Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Regional Activity
3.2. Behavioral Analyses
3.2.1. Motor and Affective Behaviors
3.2.2. Learning and Memory
3.2.3. Prepulse Inhibition (PPI)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PWS | Prader–Willi syndrome |
ACC | Anterior cingulate cortex |
PPI | Prepulse inhibition |
WT | Wild type |
References
- Relkovic, D.; Isles, A.R. Behavioural and cognitive profiles of mouse models for Prader-Willi syndrome. Brain Res. Bull. 2013, 92, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zahova, S.K.; Humby, T.; Davies, J.R.; Morgan, J.E.; Isles, A.R. Comparison of mouse models reveals a molecular distinction between psychotic illness in PWS and schizophrenia. Transl. Psychiatry 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- de Smith, A.J.; Purmann, C.; Walters, R.G.; Ellis, R.J.; Holder, S.E.; Van Haelst, M.M.; Brady, A.F.; Fairbrother, U.L.; Dattani, M.; Keogh, J.M.; et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 2009, 18, 3257–3265. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, T.; del Gaudio, D.; German, J.R.; Shinawi, M.; Peters, S.U.; Person, R.E.; Garnica, A.; Cheung, S.W.; Beaudet, A.L. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 2008, 40, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Hansen, C.; Skakkebaek, N.E.; Brondum-Nielsen, K.; Ledbeter, D.H.; Tommerup, N. Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nat. Genet. 1996, 12, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Duker, A.L.; Ballif, B.C.; Bawle, E.V.; Person, R.E.; Mahadevan, S.; Alliman, S.; Thompson, R.; Traylor, R.; Bejjani, B.A.; Shaffer, L.G.; et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 2010, 18, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Salminen, I.; Read, S.; Hurd, P.; Crespi, B. Does SNORD116 mediate aspects of psychosis in Prader-Willi syndrome? Evidence from a non-clinical population. Psychiatry Res. 2020, 286, 112858. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, R.B.; Liu, Y.; Stoddard, C.E.; Chung, M.S.; Carmichael, G.G.; Cotney, J. Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome. Nucleic Acids Res. 2024, 52, 13757–13774. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; David, A.S. Patterns of anterior cingulate activation in schizophrenia: A selective review. Neuropsychiatr. Dis. Treat. 2007, 3, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, C.A.; Stan, A.D.; Wagner, A.D. The hippocampal formation in schizophrenia. Am. J. Psychiatry 2010, 167, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118 Pt 1, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Weible, A.P. Remembering to attend: The anterior cingulate cortex and remote memory. Behav. Brain Res. 2013, 245, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Kolling, N.; Wittmann, M.K.; Behrens, T.E.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 2016, 19, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Cao, B.; Deng, W.; Kong, X.; Zhao, L.; Jin, Y.; Ma, X.; Wang, Y.; Li, X.; Wang, Q.; et al. Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder. Schizophr. Res. 2023, 254, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ngan, E.T.; Lane, C.J.; Ruth, T.J.; Liddle, P.F. Immediate and delayed effects of risperidone on cerebral metabolism in neuroleptic naive schizophrenic patients: Correlations with symptom change. J. Neurol. Neurosurg. Psychiatry 2002, 72, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Zieba, J.; Low, J.K.; Purtell, L.; Qi, Y.; Campbell, L.; Herzog, H.; Karl, T. Behavioural characteristics of the Prader-Willi syndrome related biallelic Snord116 mouse model. Neuropeptides 2015, 53, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.S.; Subramanian, M.; Yamamoto, J.; Tamminga, C.A. Schizophrenia pathology reverse-translated into mouse shows hippocampal hyperactivity, psychosis behaviors and hyper-synchronous events. Mol. Psychiatry 2025, 30, 1746–1757. [Google Scholar] [CrossRef] [PubMed]
- Segev, A.; Yanagi, M.; Scott, D.; Southcott, S.A.; Lister, J.M.; Tan, C.; Li, W.; Birnbaum, S.G.; Kourrich, S.; Tamminga, C.A. Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Mol. Psychiatry 2020, 25, 2832–2843. [Google Scholar] [CrossRef] [PubMed]
- Rajasethupathy, P.; Sankaran, S.; Marshel, J.H.; Kim, C.K.; Ferenczi, E.; Lee, S.Y.; Berndt, A.; Ramakrishnan, C.; Jaffe, A.; Lo, M.; et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015, 526, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Galea, L.A.; McEwen, B.S.; Tanapat, P.; Deak, T.; Spencer, R.L.; Dhabhar, F.S. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 1997, 81, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Gould, E.; Woolley, C.S.; Frankfurt, M.; McEwen, B.S. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 1990, 10, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Mendell, A.L.; Atwi, S.; Bailey, C.D.; McCloskey, D.; Scharfman, H.E.; MacLusky, N.J. Expansion of mossy fibers and CA3 apical dendritic length accompanies the fall in dendritic spine density after gonadectomy in male, but not female, rats. Brain Struct. Funct. 2017, 222, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Woolley, C.S.; Gould, E.; Frankfurt, M.; McEwen, B.S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 1990, 10, 4035–4039. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Watanabe, M.; Suzuki, K. Differential volume reductions in the subcortical, limbic, and brainstem structures associated with behavior in Prader-Willi syndrome. Sci. Rep. 2022, 12, 4978. [Google Scholar] [CrossRef] [PubMed]
- Winship, I.R.; Dursun, S.M.; Baker, G.B.; Balista, P.A.; Kandratavicius, L.; Maia-de-Oliveira, J.P.; Hallak, J.; Howland, J.G. An Overview of Animal Models Related to Schizophrenia. Can. J. Psychiatry 2019, 64, 5–17. [Google Scholar] [CrossRef] [PubMed]
- San-Martin, R.; Castro, L.A.; Menezes, P.R.; Fraga, F.J.; Simoes, P.W.; Salum, C. Meta-Analysis of Sensorimotor Gating Deficits in Patients With Schizophrenia Evaluated by Prepulse Inhibition Test. Schizophr. Bull. 2020, 46, 1482–1497. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, C.A. Psychosis is emerging as a learning and memory disorder. Neuropsychopharmacology 2013, 38, 247. [Google Scholar] [CrossRef] [PubMed]
- Afifi, A.K.; Zellweger, H. Pathology of muscular hypotonia in the Prader-Willi syndrome. Light and electron microscopic study. J. Neurol. Sci. 1969, 9, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Eiholzer, U.; Schlumpf, M.; Nordmann, Y.; l’Allemand, D. Early manifestations of Prader-Willi syndrome: Influence of growth hormone. J. Pediatr. Endocrinol. Metab. 2001, 14 (Suppl. S6), 1441–1444. [Google Scholar] [PubMed]
- Butler, M.G.; Theodoro, M.F.; Bittel, D.C.; Donnelly, J.E. Energy expenditure and physical activity in Prader-Willi syndrome: Comparison with obese subjects. Am. J. Med. Genet. A 2007, 143A, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Copping, N.A.; Onaga, B.; Pride, M.C.; Coulson, R.L.; Yang, M.; Yasui, D.H.; LaSalle, J.M.; Silverman, J.L. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiol. Learn. Mem. 2019, 165, 106874. [Google Scholar] [CrossRef] [PubMed]
- Sinnema, M.; Einfeld, S.L.; Schrander-Stumpel, C.T.; Maaskant, M.A.; Boer, H.; Curfs, L.M. Behavioral phenotype in adults with Prader-Willi syndrome. Res. Dev. Disabil. 2011, 32, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Dykens, E.M. Maladaptive and compulsive behavior in Prader-Willi syndrome: New insights from older adults. Am. J. Ment. Retard. 2004, 109, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.; Caixas, A.; Dimitropoulos, A.; Dykens, E.; Duis, J.; Einfeld, S.; Gallagher, L.; Holland, A.; Rice, L.; Roof, E.; et al. Behavioral features in Prader-Willi syndrome (PWS): Consensus paper from the International PWS Clinical Trial Consortium. J. Neurodev. Disord. 2021, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Dember, W.N.; Fowler, H. Spontaneous alternation behavior. Psychol. Bull. 1958, 55, 412–428. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, K.A.; Humphreys, G.W.; Oliver, C. Dorsal and ventral stream mediated visual processing in genetic subtypes of Prader-Willi syndrome. Neuropsychologia 2009, 47, 2367–2373. [Google Scholar] [CrossRef] [PubMed]
- Dykens, E.M. Are jigsaw puzzle skills ‘spared’ in persons with Prader-Willi syndrome? J. Child. Psychol. Psychiatry 2002, 43, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Foti, F.; Menghini, D.; Petrosini, L.; Valerio, G.; Crino, A.; Vicari, S.; Grimaldi, T.; Mandolesi, L. Spatial competences in Prader-Willi syndrome: A radial arm maze study. Behav. Genet. 2011, 41, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Key, A.P.; Dykens, E.M. Incidental memory for faces in children with different genetic subtypes of Prader-Willi syndrome. Soc. Cogn. Affect. Neurosci. 2017, 12, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Hitti, F.L.; Siegelbaum, S.A. The hippocampal CA2 region is essential for social memory. Nature 2014, 508, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.G.; LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 1992, 106, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Aman, L.C.S.; Lester, S.D.; Holland, A.J.; Fletcher, P.C. Psychotic illness in people with Prader-Willi syndrome: A systematic review of clinical presentation, course and phenomenology. Orphanet J. Rare Dis. 2024, 19, 69. [Google Scholar] [CrossRef] [PubMed]
- Greenswag, L.R. Adults with Prader-Willi syndrome: A survey of 232 cases. Dev. Med. Child. Neurol. 1987, 29, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ziermans, T.; Schothorst, P.; Magnee, M.; van Engeland, H.; Kemner, C. Reduced prepulse inhibition in adolescents at risk for psychosis: A 2-year follow-up study. J. Psychiatry Neurosci. 2011, 36, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Hashimoto, R.; Iwase, M.; Ishii, R.; Kamio, Y.; Takeda, M. Prepulse inhibition of startle response: Recent advances in human studies of psychiatric disease. Clin. Psychopharmacol. Neurosci. 2011, 9, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.B.; Zhou, X.; Geyer, M.A. Prepulse inhibition and genetic mouse models of schizophrenia. Behav. Brain Res. 2009, 204, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Braff, D.L.; Geyer, M.A.; Swerdlow, N.R. Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001, 156, 234–258. [Google Scholar] [CrossRef] [PubMed]
- Engmann, O.; Hortobagyi, T.; Pidsley, R.; Troakes, C.; Bernstein, H.G.; Kreutz, M.R.; Mill, J.; Nikolic, M.; Giese, K.P. Schizophrenia is associated with dysregulation of a Cdk5 activator that regulates synaptic protein expression and cognition. Brain 2011, 134, 2408–2421. [Google Scholar] [CrossRef] [PubMed]
- Kyosseva, S.V.; Elbein, A.D.; Griffin, W.S.; Mrak, R.E.; Lyon, M.; Karson, C.N. Mitogen-activated protein kinases in schizophrenia. Biol. Psychiatry 1999, 46, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Koga, M.; Ishiguro, H.; Horiuchi, Y.; Arai, M.; Niizato, K.; Itokawa, M.; Inada, T.; Iwata, N.; Iritani, S.; et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr. Res. 2008, 101, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Shibata, H.; Tani, A.; Chikuhara, T.; Kikuta, R.; Sakai, M.; Ninomiya, H.; Tashiro, N.; Iwata, N.; Ozaki, N.; Fukumaki, Y. Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res. 2009, 167, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yu, H.; Su, Y.; Lu, T.; Yan, H.; Yue, W.; Zhang, D. Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl. Psychiatry 2020, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Fisher, N.M.; AlHashim, A.; Buch, A.B.; Badivuku, H.; Samman, M.M.; Weiss, K.M.; Cestero, G.I.; Does, M.D.; Rook, J.M.; Lindsley, C.W.; et al. A GRM7 mutation associated with developmental delay reduces mGlu7 expression and produces neurological phenotypes. JCI Insight 2021, 6, 143324. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Mandelli, L.; Lim, S.; Lim, H.K.; Kwon, O.J.; Pae, C.U.; Serretti, A.; Nimgaonkar, V.L.; Paik, I.H.; Jun, T.Y. Association analysis of heat shock protein 70 gene polymorphisms in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yue, W.; Shugart, Y.Y.; Yuan, J.; Wang, G.; Wang, H.Z.; Lehrman, B.; Zhang, F.; Zhang, D. Potential involvement of the interleukin-18 pathway in schizophrenia. J. Psychiatr. Res. 2016, 74, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, A.; Pardo, J.V.; Naz, S. RGS3 and IL1RAPL1 missense variants implicate defective neurotransmission in early-onset inherited schizophrenias. J. Psychiatry Neurosci. 2022, 47, E379–E390. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Liu, P.; Liu, L.; Wang, Y.; Liu, K.; Li, X.; Li, G.; Cheng, J.; Bu, M.; Chen, H.; et al. KCTD10 p.C124W variant contributes to schizophrenia by attenuating LLPS-mediated synapse formation. Proc. Natl. Acad. Sci. USA 2024, 121, e2400464121. [Google Scholar] [CrossRef] [PubMed]
- Guipponi, M.; Santoni, F.A.; Setola, V.; Gehrig, C.; Rotharmel, M.; Cuenca, M.; Guillin, O.; Dikeos, D.; Georgantopoulos, G.; Papadimitriou, G.; et al. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS ONE 2014, 9, e112745. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Lee, S.; Nah, S.S.; Kim, Y.O.; Kim, D.S.; Shim, S.H.; Hwangbo, Y.; Kim, H.K.; Kwon, J.T.; Kim, J.W.; et al. Lasp1 is down-regulated in NMDA receptor antagonist-treated mice and implicated in human schizophrenia susceptibility. J. Psychiatr. Res. 2013, 47, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Demers, M.; Subburaju, S.; Benes, F.M. Differences in the circuitry-based association of copy numbers and gene expression between the hippocampi of patients with schizophrenia and the hippocampi of patients with bipolar disorder. Arch. Gen. Psychiatry 2012, 69, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Stober, G.; Syagailo, Y.V.; Okladnova, O.; Jungkunz, G.; Knapp, M.; Beckmann, H.; Lesch, K.P. Functional PAX-6 gene-linked polymorphic region: Potential association with paranoid schizophrenia. Biol. Psychiatry 1999, 45, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Heyman, I.; Frampton, I.; van Heyningen, V.; Hanson, I.; Teague, P.; Taylor, A.; Simonoff, E. Psychiatric disorder and cognitive function in a family with an inherited novel mutation of the developmental control gene PAX6. Psychiatr. Genet. 1999, 9, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Tuoc, T.C.; Radyushkin, K.; Tonchev, A.B.; Pinon, M.C.; Ashery-Padan, R.; Molnar, Z.; Davidoff, M.S.; Stoykova, A. Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J. Neurosci. 2009, 29, 8335–8349. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.S.; Accogli, A.; Mirzaa, G.; Rahman, F.; Mohammed, H.; Porras-Hurtado, G.L.; Efthymiou, S.; Maqbool, S.; Shukla, A.; Vincent, J.B.; et al. Pathogenic variants in PIDD1 lead to an autosomal recessive neurodevelopmental disorder with pachygyria and psychiatric features. Eur. J. Hum. Genet. 2021, 29, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Sharp, A.J. Screening for rare epigenetic variations in autism and schizophrenia. Hum. Mutat. 2019, 40, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, J.; Koskuvi, M.; Storvik, M.; Hyotylainen, I.; Gao, Y.; Puttonen, K.A.; Giniatullina, R.; Poguzhelskaya, E.; Ojansuu, I.; Vaurio, O.; et al. Sex-specific transcriptional and proteomic signatures in schizophrenia. Nat. Commun. 2019, 10, 3933. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.S.; Larsen, R.A.; Yolken, R.H.; Cowan, D.N.; Boivin, M.R.; Niebuhr, D.W. Predictors of the Onset of Schizophrenia in US Military Personnel. J. Nerv. Ment. Dis. 2015, 203, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Vera-Montecinos, A.; Rodriguez-Mias, R.; Vila, E.; Villen, J.; Ramos, B. Analysis of networks in the dorsolateral prefrontal cortex in chronic schizophrenia: Relevance of altered immune response. Front. Pharmacol. 2023, 14, 1003557. [Google Scholar] [CrossRef] [PubMed]
- Becker, I.; Wang-Eckhardt, L.; Lodder-Gadaczek, J.; Wang, Y.; Grunewald, A.; Eckhardt, M. Mice deficient in the NAAG synthetase II gene Rimkla are impaired in a novel object recognition task. J. Neurochem. 2021, 157, 2008–2023. [Google Scholar] [CrossRef] [PubMed]
- Hatayama, M.; Ishiguro, A.; Iwayama, Y.; Takashima, N.; Sakoori, K.; Toyota, T.; Nozaki, Y.; Odaka, Y.S.; Yamada, K.; Yoshikawa, T.; et al. Zic2 hypomorphic mutant mice as a schizophrenia model and ZIC2 mutations identified in schizophrenia patients. Sci. Rep. 2011, 1, 16. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, D.S.; Zaric, V.; Tamminga, C.A.; Butler, R.K. Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion. Genes 2025, 16, 863. https://doi.org/10.3390/genes16080863
Scott DS, Zaric V, Tamminga CA, Butler RK. Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion. Genes. 2025; 16(8):863. https://doi.org/10.3390/genes16080863
Chicago/Turabian StyleScott, Daniel S., Violeta Zaric, Carol A. Tamminga, and Ryan K. Butler. 2025. "Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion" Genes 16, no. 8: 863. https://doi.org/10.3390/genes16080863
APA StyleScott, D. S., Zaric, V., Tamminga, C. A., & Butler, R. K. (2025). Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion. Genes, 16(8), 863. https://doi.org/10.3390/genes16080863