Copy Number Variants of Uncertain Significance by Chromosome Microarray Analysis from Consecutive Pediatric Patients: Reevaluation Following Current Guidelines and Reanalysis by Genome Sequencing
Abstract
1. Introduction
2. Materials and Methods
2.1. Retrospective Review of Pediatric Cases
2.2. DNA Extraction and Chromosomal Microarray Analysis
2.3. Reevaluation of CNVus
2.4. Reanalysis by Whole Genome Sequencing (WGS)
3. Results
3.1. Characteristics of Pediatric Cases with Reported CNVus
3.2. Reclassified CNVus Follows Current ACMG/ClinGen Guidelines
3.3. Reanalysis by Genomic Sequencing (WGS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
- Xiang, B.; Zhu, H.; Shen, Y.; Miller, D.T.; Lu, K.; Hu, X.; Andersson, H.C.; Narumanchi, T.M.; Wang, Y.; Martinez, J.E.; et al. Genome-wide oligonucleotide array comparative genomic hybridization for etiological diagnosis of mental retardation: A multicenter experience of 1499 clinical cases. J. Mol. Diagn. 2010, 12, 204–212. [Google Scholar] [CrossRef]
- Chai, H.; DiAdamo, A.; Grommisch, B.; Xu, F.; Zhou, Q.; Wen, J.; Mahoney, M.; Bale, A.; McGrath, J.; Spencer-Manzon, M.; et al. A Retrospective Analysis of 10-Year Data Assessed the Diagnostic Accuracy and Efficacy of Cytogenomic Abnormalities in Current Prenatal and Pediatric SettinWGS. Front. Genet. 2019, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Hoffman-Andrews, L. The known unknown: The challenges of genetic variants of uncertain significance in clinical practice. J. Law Biosci. 2017, 4, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Kearney, H.M.; Thorland, E.C.; Brown, K.K.; Quintero-Rivera, F.; South, S.T.; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 2011, 13, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Correction: Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2021, 23, 2230. [Google Scholar] [CrossRef]
- Deignan, J.L.; Chung, W.K.; Kearney, H.M.; Monaghan, K.G.; Rehder, C.W.; Chao, E.C. Points to consider in the reevaluation and reanalysis of genomic test results: A statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2019, 21, 1267–1270. [Google Scholar] [CrossRef]
- Ravel, J.-M.; Renaud, M.; Muller, J.; Becker, A.; Renard, É.; Remen, T.; Lefort, G.; Dexheimer, M.; Jonveaux, P.; Leheup, B.; et al. Clinical utility of periodic reinterpretation of CNVs of uncertain significance: An 8-year retrospective study. Genome Med. 2023, 15, 39. [Google Scholar] [CrossRef]
- Farooqi, M.S.; Figueroa, S.; Gotway, G.; Wang, J.; Luu, H.S.; Park, J.Y. Reinterpretation of Chromosomal Microarrays with Detailed Medical History. J. Pediatr. 2020, 222, 180–185.e1. [Google Scholar] [CrossRef]
- Burghel, G.J.; Ellingford, J.M.; Wright, R.; Bradford, L.; Miller, J.; Watt, C.; Edgerley, J.; Naeem, F.; Banka, S. Systematic reanalysis of copy number losses of uncertain clinical significance. J. Med. Genet. 2024, 61, 621–625. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.A.; Eichler, E.E. Primate segmental duplications: Crucibles of evolution, diversity and disease. Nat. Rev. Genet. 2006, 7, 552–564. [Google Scholar] [CrossRef]
- Bailey, J.A.; Yavor, A.M.; Massa, H.F.; Trask, B.J.; Eichler, E.E. Segmental duplications: Organization and impact within the current human genome project assembly. Genome Res. 2001, 11, 1005–1017. [Google Scholar] [CrossRef]
- Bena, F.; Bruno, D.L.; Eriksson, M.; van Ravenswaaij-Arts, C.; Stark, Z.; Dijkhuizen, T.; Gerkes, E.; Gimelli, S.; Ganesamoorthy, D.; Thuresson, A.C.; et al. Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 388–403. [Google Scholar] [CrossRef]
- Schaaf, C.P.; Boone, P.M.; Sampath, S.; Williams, C.; I Bader, P.; Mueller, J.M.; A Shchelochkov, O.; Brown, C.W.; Crawford, H.P.; A Phalen, J.; et al. Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions. Eur. J. Hum. Genet. 2012, 20, 1240–1247. [Google Scholar] [CrossRef]
- Rump, P.; de Leeuw, N.; van Essen, A.J.; Verschuuren-Bemelmans, C.C.; Veenstra-Knol, H.E.; Swinkels, M.E.; Oostdijk, W.; Ruivenkamp, C.; Reardon, W.; de Munnik, S.; et al. Central 22q11.2 deletions. Am. J. Med. Genet. A 2014, 164A, 2707–2723. [Google Scholar] [CrossRef]
- Clements, C.C.; Wenger, T.L.; Zoltowski, A.R.; Bertollo, J.R.; Miller, J.S.; de Marchena, A.B.; Mitteer, L.M.; Carey, J.C.; Yerys, B.E.; Zackai, E.H.; et al. Critical region within 22q11.2 linked to higher rate of autism spectrum disorder. Mol. Autism. 2017, 8, 58. [Google Scholar] [CrossRef]
- Burnside, R.D. 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenet. Genome Res. 2015, 146, 89–99. [Google Scholar] [CrossRef]
- Verhagen, J.M.; Diderich, K.E.; Oudesluijs, G.; Mancini, G.M.; Eggink, A.J.; Verkleij-Hagoort, A.C.; Groenenberg, I.A.; Willems, P.J.; du Plessis, F.A.; de Man, S.A.; et al. Phenotypic variability of atypical 22q11.2 deletions not including TBX1. Am. J. Med. Genet. A 2012, 158A, 2412–2420. [Google Scholar] [CrossRef]
- Lopez-Rivera, E.; Liu, Y.P.; Verbitsky, M.; Anderson, B.R.; Capone, V.P.; Otto, E.A.; Yan, Z.; Mitrotti, A.; Martino, J.; Steers, N.J.; et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N. Engl. J. Med. 2017, 376, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Moon, A.M.; Guris, D.L.; Seo, J.H.; Li, L.; Hammond, J.; Talbot, A.; Imamoto, A. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev. Cell. 2006, 10, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Murugan, S.; Chandramohan, A.; Lakshmi, B.R. Use of multiplex ligation-dependent probe amplification (MLPA) for Duchenne muscular dystrophy (DMD) gene mutation analysis. Indian J. Med. Res. 2010, 132, 303–311. [Google Scholar] [PubMed]
- Zamani, G.R.; Karami, F.; Mehdizadeh, M.; Movafagh, A.; Nilipour, Y.; Zamani, M. Analysis of dystrophin gene in Iranian Duchenne and Becker muscular dystrophies patients and identification of a novel mutation. Neurol. Sci. 2015, 36, 2011–2017. [Google Scholar] [CrossRef]
- Deepha, S.; Vengalil, S.; Preethish-Kumar, V.; Polavarapu, K.; Nalini, A.; Gayathri, N.; Purushottam, M. MLPA identification of dystrophin mutations and in silico evaluation of the predicted protein in dystrophinopathy cases from India. BMC Med. Genet. 2017, 18, 67. [Google Scholar] [CrossRef]
- Mital, A.; Kumari, D.; Gupta, M.; Goyle, S. Molecular characterisation of Duchenne muscular dystrophy and phenotypic correlation. J. Neurol. Sci. 1998, 157, 179–186. [Google Scholar] [CrossRef]
- Lim, K.R.Q.; Nguyen, Q.; Yokota, T. Genotype-Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry. J. Pers. Med. 2020, 10, 241. [Google Scholar] [CrossRef]
- Easton, R.M.; Cho, H.; Roovers, K.; Shineman, D.W.; Mizrahi, M.; Forman, M.S.; Lee, V.M.-Y.; Szabolcs, M.; de Jong, R.; Oltersdorf, T.; et al. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol. Cell Biol. 2005, 25, 1869–1878. [Google Scholar] [CrossRef]
- Mikhail, F.M.; Lose, E.J.; Robin, N.H.; Descartes, M.D.; Rutledge, K.D.; Rutledge, S.L.; Korf, B.R.; Carroll, A.J. Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders. Am. J. Med. Genet. A 2011, 155A, 2386–2396. [Google Scholar] [CrossRef]
- Rodenas-Cuadrado, P.; Ho, J.; Vernes, S.C. Shining a light on CNTNAP2: Complex functions to complex disorders. Eur. J. Hum. Genet. 2014, 22, 171–178. [Google Scholar] [CrossRef]
- Poot, M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol. Syndromol. 2015, 6, 7–22. [Google Scholar] [CrossRef]
- Poot, M. Intragenic CNTNAP2 Deletions: A Bridge Too Far? Mol. Syndromol. 2017, 8, 118–130. [Google Scholar] [CrossRef]
- D’Onofrio, G.; Accogli, A.; Severino, M.; Caliskan, H.; Kokotović, T.; Blazekovic, A.; Jercic, K.G.; Markovic, S.; Zigman, T.; Goran, K.; et al. Genotype-phenotype correlation in contactin-associated protein-like 2 (CNTNAP-2) developmental disorder. Hum. Genet. 2023, 142, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Falsaperla, R.; Pappalardo, X.G.; Romano, C.; Marino, S.D.; Corsello, G.; Ruggieri, M.; Parano, E.; Pavone, P. Intronic Variant in CNTNAP2 Gene in a Boy With Remarkable Conduct Disorder, Minor Facial Features, Mild Intellectual Disability, and Seizures. Front. Pediatr. 2020, 8, 550. [Google Scholar] [CrossRef] [PubMed]
- Aartsma-Rus, A.; Van Deutekom, J.C.; Fokkema, I.F.; Van Ommen, G.J.; Den Dunnen, J.T. Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006, 34, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hwang, H.; Kim, S.Y.; Kim, K.J.; Choi, J.S.; Woo, M.J.; Choi, Y.M.; Jun, J.K.; Lim, B.C.; Chae, J.-H. Chromosomal Microarray with Clinical Diagnostic Utility in Children With Developmental Delay or Intellectual Disability. Ann. Lab. Med. 2018, 38, 473–480. [Google Scholar] [CrossRef]
- Jang, W.; Kim, Y.; Han, E.; Park, J.; Chae, H.; Kwon, A.; Choi, H.; Kim, J.; Son, J.-O.; Lee, S.-J.; et al. Chromosomal Microarray Analysis as a First-Tier Clinical Diagnostic Test in Patients With Developmental Delay/Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies: A Prospective Multicenter Study in Korea. Ann. Lab. Med. 2019, 39, 299–310. [Google Scholar] [CrossRef]
- Costain, G.; Jobling, R.; Walker, S.; Reuter, M.S.; Snell, M.; Bowdin, S.; Cohn, R.D.; Dupuis, L.; Hewson, S.; Mercimek-Andrews, S.; et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. Eur. J. Hum. Genet. 2018, 26, 740–744. [Google Scholar] [CrossRef]
- Dai, P.; Honda, A.; Ewans, L.; McGaughran, J.; Burnett, L.; Law, M.; Phan, T.G. Recommendations for next generation sequencing data reanalysis of unsolved cases with suspected Mendelian disorders: A systematic review and meta-analysis. Genet. Med. 2022, 24, 1618–1629. [Google Scholar] [CrossRef]
- Xu, F.; Li, L.; Schulz, V.P.; Gallagher, P.G.; Xiang, B.; Zhao, H.; Li, P. Cytogenomic mapping and bioinformatic mining reveal interacting brain expressed genes for intellectual disability. Mol. Cytogenet. 2014, 7, 4. [Google Scholar] [CrossRef]
- David, K.L.; Best, R.G.; Brenman, L.M.; Bush, L.; Deignan, J.L.; Flannery, D.; Hoffman, J.D.; Holm, I.; Miller, D.T.; O’leary, J.; et al. Patient re-contact after revision of genomic test results: Points to consider-a statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2019, 21, 769–771. [Google Scholar] [CrossRef]
- Carrieri, D.; Howard, H.C.; Benjamin, C.; Clarke, A.J.; Dheensa, S.; Doheny, S.; Hawkins, N.; Halbersma-Konings, T.F.; Jackson, L.; Kayserili, H.; et al. Recontacting patients in clinical genetics services: Recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 2019, 27, 169–182. [Google Scholar] [CrossRef]
Case # (Report Date) | CMA a (hg19) | Size (Kb) | Gene | New Class | Semiquantitative Score Per ACMG Technical Standards | Overlap with Dosage Sensitive Gene/Region | Recurrent | Case Number | Indication | Sex | Age Range (Year) | Explain Patient Phenotypes | Other Genetic Testing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (2013) | 2p16.3 del (mat) b | 178.9 | NRXN1: estimated exons 1–5 del | P e | 1 | NRXN1 gene (HI score 3) | Yes | 1 | mild ID i, autism, seizures, short stature | M | 3–6 | Yes | Normal karyotyping analysis; Negative Fragile X testing |
2 (2015) | 2p16.3 del c | 129 | NRXN1: estimated in-frame exons 4–5 del | LP f | 0.9 | NRXN1 gene (HI score 3) | Yes | 1 | Autism | M | 3–6 | Yes | N/A m |
3 (2013) | 22q11.21 del | 686.1 | ZNF74, KLHL22, MED15, POM121L4P, PI4KA, SERPIND1, SNAP29, CRKL, AIFM3, LZTR1, P2RX6, SLC7A4 | LP | 0.9 | 22q11.21 recurrent region (includes CRKL), region HI score:2; CRKL: HI score 1 | Yes | 1 | DD j, dysmorphic features | M | 9–12 | Yes | Negative Fragile X testing |
4 (2018) | Xp21.1 del (mat) | 188.9 | DMD: estimated in-frame exons 49–53 del | P | 1 | DMD gene (HI score 3) | No | 1 | GDD k, hearing loss, MCAs l | F | 12–15 | Partially; cannot explain MCAs | Exome Sequencing identified two heterozygous VUSs in EFTUD2 and GLI2 genes |
Group 1 (2013–2022) | 9p24.3 dup d | 671.4 | C9orf66, DOCK8, KANK1 and DMRT1 | LB g | −0.9 | No | Yes | 7 | |||||
Group 2 (2017–2020) | 15q11.1q11.2 dup | 3157.6 | GOLGA6L6, POTEB, OR4N4, GOLGA6L1, TUBGCP5, CYFIP1, NIPA2 and NIPA1 | B h | −1 | Overlaps with a common population variation with frequency at 14.36% in DGV gold | Yes | 5 | |||||
Group 3 (2013–2021) | 15q13.3 dup | 489.1 | CHRNA7 | LB | −0.9 | No | Yes | 11 |
CMA a (hg19) | Size (bp) | Gene(s) Involved and Breakpoints (BP c) | |||||
---|---|---|---|---|---|---|---|
Case # | Chr | WGS b (hg19) | CMA | WGS | CMA | WGS | |
1 | 2p16.3 | (51100412_51279305)x1 mat d | g.51095598_51283628del e | 178,893 | 188,030 | NRXN1 (frameshift exons 1–5 del) Left BP: upstream of 5’UTR Right BP: intron 5 | NRXN1 (frameshift exons 1–5 del) Left BP: upstream of 5’UTR; Right BP: intron 5 |
2 | 2p16.3 | (51021452_51149974)x1 | g.51014479_51161364del | 128,522 | 146,885 | NRXN1 (in-frame exons 4–5 del) Left BP: intron 3 Right BP: intron 5 | NRXN1 (in-frame exons 3–5 del) Left BP: intron 2 Right BP: intron 5 |
3 | 22q11.21 | (20754422_21440514)x1 | LCR f: B–D | 686,092 | LCR: B–D | ZNF74, KLHL22, MED15, POM121L4P, PI4KA, SERPIND1, SNAP29, CRKL, AIFM3, LZTR1, P2RX6, SLC7A4 | ZNF74, KLHL22, MED15, POM121L4P, PI4KA, SERPIND1, SNAP29, CRKL, AIFM3, LZTR1, P2RX6, SLC7A4 |
4 | Xp21.1 | (31691769_31880635)x1 mat | g.31685100_31882273del | 188,866 | 197,173 | DMD (in-frame exons 49–53 del) Left BP: intron 48 Right BP: intron 53 | DMD (in-frame exons 49–53 del) Left BP: intron 48 Right BP: intron 53 |
5 | 2p16.3 | (50929220_50982172)x1 | g.50928799_50986959del | 52,952 | 58,160 | NRXN1: intronic del in intron 5 | NRXN1: intronic del in intron 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xie, X.; Chai, H.; DiAdamo, A.; Bistline, E.; Li, P.; Dai, Y.; Knight, J.; Avni-Singer, A.J.; Burger, J.; et al. Copy Number Variants of Uncertain Significance by Chromosome Microarray Analysis from Consecutive Pediatric Patients: Reevaluation Following Current Guidelines and Reanalysis by Genome Sequencing. Genes 2025, 16, 874. https://doi.org/10.3390/genes16080874
Li W, Xie X, Chai H, DiAdamo A, Bistline E, Li P, Dai Y, Knight J, Avni-Singer AJ, Burger J, et al. Copy Number Variants of Uncertain Significance by Chromosome Microarray Analysis from Consecutive Pediatric Patients: Reevaluation Following Current Guidelines and Reanalysis by Genome Sequencing. Genes. 2025; 16(8):874. https://doi.org/10.3390/genes16080874
Chicago/Turabian StyleLi, Wenjiao, Xiaolei Xie, Hongyan Chai, Autumn DiAdamo, Emily Bistline, Peining Li, Yuan Dai, James Knight, Abraham Joseph Avni-Singer, Joanne Burger, and et al. 2025. "Copy Number Variants of Uncertain Significance by Chromosome Microarray Analysis from Consecutive Pediatric Patients: Reevaluation Following Current Guidelines and Reanalysis by Genome Sequencing" Genes 16, no. 8: 874. https://doi.org/10.3390/genes16080874
APA StyleLi, W., Xie, X., Chai, H., DiAdamo, A., Bistline, E., Li, P., Dai, Y., Knight, J., Avni-Singer, A. J., Burger, J., Ment, L., Spencer-Manzon, M., Zhang, H., & Wen, J. (2025). Copy Number Variants of Uncertain Significance by Chromosome Microarray Analysis from Consecutive Pediatric Patients: Reevaluation Following Current Guidelines and Reanalysis by Genome Sequencing. Genes, 16(8), 874. https://doi.org/10.3390/genes16080874