Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Recovery and DNA Extraction
2.2. Whole-Genome Sequencing and Data Processing
2.3. Genome Quality, Annotation, Virulence and Resistance Gene Determination
2.4. Phylogenetic Tree Comparison
2.5. Data Processing and Visualization
3. Results
3.1. Serovar Determination and Sequence Classification
3.2. Detection of Resistance Genes and Plasmids in Salmonella Cerro and Schwarzengrund
3.3. Phylogeny of Salmonella Cerro and Schwarzengrund and SPI Determinants
3.4. Salmonella Pathogenicity Islands and Virulence Genes
4. Discussion
4.1. Serovar Determination and Sequence Classification
4.2. Detection of Resistance Genes and Plasmids in Salmonella Cerro and Schwarzengrund
4.3. Phylogeny of Salmonella Cerro and Schwarzengrund and SPI Determinants
4.4. Virulence Genes in Pathogenicity Islands
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Bonifait, L.; Thépault, A.; Baugé, L.; Rouxel, S.; Le Gall, F.; Chemaly, M. Occurrence of Salmonella in the Cattle Production in France. Microorganisms 2021, 9, 872. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hulme, J.P. Recent Advances in the Detection of Antibiotic and Multi-Drug Resistant Salmonella: An Update. Int. J. Mol. Sci. 2021, 22, 3499. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Bersot, L.; Quintana Cavicchioli, V.; Viana, C.; Konrad Burin, R.C.; Camargo, A.C.; de Almeida Nogueira Pinto, J.P.; Nero, L.A.; Destro, M.T. Prevalence, Antimicrobial Resistance, and Diversity of Salmonella along the Pig Production Chain in Southern Brazil. Pathogens 2019, 8, 204. [Google Scholar] [CrossRef]
- Hughes, L.E.; Gibson, E.A.; Roberts, H.E.; Davies, E.T.; Davies, G.; Sojka, W.J. Bovine Salmonellosis in England and Wales. Br. Vet. J. 1971, 127, 225–238. [Google Scholar] [CrossRef]
- Salaheen, S.; Sonnier, J.; Kim, S.W.; Haley, B.J.; Van Kessel, J.A.S. Interaction of Salmonella enterica with Bovine Epithelial Cells Demonstrates Serovar-Specific Association and Invasion Patterns. Foodborne Pathog. Dis. 2020, 17, 608–610. [Google Scholar] [CrossRef]
- Van Kessel, J.A.S.; Karns, J.S.; Wolfgang, D.R.; Hovingh, E.; Schukken, Y.H. Dynamics of Salmonella Serotype Shifts in an Endemically Infected Dairy Herd. Foodborne Pathog. Dis. 2012, 9, 319–324. [Google Scholar] [CrossRef]
- Rodriguez-Rivera, L.D.; Cummings, K.J.; Loneragan, G.H.; Rankin, S.C.; Hanson, D.L.; Leone, W.M.; Edrington, T.S. Salmonella Prevalence and Antimicrobial Susceptibility Among Dairy Farm Environmental Samples Collected in Texas. Foodborne Pathog. Dis. 2016, 13, 205–211. [Google Scholar] [CrossRef]
- Tewari, D.; Sandt, C.H.; Miller, D.M.; Jayarao, B.M.; M’ikanatha, N.M. Prevalence of Salmonella Cerro in Laboratory-Based Submissions of Cattle and Comparison with Human Infections in Pennsylvania, 2005–2010. Foodborne Pathog. Dis. 2012, 9, 928–933. [Google Scholar] [CrossRef]
- Vugia, D.J.; Samuel, M.; Farley, M.M.; Marcus, R.; Shiferaw, B.; Shallow, S.; Smith, K.; Angulo, F.J. Emerging Infections Program FoodNet Working Group. Invasive Salmonella Infections in the United States, FoodNet, 1996–1999: Incidence, Serotype Distribution, and Outcome. Clin. Infect. Dis. 2004, 38, S149–S156. [Google Scholar] [CrossRef]
- Keelara, S.; Scott, H.M.; Morrow, W.M.; Hartley, C.S.; Griffin, D.L.; Gebreyes, W.A.; Thakur, S. Comparative Phenotypic and Genotypic Characterization of Temporally Related Nontyphoidal Salmonella Isolated from Human Clinical Cases, Pigs, and the Environment in North Carolina. Foodborne Pathog. Dis. 2014, 11, 156–164. [Google Scholar] [CrossRef]
- Chen, M.H.; Wang, S.W.; Hwang, W.Z.; Tsai, S.J.; Hsih, Y.C.; Chiou, C.S.; Tsen, H.Y. Contamination of Salmonella Schwarzengrund Cells in Chicken Meat from Traditional Markets in Taiwan and Comparison of Their Antibiograms with Those of Human Isolates. Poult. Sci. 2010, 89, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Publication: USDA ARS. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=127846 (accessed on 5 June 2025).
- Biscola, P.H.N.; Malafaia, G.C. Cicarne Yearbook of the Beef Production Chain: 2024–2025.—Portal Embrapa. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1174114/anuario-cicarne-da-cadeia-produtiva-da-carne-bovina-2024---2025 (accessed on 4 June 2025).
- IBGE. Estatística Da Produção Pecuária. 2025, 83. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=73087 (accessed on 4 June 2025).
- Almeida, F.; Seribelli, A.A.; Medeiros, M.I.C.; Rodrigues, D.D.P.; de MelloVarani, A.; Luo, Y.; Allard, M.W.; Falcão, J.P. Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing. PLoS ONE 2018, 13, e0201882. [Google Scholar] [CrossRef] [PubMed]
- Monte, D.F.; Lincopan, N.; Berman, H.; Cerdeira, L.; Keelara, S.; Thakur, S.; Fedorka-Cray, P.J.; Landgraf, M. Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000–2016. Sci. Rep. 2019, 9, 11058. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.L.; Panzenhagen, P.; Ferrari, R.G.; dos Santos, A.; Paschoalin, V.M.F.; Conte-Junior, C.A. Frequency of Antimicrobial Resistance Genes in Salmonella From Brazil by in Silico Whole-Genome Sequencing Analysis: An Overview of the Last Four Decades. Front. Microbiol. 2020, 11, 1864. [Google Scholar] [CrossRef]
- Tiba-Casas, M.R.; Sacchi, C.T.; Gonçalves, C.R.; Almeida, E.A.; Soares, F.B.; de Jesus Bertani, A.M.; Fernandes, S.A.; de Paula Eduardo, M.B.; Camargo, C.H. Molecular Analysis of Clonally Related Salmonella Typhi Recovered from Epidemiologically Unrelated Cases of Typhoid Fever, Brazil. Int. J. Infect. Dis. 2019, 81, 191–195. [Google Scholar] [CrossRef]
- Vilela, F.P.; dos Prazeres Rodrigues, D.; Allard, M.W.; Falcão, J.P. Genomic Analyses of Drug-Resistant Salmonella enterica Serovar Heidelberg Strains Isolated from Meat and Related Sources between 2013 and 2017 in the South Region of Brazil. Curr. Genet. 2023, 69, 141–152. [Google Scholar] [CrossRef]
- Lakicevic, B.; Jankovic, V.; Pietzka, A.; Ruppitsch, W. Wholegenome Sequencing as the Gold Standard Approach for Control of Listeria Monocytogenes in the Food Chain. J. Food Prot. 2023, 86, 100003. [Google Scholar] [CrossRef]
- Li, I.-C.; Wu, H.-H.; Chen, Z.-W.; Chou, C.-H. Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing. Pathogens 2021, 10, 1024. [Google Scholar] [CrossRef]
- Baert, L.; McClure, P.; Winkler, A.; Karn, J.; Bouwknegt, M.; Klijn, A. Guidance Document on the Use of Whole Genome Sequencing (WGS) for Source Tracking from a Food Industry Perspective. Food Control 2021, 130, 108148. [Google Scholar] [CrossRef]
- Tagg, K.A.; Francois Watkins, L.; Moore, M.D.; Bennett, C.; Joung, Y.J.; Chen, J.C.; Folster, J.P. Novel Trimethoprim Resistance Gene DfrA34 Identified in Salmonella Heidelberg in the USA. J. Antimicrob. Chemother. 2019, 74, 38–41. [Google Scholar] [CrossRef]
- da Cunha-Neto, A.; Carvalho, L.A.; Castro, V.S.; Barcelos, F.G.; Carvalho, R.C.T.; Rodrigues, D.d.P.; Conte-Junior, C.A.; de Figueiredo, E.E.S. Salmonella Anatum, S. Infantis and S. Schwarzengrund in Brazilian Cheeses: Occurrence and Antibiotic Resistance Profiles. Int. J. Dairy Technol. 2020, 73, 296–300. [Google Scholar] [CrossRef]
- Muller, B.; Cunha-Neto, A.; Castro, V.S.; Carvalho, R.C.T.; Carvalho Teixeira, L.A.; Rodrigues, D.D.P.; De Souza Figueiredo, E.E. Salmonella Schwarzengrund, Akuafo, and O:16 Isolated from Vacuum-Packaged Beef Produced in the State of Mato Grosso, Brazil. J. Infect. Dev. Ctries. 2021, 15, 1876–1882. [Google Scholar] [CrossRef]
- Zhang, S.; den Bakker, H.C.; Li, S.; Chen, J.; Dinsmore, B.A.; Lane, C.; Lauer, A.C.; Fields, P.I.; Deng, X. SeqSero2: Rapid and Improved Salmonella Serotype Determination Using Whole-Genome Sequencing Data. Appl. Environ. Microbiol. 2019, 85, e01746-19. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Park, Y.-K.; Kim, J.F. PAIDB v2.0: Exploration and Analysis of Pathogenicity and Resistance Islands. Nucleic Acids Res 2015, 43, D624–D630. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Argimón, S.; Abudahab, K.; Goater, R.J.E.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.J.; Holden, M.T.G.; Yeats, C.A.; Grundmann, H.; et al. Microreact: Visualizing and Sharing Data for Genomic Epidemiology and Phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef]
- González-Santamarina, B.; García-Soto, S.; Dang-Xuan, S.; Abdel-Glil, M.Y.; Meemken, D.; Fries, R.; Tomaso, H. Genomic Characterization of Multidrug-Resistant Salmonella Serovars Derby and Rissen From the Pig Value Chain in Vietnam. Front. Vet. Sci. 2021, 8, 705044. [Google Scholar] [CrossRef]
- Shelenkov, A.; Mikhaylova, Y.; Voskanyan, S.; Egorova, A.; Akimkin, V. Whole-Genome Sequencing Revealed the Fusion Plasmids Capable of Transmission and Acquisition of Both Antimicrobial Resistance and Hypervirulence Determinants in Multidrug-Resistant Klebsiella Pneumoniae Isolates. Microorganisms 2023, 11, 1314. [Google Scholar] [CrossRef]
- Diep, B.; Barretto, C.; Portmann, A.-C.; Fournier, C.; Karczmarek, A.; Voets, G.; Li, S.; Deng, X.; Klijn, A. Salmonella Serotyping; Comparison of the Traditional Method to a Microarray-Based Method and an in Silico Platform Using Whole Genome Sequencing Data. Front. Microbiol. 2019, 10, 2554. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, Y.; Jones, M.B.; Zhang, Z.; Deatherage Kaiser, B.L.; Dinsmore, B.A.; Fitzgerald, C.; Fields, P.I.; Deng, X. Salmonella Serotype Determination Utilizing High-Throughput Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 1685–1692. [Google Scholar] [CrossRef]
- Leekitcharoenphon, P.; Nielsen, E.M.; Kaas, R.S.; Lund, O.; Aarestrup, F.M. Evaluation of Whole Genome Sequencing for Outbreak Detection of Salmonella Enterica. PLoS ONE 2014, 9, e87991. [Google Scholar] [CrossRef]
- Köser, C.U.; Ellington, M.J.; Cartwright, E.J.P.; Gillespie, S.H.; Brown, N.M.; Farrington, M.; Holden, M.T.G.; Dougan, G.; Bentley, S.D.; Parkhill, J.; et al. Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathog. 2012, 8, e1002824. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, P.P.; Kessel, J.S.V.; Karns, J.S.; Wolfgang, D.R.; Hovingh, E.; Nelen, K.A.; Schukken, Y.H.; Grohn, Y.T. A Mathematical Model of the Dynamics of Salmonella Cerro Infection in a US Dairy Herd. Epidemiol. Infect. 2008, 136, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Duc, V.M.; Shin, J.; Nagamatsu, Y.; Fuhiwara, A.; Toyofuku, H.; Obi, T.; Chuma, T. Increased Salmonella Schwarzengrund Prevalence and Antimicrobial Susceptibility of Salmonella Enterica Isolated from Broiler Chickens in Kagoshima Prefecture in Japan between 2013 and 2016. J. Vet. Med. Sci. 2020, 82, 585–589. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Hendriksen, R.S.; Lockett, J.; Gay, K.; Teates, K.; McDermott, P.F.; White, D.G.; Hasman, H.; Sørensen, G.; Bangtrakulnonth, A.; et al. International Spread of Multidrug-Resistant Salmonella Schwarzengrund in Food Products. Emerg. Infect. Dis. 2007, 13, 726–731. [Google Scholar] [CrossRef]
- Sasaki, Y.; Ikeda, T.; Yonemitsu, K.; Kuroda, M.; Ogawa, M.; Sakata, R.; Uema, M.; Momose, Y.; Ohya, K.; Watanabe, M.; et al. Antimicrobial Resistance Profiles of Campylobacter Jejuni and Salmonella Spp. Isolated from Enteritis Patients in Japan. J. Vet. Med. Sci. 2023, 85, 463–470. [Google Scholar] [CrossRef]
- Matsui, K.; Nakazawa, C.; Thiri Maung Maung Khin, S.; Iwabuchi, E.; Asai, T.; Ishihara, K. Molecular Characteristics and Antimicrobial Resistance of Salmonella enterica Serovar Schwarzengrund from Chicken Meat in Japan. Antibiotics 2021, 10, 1336. [Google Scholar] [CrossRef]
- Du, X.; Jiang, X.; Ye, Y.; Guo, B.; Wang, W.; Ding, J.; Xie, G. Next Generation Sequencing for the Investigation of an Outbreak of Salmonella Schwarzengrund in Nanjing, China. Int. J. Biol. Macromol. 2018, 107, 393–396. [Google Scholar] [CrossRef]
- Bangtrakulnonth, A.; Pornreongwong, S.; Pulsrikarn, C.; Sawanpanyalert, P.; Hendriksen, R.S.; Wong, D.M.A.L.F.; Aarestrup, F.M. Salmonella Serovars from Humans and Other Sources in Thailand, 1993–2002. Emerg. Infect. Dis. 2004, 10, 131–136. [Google Scholar] [CrossRef]
- Tsai, H.-J.; Hsiang, P.-H. The Prevalence and Antimicrobial Susceptibilities of Salmonella and Campylobacter in Ducks in Taiwan. J. Vet. Med. Sci. 2005, 67, 7–12. [Google Scholar] [CrossRef]
- Tejada, T.S.; Silva, C.S.J.; Lopes, N.A.; Silva, D.T.; Agostinetto, A.; Silva, E.F.; Menezes, D.B.; Timm, C.D. DNA Profiles of Salmonella Spp. Isolated from Chicken Products and From Broiler and Human Feces. Braz. J. Poult. Sci. 2016, 18, 693–700. [Google Scholar] [CrossRef]
- Voss-Rech, D.; Vaz, C.S.L.; Alves, L.; Coldebella, A.; Leão, J.A.; Rodrigues, D.P.; Back, A. A Temporal Study of Salmonella enterica Serotypes from Broiler Farms in Brazil. Poult. Sci. 2015, 94, 433–441. [Google Scholar] [CrossRef]
- Rodriguez-Rivera, L.D.; Wright, E.M.; Siler, J.D.; Elton, M.; Cummings, K.J.; Warnick, L.D.; Wiedmann, M. Subtype Analysis of Salmonella Isolated from Subclinically Infected Dairy Cattle and Dairy Farm Environments Reveals the Presence of Both Human- and Bovine-Associated Subtypes. Vet. Microbiol. 2014, 170, 307–316. [Google Scholar] [CrossRef]
- Kovac, J.; Cummings, K.J.; Rodriguez-Rivera, L.D.; Carroll, L.M.; Thachil, A.; Wiedmann, M. Temporal Genomic Phylogeny Reconstruction Indicates a Geospatial Transmission Path of Salmonella Cerro in the United States and a Clade-Specific Loss of Hydrogen Sulfide Production. Front. Microbiol. 2017, 8, 737. [Google Scholar] [CrossRef]
- Pulido-Landínez, M.; Sánchez-Ingunza, R.; Guard, J.; do Nascimento, V.P. Assignment of Serotype to Salmonella enterica Isolates Obtained from Poultry and Their Environment in Southern Brazil. Lett. Appl. Microbiol. 2013, 57, 288–294. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo, E.C.; Martins, B.T.F.; Tiba Casas, M.R.; Possebon, F.S.; Araújo Junior, J.P.; Nero, L.A.; Yamatogi, R.S. Multidrug Resistance and Virulence Profiles of Salmonella Isolated from Swine Lymph Nodes. Microb. Drug Resist. 2021, 27, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Carraro, P.E.; de Barbosa, F.O.; Benevides, V.P.; Casas, M.R.T.; Berchieri Junior, A.; Bürger, K.P. Prevalence and Antimicrobial Resistance of Salmonella Spp. Isolated from Free-Ranging Wild Boars in the State of São Paulo, Brazil. Cienc. Rural 2022, 52, e20210263. [Google Scholar] [CrossRef]
- Gabana, A.D.A.; Núncio, A.S.P.; Lopes, B.C.; de Oliveira, J.A.; da Silva Monteiro, L.; de Menezes Coppola, M.; Furian, T.Q.; Borges, K.A.; Rodrigues, L.B.; Mayer, F.Q. Different Multidrug-Resistant Salmonella Spp. Serovars Isolated from Slaughter Calves in Southern Brazil. Curr. Microbiol. 2022, 80, 11. [Google Scholar] [CrossRef]
- Gutema, F.D.; Agga, G.E.; Abdi, R.D.; De Zutter, L.; Duchateau, L.; Gabriël, S. Prevalence and Serotype Diversity of Salmonella in Apparently Healthy Cattle: Systematic Review and Meta-Analysis of Published Studies, 2000–2017. Front. Vet. Sci. 2019, 6, 102. [Google Scholar] [CrossRef]
- Barrow, P.A.; Jones, M.A.; Thomson, N. Salmonella. In Pathogenesis of Bacterial Infections in Animals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 231–265. ISBN 978-0-470-95820-9. [Google Scholar]
- Ågren, E. Salmonella in Swedish Cattle. 2017. Available online: https://publications.slu.se/?file=publ/show&id=104094 (accessed on 16 April 2025).
- Kemal, J. A Review on the Public Health Importance of Bovine Salmonellosis. J Vet. Sci Technol 2014, 5, 175. [Google Scholar] [CrossRef]
- Gould, L.H.; Mungai, E.; Barton Behravesh, C. Outbreaks Attributed to Cheese: Differences Between Outbreaks Caused by Unpasteurized and Pasteurized Dairy Products, United States, 1998–2011. Foodborne Pathog. Dis. 2014, 11, 545–551. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Scanga, J.A.; De la zerda, M.J.; Koohmaraie, B.; Tapay, L.; Beskhlebnaya, V.; Mai, T.; Greeson, K.; Samadpour, M. Tracking the Sources of Salmonella in Ground Beef Produced from Nonfed Cattle. J. Food Prot. 2012, 75, 1464–1468. [Google Scholar] [CrossRef]
- Fossler, C.P.; Wells, S.J.; Kaneene, J.B.; Ruegg, P.L.; Warnick, L.D.; Bender, J.B.; Godden, S.M.; Halbert, L.W.; Campbell, A.M.; Zwald, A.M.G. Prevalence of Salmonella spp. on Conventional and Organic Dairy Farms. J. Am. Vet. Med. Assoc. 2004, 225, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.; Van, N.T.B.; Cuong, N.V.; Duong, T.T.Q.; Nhat, T.T.; Hang, T.T.T.; Nhi, N.T.H.; Kiet, B.T.; Hien, V.B.; Ngoc, P.T.; et al. Antimicrobial Residues and Resistance against Critically Important Antimicrobials in Non-Typhoidal Salmonella from Meat Sold at Wet Markets and Supermarkets in Vietnam. Int. J. Food Microbiol. 2018, 266, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Wiedmann, M.; den Bakker, H.; Siler, J.; Warchocki, S.; Kent, D.; Lyalina, S.; Davis, M.; Sischo, W.; Besser, T.; et al. Whole-Genome Sequencing of Drug-Resistant Salmonella enterica Isolates from Dairy Cattle and Humans in New York and Washington States Reveals Source and Geographic Associations. Appl. Environ. Microbiol. 2017, 83, e00140-17. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- Nguyen, T.T.; Le, H.V.; Vu Thi Hai, H.; Nguyen Tuan, T.; Nguyen, H.M.; Pham Xuan, D.; Tran Thi Thanh, H.; Le Thi, H.H. Whole-Genome Analysis of Antimicrobial-Resistant Salmonella enterica Isolated from Duck Carcasses in Hanoi, Vietnam. Curr. Issues Mol. Biol. 2023, 45, 2213–2229. [Google Scholar] [CrossRef]
- Moura, Q.; Fernandes, M.R.; Silva, K.C.; Monte, D.F.; Esposito, F.; Dropa, M.; Noronha, C.; Moreno, A.M.; Landgraf, M.; Negrão, F.J.; et al. Virulent Nontyphoidal Salmonella Producing CTX-M and CMY-2 β-Lactamases from Livestock, Food and Human Infection, Brazil. Virulence 2018, 9, 281–286. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List 2024 Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance, 1st ed.; World Health Organization: Geneva, Switzerland, 2024; ISBN 978-92-4-009346-1. [Google Scholar]
- McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. Front. Microbiol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Qian, H.; Cheng, S.; Liu, G.; Tan, Z.; Dong, C.; Bao, J.; Hong, J.; Jin, D.; Bao, C.; Gu, B. Discovery of Seven Novel Mutations of GyrB, ParC and ParE in Salmonella Typhi and Paratyphi Strains from Jiangsu Province of China. Sci Rep 2020, 10, 7359. [Google Scholar] [CrossRef]
- Randall, L.P.; Coldham, N.G.; Woodward, M.J. Detection of Mutations in Salmonella enterica gyrA, GyrB, ParC and ParE Genes by Denaturing High Performance Liquid Chromatography (DHPLC) Using Standard HPLC Instrumentation. J. Antimicrob. Chemother. 2005, 56, 619–623. [Google Scholar] [CrossRef]
- Gonzalez Ronquillo, M.; Angeles Hernandez, J.C. Antibiotic and Synthetic Growth Promoters in Animal Diets: Review of Impact and Analytical Methods. Food Control 2017, 72, 255–267. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mecanismos de Resistência Às Quinolonas Em Escherichia Coli e Salmonella: Desenvolvimentos Recentes. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef]
- Casas, M.R.T.; Camargo, C.H.; Soares, F.B.; da Silveira, W.D.; Fernandes, S.A. Presence of Plasmid-Mediated Quinolone Resistance Determinants and Mutations in Gyrase and Topoisomerase in Salmonella enterica Isolates with Resistance and Reduced Susceptibility to Ciprofloxacin. Diagn. Microbiol. Infect. Dis. 2016, 85, 85–89. [Google Scholar] [CrossRef]
- Salah, F.D.; Soubeiga, S.T.; Ouattara, A.K.; Sadji, A.Y.; Metuor-Dabire, A.; Obiri-Yeboah, D.; Banla-Kere, A.; Karou, S.; Simpore, J. Distribution of Quinolone Resistance Gene (Qnr) in ESBL-Producing Escherichia Coli and Klebsiella spp. in Lomé, Togo. Antimicrob Resist. Infect. Control 2019, 8, 104. [Google Scholar] [CrossRef]
- Heisig, P. High-Level Fluoroquinolone Resistance in a Salmonella Typhimurium Isolate Due to Alterations in Both GyrA and GyrB Genes. J. Antimicrob. Chemother. 1993, 32, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Casin, I.; Breuil, J.; Darchis, J.P.; Guelpa, C.; Collatz, E. Fluoroquinolone Resistance Linked to GyrA, GyrB, and ParC Mutations in Salmonella enterica Typhimurium Isolates in Humans. Emerg. Infect. Dis. 2003, 9, 1455–1457. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Switt, A.I.; Pezoa, D.; Sepúlveda, V.; González, I.; Rivera, D.; Retamal, P.; Navarrete, P.; Reyes-Jara, A.; Toro, M. Transduction as a Potential Dissemination Mechanism of a Clonal QnrB19-Carrying Plasmid Isolated From Salmonella of Multiple Serotypes and Isolation Sources. Front. Microbiol. 2019, 10, 2503. [Google Scholar] [CrossRef]
- Felix, M.A.; Han, J.; Khajanchi, B.K.; Sanad, Y.M.; Zhao, S.; Foley, S.L. Salmonella enterica Serovar Schwarzengrund: Distribution, Virulence, and Antimicrobial Resistance. Microorganisms 2025, 13, 92. [Google Scholar] [CrossRef]
- Cohn, A.R.; Orsi, R.H.; Carroll, L.M.; Liao, J.; Wiedmann, M.; Cheng, R.A. Salmonella enterica Serovar Cerro Displays a Phylogenetic Structure and Genomic Features Consistent with Virulence Attenuation and Adaptation to Cattle. Front. Microbiol. 2022, 13, 1005215. [Google Scholar] [CrossRef]
- Li, I.-C.; Wu, R.; Hu, C.-W.; Wu, K.-M.; Chen, Z.-W.; Chou, C.-H. Comparison of Conventional Molecular and Whole-Genome Sequencing Methods for Differentiating Salmonella enterica Serovar Schwarzengrund Isolates Obtained from Food and Animal Sources. Microorganisms 2021, 9, 2046. [Google Scholar] [CrossRef]
- Kombade, S.; Kaur, N.; Kombade, S.; Kaur, N. Pathogenicity Island in Salmonella spp.—A Global Challenge; IntechOpen: London, UK, 2021; ISBN 978-1-83969-018-1. [Google Scholar]
- Hensel, M. Evolution of Pathogenicity Islands of Salmonella enterica. Int. J. Med. Microbiol. 2004, 294, 95–102. [Google Scholar] [CrossRef]
- Riquelme, S.; Varas, M.; Valenzuela, C.; Velozo, P.; Chahin, N.; Aguilera, P.; Sabag, A.; Labra, B.; Álvarez, S.A.; Chávez, F.P.; et al. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium Discoideum. Front. Microbiol. 2016, 7, 1305. [Google Scholar] [CrossRef]
- Nieto, P.A.; Pardo-Roa, C.; Salazar-Echegarai, F.J.; Tobar, H.E.; Coronado-Arrázola, I.; Riedel, C.A.; Kalergis, A.M.; Bueno, S.M. New Insights about Excisable Pathogenicity Islands in Salmonella and Their Contribution to Virulence. Microbes Infect. 2016, 18, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Pornsukarom, S.; Patchanee, P.; Erdman, M.; Cray, P.F.; Wittum, T.; Lee, J.; Gebreyes, W.A. Comparative Phenotypic and Genotypic Analyses of Salmonella Rissen That Originated from Food Animals in Thailand and United States. Zoonoses Public Health 2015, 62, 151–158. [Google Scholar] [CrossRef]
- Han, J.; Aljahdali, N.; Zhao, S.; Tang, H.; Harbottle, H.; Hoffmann, M.; Frye, J.G.; Foley, S.L. Infection Biology of Salmonella enterica. EcoSal Plus 2024, 12, eesp-0001. [Google Scholar] [CrossRef] [PubMed]
- Fàbrega, A.; Vila, J. Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [PubMed]
- Sévellec, Y.; Vignaud, M.-L.; Granier, S.A.; Lailler, R.; Feurer, C.; Le Hello, S.; Mistou, M.-Y.; Cadel-Six, S. Polyphyletic Nature of Salmonella enterica Serotype Derby and Lineage-Specific Host-Association Revealed by Genome-Wide Analysis. Front. Microbiol. 2018, 9, 891. [Google Scholar] [CrossRef]
- Sousa, A.D.A. Caracterização Fenotípica e Genética de Resistência Antimicrobiana em Salmonella enterica. Master’s Thesis, Fernando Pessoa University, Ponte de Lima, Portugal, 2023. [Google Scholar]
- Marcus, S.L.; Brumell, J.H.; Pfeifer, C.G.; Finlay, B.B. Salmonella Pathogenicity Islands: Big Virulence in Small Packages. Microbes Infect. 2000, 2, 145–156. [Google Scholar] [CrossRef]
- Ibarra, J.A.; Steele-Mortimer, O. Salmonella—the Ultimate Insider. Salmonella ate Intracellular Survival. Cell Microbiol. 2009, 11, 1579–1586. [Google Scholar] [CrossRef]
- Sheehan, J.R.; Sadlier, C.; O’Brien, B. Bacterial Endotoxins and Exotoxins in Intensive Care Medicine. BJA Educ. 2022, 22, 224–230. [Google Scholar] [CrossRef]
- Kujat Choy, S.L.; Boyle, E.C.; Gal-Mor, O.; Goode, D.L.; Valdez, Y.; Vallance, B.A.; Finlay, B.B. SseK1 and SseK2 Are Novel Translocated Proteins of Salmonella enterica Serovar Typhimurium. Infect. Immun. 2004, 72, 5115–5125. [Google Scholar] [CrossRef]
- Zhang, X.; He, L.; Zhang, C.; Yu, C.; Yang, Y.; Jia, Y.; Cheng, X.; Li, Y.; Liao, C.; Li, J.; et al. The Impact of SseK2 Deletion on Salmonella enterica Serovar Typhimurium Virulence in vivo and in vitro. BMC Microbiol. 2019, 19, 182. [Google Scholar] [CrossRef]
- Espinoza, R.A.; Silva-Valenzuela, C.A.; Amaya, F.A.; Urrutia, Í.M.; Contreras, I.; Santiviago, C.A.; Espinoza, R.A.; Silva-Valenzuela, C.A.; Amaya, F.A.; Urrutia, Í.M.; et al. Differential Roles for Pathogenicity Islands SPI-13 and SPI-8 in the Interaction of Salmonella Enteritidis and Salmonella Typhi with Murine and Human Macrophages. Biol. Res. 2017, 50, 5. [Google Scholar] [CrossRef]
- Desai, P.T.; Porwollik, S.; Long, F.; Cheng, P.; Wollam, A.; Bhonagiri-Palsikar, V.; Hallsworth-Pepin, K.; Clifton, S.W.; Weinstock, G.M.; McClelland, M. Evolutionary Genomics of Salmonella enterica Subspecies. MBio 2013, 4, e00579-12. [Google Scholar] [CrossRef] [PubMed]
- Haneda, T.; Ishii, Y.; Danbara, H.; Okada, N. Genome-Wide Identification of Novel Genomic Islands That Contribute to Salmonella Virulence in Mouse Systemic Infection. FEMS Microbiol. Lett. 2009, 297, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.H.; Lee, M.-J.; Park, J.-H.; Lee, J.-H.; Eo, S.-K.; Kwon, J.-T.; Chae, J.-S. Identification of Salmonella Gallinarum Virulence Genes in a Chicken Infection Model Using PCR-Based Signature-Tagged Mutagenesis. Microbiology 2005, 151 Pt 12, 3957–3968. [Google Scholar] [CrossRef] [PubMed]
- Elder, J.R.; Chiok, K.L.; Paul, N.C.; Haldorson, G.; Guard, J.; Shah, D.H. The Salmonella Pathogenicity Island 13 Contributes to Pathogenesis in Streptomycin Pre-Treated Mice but Not in Day-Old Chickens. Gut Pathog. 2016, 8, 16. [Google Scholar] [CrossRef]
- Benevides, V.P.; Saraiva, M.M.S.; Ferreira, V.A.; Funnicelli, M.I.G.; Rodrigues Alves, L.B.; Almeida, A.M.; Christensen, H.; Olsen, J.E.; Berchieri Junior, A. Unveiling the Genomic Landscape of Understudied Salmonella enterica Serovars from Poultry and Human: Implications for Food Safety. Curr. Microbiol. 2025, 82, 279. [Google Scholar] [CrossRef]
- Jiang, L.; Feng, L.; Yang, B.; Zhang, W.; Wang, P.; Jiang, X.; Wang, L. Signal Transduction Pathway Mediated by the Novel Regulator LoiA for Low Oxygen Tension Induced Salmonella Typhimurium Invasion. PLoS Pathog. 2017, 13, e1006429. [Google Scholar] [CrossRef]
Strain | S. Cerro (Salmonella_R5748) | S. Schwarzengrund (Salmonella_R10633) | Classes of Antibiotics/Function |
---|---|---|---|
Resistance genes | Aac(6′)-Iaa_1 | Aac(6′)-Iaa_1 qnrB19_1 | Aminoglicosides Quinolones |
Plasmids | None | Col440I_1 | They play a role in antimicrobial resistance and virulence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, N.B.; Castro, V.S.; da Cunha-Neto, A.; Carvalho, F.T.; Carvalho, R.C.T.; Figueiredo, E.E.d.S. Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil. Genes 2025, 16, 880. https://doi.org/10.3390/genes16080880
Nunes NB, Castro VS, da Cunha-Neto A, Carvalho FT, Carvalho RCT, Figueiredo EEdS. Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil. Genes. 2025; 16(8):880. https://doi.org/10.3390/genes16080880
Chicago/Turabian StyleNunes, Nathaly Barros, Vinicius Silva Castro, Adelino da Cunha-Neto, Fernanda Tavares Carvalho, Ricardo César Tavares Carvalho, and Eduardo Eustáquio de Souza Figueiredo. 2025. "Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil" Genes 16, no. 8: 880. https://doi.org/10.3390/genes16080880
APA StyleNunes, N. B., Castro, V. S., da Cunha-Neto, A., Carvalho, F. T., Carvalho, R. C. T., & Figueiredo, E. E. d. S. (2025). Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil. Genes, 16(8), 880. https://doi.org/10.3390/genes16080880