and Implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation 2015, 99, 2401–2412. [Google Scholar] [CrossRef]
- Reindl-Schwaighofer, R.; Oberbauer, R. Histocompatibility: Minor differences have a major impact. Nat. Rev. Nephrol. 2019, 15, 529–530. [Google Scholar] [CrossRef]
- Romphruk, A.V.; Simtong, P.; Suntornnipat, J.; Sudwilai, Y.; Cheunta, S.; Chan-On, C.; Leelayuwat, C. Prevalence and impact of HLA and MICA allele mismatching on donor-specific antibodies induction in kidney transplant rejection. Nephrology 2021, 26, 833–841. [Google Scholar] [CrossRef]
- Duff, C.E.; Simmonds, M.J. Genetic predictors of long-term graft function in kidney and pancreas transplant patients. Brief. Funct. Genom. 2017, 16, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.; Pravica, V.; Perrey, C.; Xia, D.; Ferguson, R.M.; Hutchinson, I.; Orosz, C. Evidence for a genetic predisposition towards acute rejection after kidney and simultaneous kidney-pancreas transplantation. Transplantation 2000, 70, 674–680. [Google Scholar] [CrossRef]
- Rovira, J.; Ramirez-Bajo, M.J.; Bañón-Maneus, E.; Hierro-Garcia, N.; Lazo-Rodriguez, M.; Piñeiro, G.J.; Montagud-Marrahi, E.; Cucchiari, D.; Revuelta, I.; Cuatrecasas, M.; et al. Immune Profiling of Peripheral Blood Mononuclear Cells at Pancreas Acute Rejection Episodes in Kidney-Pancreas Transplant Recipients. Transpl. Int. 2022, 35, 10639. [Google Scholar] [CrossRef]
- Mittal, S.; Page, S.L.; Friend, P.J.; Sharples, E.J.; Fuggle, S.V. De Novo Donor-Specific HLA Antibodies: Biomarkers of Pancreas Transplant Failure. Am. J. Transplant. 2014, 14, 1664–1671. [Google Scholar] [CrossRef]
- Bonnefond, A.; Unnikrishnan, R.; Doria, A.; Vaxillaire, M.; Kulkarni, R.N.; Mohan, V.; Trischitta, V.; Froguel, P. Monogenic diabetes. Nat. Rev. Dis. Primers 2023, 9, 12. [Google Scholar] [CrossRef]
- Pihoker, C.; Gilliam, L.K.; Ellard, S.; Dabelea, D.; Davis, C.; Dolan, L.M.; Greenbaum, C.J.; Imperatore, G.; Lawrence, J.M.; Marcovina, S.M.; et al. Prevalence, Characteristics and Clinical Diagnosis of Maturity Onset Diabetes of the Young Due to Mutations in HNF1A, HNF4A, and Glucokinase: Results From the SEARCH for Diabetes in Youth. J. Clin. Endocrinol. Metab. 2013, 98, 4055–4062. [Google Scholar] [CrossRef]
- Horikawa, Y.; Hosomichi, K.; Yabe, D. Monogenic diabetes. Diabetol. Int. 2024, 15, 679–687. [Google Scholar] [CrossRef]
- Poitou, C.; Francois, H.; Bellanne-Chantelot, C.; Noel, C.; Jacquet, A.; Clauin, S.; Beaudreuil, S.; Damieri, H.; Hebibi, H.; Hammoudi, Y.; et al. Maturity onset diabetes of the young: Clinical characteristics and outcome after kidney and pancreas transplantation in MODY3 and RCAD patients: A single center experience. Transpl. Int. 2012, 25, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Saudek, F.; Průhová, S.; Boucek, P.; Lebl, J.; Adamec, M.; Ek, J.; Pedersen, O.; Hansen, T. Maturity-onset diabetes of the young with end-stage nephropathy: A new indication for simultaneous pancreas and kidney transplantation? Transplantation 2004, 77, 1298–1301. [Google Scholar] [CrossRef]
- Gruessner, R.W.G.; Gruessner, A.C. The current state of pancreas transplantation. Nat. Rev. Endocrinol. 2013, 9, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Samoylova, M.L.; Borle, D.; Ravindra, K.V. Pancreas Transplantation: Indications, Techniques, and Outcomes. Surg. Clin. N. Am. 2019, 99, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Ertuglu, L.A.; Porrini, E.; Hornum, M.; Demiray, A.; Afsar, B.; Ortiz, A.; Covic, A.; Rossing, P.; Kanbay, M. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors for diabetes after solid organ transplantation. Transpl. Int. 2021, 34, 1341–1359. [Google Scholar] [CrossRef] [PubMed]
- Vellanki, P.; Hwang, J.; Philipson, L.H.; Layden, B.T. MODY3 and Pancreatic Transplant: Making a Case for Universal MODY Screening Before Transplant. AACE Clin. Case Rep. 2015, 1, e123–e126. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, L.; Du, Q.; Haataja, L.; Yin, Y.; Viola, R.; Xu, S.; Nielsson, C.U.; Leibel, R.L.; Barbetti, F.; et al. Permanent neonatal diabetes-causing insulin mutations have dominant negative effects on beta cell identity. Mol. Metab. 2024, 80, 101879. [Google Scholar] [CrossRef]
- Carmody, D.; Park, S.-Y.; Ye, H.; Perrone, M.E.; Alkorta-Aranburu, G.; Highland, H.M.; Hanis, C.L.; Philipson, L.H.; Bell, G.I.; Greeley, S.A.W. Continued lessons from the INS gene: An intronic mutation causing diabetes through a novel mechanism. J. Med. Genet. 2015, 52, 612–616. [Google Scholar] [CrossRef]
- Vaisitti, T.; Peritore, D.; Magistroni, P.; Ricci, A.; Lombardini, L.; Gringeri, E.; Catalano, S.; Spada, M.; Sciveres, M.; Di Giorgio, A.; et al. The frequency of rare and monogenic diseases in pediatric organ transplant recipients in Italy. Orphanet J. Rare Dis. 2021, 16, 374. [Google Scholar] [CrossRef]
- Tzakis, A.G.; Nunnelley, M.J.; Tekin, A.; Buccini, L.D.; Garcia, J.; Uchida, K.; Neville, H.L.; Nares, M.A.; Ruiz, P.; Bodamer, O. Liver, Pancreas and Kidney Transplantation for the Treatment of Wolcott–Rallison Syndrome. Am. J. Transplant. 2015, 15, 565–567. [Google Scholar] [CrossRef]
- Coimbra, M.T.; Silvano, J.; Martins, L.S. Medical Challenges of a Common Variable Immunodeficiency With a TNFRSF13B Gene Mutation in a Simultaneous Kidney and Pancreas Transplant Recipient. Cureus 2023, 15, e44211. [Google Scholar] [CrossRef]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef]
- Ilonen, J.; Lempainen, J.; Veijola, R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Papageorge, C.M.; Bolognese, A.C.; Odorico, J.S. Expanding access to pancreas transplantation for type 2 diabetes mellitus. Curr. Opin. Organ Transplant. 2021, 26, 390–396. [Google Scholar] [CrossRef]
- Gruessner, A.C. A Decade of Pancreas Transplantation—A Registry Report. Uro 2023, 3, 132–150. [Google Scholar] [CrossRef]
- Chakkera, H.A.; Bodner, J.K.; Heilman, R.L.; Mulligan, D.C.; Moss, A.A.; Mekeel, K.L.; Mazur, M.J.; Hamawi, K.; Ray, R.M.; Beck, G.L.; et al. Outcomes after simultaneous pancreas and kidney transplantation and the discriminative ability of the C-peptide measurement pretransplant among type 1 and type 2 diabetes mellitus. Transplant. Proc. 2010, 42, 2650–2652. [Google Scholar] [CrossRef] [PubMed]
- Argente-Pla, M.; Martínez-Millana, A.; Del Olmo-García, M.I.; Espí-Reig, J.; Pérez-Rojas, J.; Traver-Salcedo, V.; Merino-Torres, J.F. Autoimmune Diabetes Recurrence After Pancreas Transplantation: Diagnosis, Management, and Literature Review. Ann. Transplant. 2019, 24, 608–616. [Google Scholar] [CrossRef]
- Burke, G.W.; Vendrame, F.; Pileggi, A.; Ciancio, G.; Reijonen, H.; Pugliese, A. Recurrence of autoimmunity following pancreas transplantation. Curr. Diab. Rep. 2011, 11, 413–419. [Google Scholar] [CrossRef]
- Assalino, M.; Genevay, M.; Morel, P.; Demuylder-Mischler, S.; Toso, C.; Berney, T. Recurrence of Type 1 Diabetes After Simultaneous Pancreas–Kidney Transplantation in the Absence of GAD and IA-2 Autoantibodies. Am. J. Transplant. 2012, 12, 492–495. [Google Scholar] [CrossRef]
- Hamilton, A.; Mittal, S.; Barnardo, M.C.N.M.; Fuggle, S.V.; Friend, P.; Gough, S.C.L.; Simmonds, M.J. Genetic variation in caveolin-1 correlates with long-term pancreas transplant function. Am. J. Transplant. 2015, 15, 1392–1399. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Colling, C.; Burkman, T.; Erickson, J.; Lyden, E.; Maheshwari, H.; Mack-Shipman, L.; Lane, J.; Larsen, J. Apolipoprotein E gene polymorphism alters lipids before pancreas transplantation. Transplantation 2002, 74, 974–977. [Google Scholar] [CrossRef]
- Rahsaz, M.; Azarpira, N.; Nikeghbalian, S.; Geramizadeh, B.; Aghdaie, M.H.; Daraie, M.; Esfandiari, E.; Ayatollahi, M.; Yaghubi, R.; Karimi, M.H. Vitamin D Receptor Genotype in Pancreas Allograft: A Pilot Study. Exp. Clin. Transplant. 2012, 10, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Katori, M.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Heme oxygenase-1 system in organ transplantation. Transplantation 2002, 74, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.; Zu Vilsendorf, A.M.; Terbish, T.; Klempnauer, J.; Jörns, A. Induction of Heme Oxygenase-1 Improves the Survival of Pancreas Grafts by Prevention of Pancreatitis After Transplantation. Transplantation 2007, 84, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mei, S.; Xiang, J.; Zhou, J.; Zhang, Q.; Yan, S.; Zhou, L.; Hu, Z.; Zheng, S. Influence of donor–recipient sex mismatch on long-term survival of pancreatic grafts. Sci. Rep. 2016, 6, 29298. [Google Scholar] [CrossRef]
- Messner, F.; Etra, J.W.; Haugen, C.E.; Bösmüller, C.; Maglione, M.; Hackl, H.; Riedmann, M.; Oberhuber, R.; Cardini, B.; Resch, T.; et al. Sex matching does not impact the outcome after simultaneous pancreas-kidney transplantation. Clin. Transplant. 2019, 33, e13717. [Google Scholar] [CrossRef]
- Hankey, K.G.; Drachenberg, C.B.; Papadimitriou, J.C.; Klassen, D.K.; Philosophe, B.; Bartlett, S.T.; Groh, V.; Spies, T.; Mann, D.L. MIC expression in renal and pancreatic allografts. Transplantation 2002, 73, 304–306. [Google Scholar] [CrossRef]
- Martins, L.S.; Henriques, A.C.; Fonseca, I.M.; Rodrigues, A.S.; Oliverira, J.C.; Dores, J.M.; Dias, L.S.; Cabrita, A.M.; Silva, J.D.; Noronha, I.L. Pancreatic autoantibodies after pancreas–kidney transplantation–do they matter? Clin. Transplant. 2014, 28, 462–469. [Google Scholar] [CrossRef]
- Alves, L.V.; Martins, S.R.; Simões E Silva, A.C.; Cardoso, C.N.; Gomes, K.B.; Mota, A.P.L. TNF, IL-6, and IL-10 cytokines levels and their polymorphisms in renal function and time after transplantation. Immunol. Res. 2020, 68, 246–254. [Google Scholar] [CrossRef]
- Alakulppi, N.S.; Kyllönen, L.E.; Jäntti, V.T.; Matinlauri, I.H.; Partanen, J.; Salmela, K.T.; Laine, J.T. Cytokine Gene Polymorphisms and Risks of Acute Rejection and Delayed Graft Function after Kidney Transplantation. Transplantation 2004, 78, 1422. [Google Scholar] [CrossRef]
- Asmaa, C.; Rachida, R.; Asma, D.; Louiza, K.; Souad, C.; Leila, B.; Ali, B.; Messaoud, S.; Dalila, K.; Fethi, M.; et al. TNF-α-308A/G SNP association with kidney allograft rejection in Algerian population: A retrospective case-control study. Transpl. Immunol. 2023, 81, 101927. [Google Scholar] [CrossRef]
- Oetting, W.S.; Schladt, D.P.; Leduc, R.E.; Jacobson, P.A.; Guan, W.; Matas, A.J.; Israni, A.; DeKAF Investigators. Validation of single nucleotide polymorphisms associated with acute rejection in kidney transplant recipients using a large multi-center cohort. Transpl. Int. 2011, 24, 1231–1238. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Vachharajani, N.; Gaut, J.P.; Maw, T.T.; Delos Santos, R.; Shenoy, S.; Chapman, W.C.; Wellen, J.; Mohanakumar, T. Development of immune response to tissue-restricted self-antigens in simultaneous kidney-pancreas transplant recipients with acute rejection. Clin. Transplant. 2017, 31, e13009. [Google Scholar] [CrossRef]
- Luan, F.L.; Trillsch, F.; Henger, A.; Eichinger, F.; Norman, S.; Appelman, H.; Kretzler, M. A pilot study of gene expression-based categorization of pancreas transplant biopsies. Transplantation 2009, 87, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Roufosse, C.; Drachenberg, C.; Renaudin, K.; Willicombe, M.; Toulza, F.; Dominy, K.; McLean, A.; Simmonds, N.; de Kort, H.; Cantarovitch, D.; et al. Molecular assessment of antibody-mediated rejection in human pancreas allograft biopsies. Clin. Transplant. 2020, 34, e14065. [Google Scholar] [CrossRef]
- Brown, A.E.; Kelly, Y.M.; Zarinsefat, A.; Meier, R.P.H.; Worner, G.; Tavakol, M.; Sarwal, M.M.; Laszik, Z.G.; Stock, P.G.; Sigdel, T.K. Gene expression-based molecular scoring of pancreas transplant rejection for a quantitative assessment of rejection severity and resistance to treatment. Am. J. Transplant. 2025, 25, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.P.; Roos, A.; Mallat, M.J.K.; Schaapherder, A.F.M.; Doxiadis, I.I.; van Kooten, C.; Dekker, F.W.; Daha, M.R.; de Fijter, J.W. Low Pretransplantation Mannose-Binding Lectin Levels Predict Superior Patient and Graft Survival after Simultaneous Pancreas-Kidney Transplantation. J. Am. Soc. Nephrol. 2007, 18, 2416. [Google Scholar] [CrossRef]
- Bijkerk, R.; van der Pol, P.; Khairoun, M.; van Gijlswijk-Jansen, D.J.; Lievers, E.; de Vries, A.P.J.; de Koning, E.J.; de Fijter, H.W.; Roelen, D.L.; Vossen, R.H.A.M.; et al. Simultaneous pancreas–kidney transplantation in patients with type 1 diabetes reverses elevated MBL levels in association with MBL2 genotype and VEGF expression. Diabetologia 2016, 59, 853–858. [Google Scholar] [CrossRef]
- Cashion, A.; Sabek, O.; Driscoll, C.; Gaber, L.; Kotb, M.; Gaber, O. Correlation of genetic markers of rejection with biopsy findings following human pancreas transplant. Clin. Transplant. 2006, 20, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Cashion, A.K.; Sabek, O.M.; Driscoll, C.J.; Gaber, L.W.; Gaber, A.O. Serial Peripheral Blood Cytotoxic Lymphocyte Gene Expression Measurements for Prediction of Pancreas Transplant Rejection. Transplant. Proc. 2006, 38, 3676–3677. [Google Scholar] [CrossRef]
- Cashion, A.K.; Sabek, O.; Driscoll, C.; Gaber, L.; Tolley, E.; Gaber, A.O. Serial analysis of biomarkers of acute pancreas allograft rejection. Clin. Transplant. 2010, 24, E214–E222. [Google Scholar] [CrossRef]
- Ventura-Aguiar, P.; Ramirez-Bajo, M.J.; Rovira, J.; Bañón-Maneus, E.; Hierro, N.; Lazo, M.; Cuatrecasas, M.; Garcia-Criado, M.A.; Liang, N.; Swenerton, R.K.; et al. Donor-derived Cell-free DNA Shows High Sensitivity for the Diagnosis of Pancreas Graft Rejection in Simultaneous Pancreas-kidney Transplantation. Transplantation 2022, 106, 1690–1697. [Google Scholar] [CrossRef]
- Farouk, S.; Zhang, Z.; Menon, M.C. Non-HLA donor–recipient mismatches in kidney transplantation—A stone left unturned. Am. J. Transplant. 2020, 20, 19–24. [Google Scholar] [CrossRef]
- Jethwani, P.; Rao, A.; Bow, L.; Menon, M.C. Donor–Recipient Non-HLA Variants, Mismatches and Renal Allograft Outcomes: Evolving Paradigms. Front. Immunol. 2022, 13, 822353. [Google Scholar] [CrossRef]
- Haufroid, V.; Mourad, M.; Van Kerckhove, V.; Wawrzyniak, J.; De Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Squifflet, J.-P.; Wallemacq, P. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004, 14, 147–154. [Google Scholar] [CrossRef]
- Birdwell, K.; Decker, B.; Barbarino, J.; Peterson, J.; Stein, C.; Sadee, W.; Wang, D.; Vinks, A.; He, Y.; Swen, J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharma Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef]
- Knoppers, B.M.; Zawati, M.H.; Sénécal, K. Return of genetic testing results in the era of whole-genome sequencing. Nat. Rev. Genet. 2015, 16, 553–559. [Google Scholar] [CrossRef]
- McGuire, A.L.; Caulfield, T.; Cho, M.K. Research ethics and the challenge of whole-genome sequencing. Nat. Rev. Genet. 2008, 9, 152–156. [Google Scholar] [CrossRef]
- Wolf, S.M.; Paradise, J.; Caga-Anan, C. The Law of Incidental Findings in Human Subjects Research: Establishing Researchers’ Duties. J. Law Med. Ethics 2008, 36, 361–383. [Google Scholar] [CrossRef] [PubMed]
- Hudson, K.L.; Holohan, M.K.; Collins, F.S. Keeping Pace with the Times—The Genetic Information Nondiscrimination Act of 2008. N. Engl. J. Med. 2008, 358, 2661–2663. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, G.S.; Phillips, K.A. Precision Medicine: From Science To Value. Health Aff. 2018, 37, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Anderlik, M.R.; Rothstein, M.A. Privacy and Confidentiality of Genetic Information: What Rules for the New Science? Annu. Rev. Genom. Hum. Genet. 2001, 2, 401–433. [Google Scholar] [CrossRef]
- Drognitz, O.; Michel, P.; Koczan, D.; Neeff, H.; Mikami, Y.; Obermaier, R.; Thiesen, H.-J.; Hopt, U.T.; Loebler, M. Characterization of ischemia/reperfusion-induced gene expression in experimental pancreas transplantation. Transplantation 2006, 81, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, C.P.; Birdwell, K.A.; McKnight, A.J.; Maxwell, A.P.; Mark, P.B.; Sanders, M.L.; Chapman, F.A.; van Setten, J.; Phelan, P.J.; Kennedy, C.; et al. Polygenic risk score as a determinant of risk of non-melanoma skin cancer in a European-descent renal transplant cohort. Am. J. Transplant. 2019, 19, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Shaked, A.; Loza, B.-L.; Van Loon, E.; Olthoff, K.M.; Guan, W.; Jacobson, P.A.; Zhu, A.; Fishman, C.E.; Gao, H.; Oetting, W.S.; et al. Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nat. Med. 2022, 28, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, F.; Kiryluk, K. Genetic background and transplantation outcomes: Insights from genome-wide association studies. Curr. Opin. Organ Transplant. 2020, 25, 35–41. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, Y.; Song, J. Xenotransplantation: How close are we to clinical applications? Life Med. 2024, 3, lnae037. [Google Scholar] [CrossRef]
- Porrett, P.M.; Orandi, B.J.; Kumar, V.; Houp, J.; Anderson, D.; Cozette Killian, A.; Hauptfeld-Dolejsek, V.; Martin, D.E.; Macedon, S.; Budd, N.; et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 2022, 22, 1037–1053. [Google Scholar] [CrossRef]
- Fishman, C.E.; Mohebnasab, M.; van Setten, J.; Zanoni, F.; Wang, C.; Deaglio, S.; Amoroso, A.; Callans, L.; van Gelder, T.; Lee, S.; et al. Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN). Front. Genet. 2019, 10, 1084. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aypek, H.; Aygormez, O.; Caliskan, Y. Genomics in Pancreas–Kidney Transplantation: From Risk Stratification to Personalized Medicine. Genes 2025, 16, 884. https://doi.org/10.3390/genes16080884
Aypek H, Aygormez O, Caliskan Y. Genomics in Pancreas–Kidney Transplantation: From Risk Stratification to Personalized Medicine. Genes. 2025; 16(8):884. https://doi.org/10.3390/genes16080884
Chicago/Turabian StyleAypek, Hande, Ozan Aygormez, and Yasar Caliskan. 2025. "Genomics in Pancreas–Kidney Transplantation: From Risk Stratification to Personalized Medicine" Genes 16, no. 8: 884. https://doi.org/10.3390/genes16080884
APA StyleAypek, H., Aygormez, O., & Caliskan, Y. (2025). Genomics in Pancreas–Kidney Transplantation: From Risk Stratification to Personalized Medicine. Genes, 16(8), 884. https://doi.org/10.3390/genes16080884