A Subset of HOX Genes Negatively Correlates with HOX/PBX Inhibitor Target Gene Expression and Is Associated with Apoptosis, DNA Repair, and Metabolism in Prostate Cancer
Abstract
1. Introduction
2. Methods
2.1. Microarray Data
2.2. Data Analysis
3. Results
3.1. DUSP1 and FOS Are Both Significantly More Highly Expressed in Benign Prostate Tissue Compared to Tumour Tissue
3.2. A Subset of HOX Genes Negatively Correlate with DUSP1, Fos, and ATF3 Expression
3.3. DFA3_HOX Expression Correlates with the Genes Involved in Cell Adhesion, DNA Repair, Cell Metabolism, and Translation
3.4. Individual HOX_DFA3 Gene Expression in Tumour vs. Normal Tissue
3.5. Validation with Independent Datasets
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mallo, M.; Wellik, D.M.; Deschamps, J. Hox Genes and Regional Patterning of the Vertebrate Body Plan. Dev. Biol. 2010, 344, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.A.; Pettengell, R.; Pandha, H.S.; Morgan, R. The Role of HOX Genes in Normal Hematopoiesis and Acute Leukemia. Leukemia 2013, 27, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Hunter, K.; Pandha, H.S. Downstream of the HOX Genes: Explaining Conflicting Tumour Suppressor and Oncogenic Functions in Cancer. Int. J. Cancer 2022, 150, 1919–1932. [Google Scholar] [CrossRef] [PubMed]
- Drake, K.A.; Adam, M.; Mahoney, R.; Potter, S.S. Disruption of Hox9,10,11 Function Results in Cellular Level Lineage Infidelity in the Kidney. Sci. Rep. 2018, 8, 6306. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; El-Tanani, M.; Hunter, K.D.; Harrington, K.J.; Pandha, H.S. Targeting HOX/PBX Dimers in Cancer. Oncotarget 2017, 8, 32322–32331. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Pirard, P.M.; Shears, L.; Sohal, J.; Pettengell, R.; Pandha, H.S. Antagonism of HOX/PBX Dimer Formation Blocks the in Vivo Proliferation of Melanoma. Cancer Res. 2007, 67, 5806–5813. [Google Scholar] [CrossRef] [PubMed]
- Kelly, Z.L.; Michael, A.; Butler-Manuel, S.; Pandha, H.S.; Morgan, R.G. HOX Genes in Ovarian Cancer. J. Ovarian Res. 2011, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Boxall, A.; Harrington, K.J.; Simpson, G.R.; Michael, A.; Pandha, H.S. Targeting HOX Transcription Factors in Prostate Cancer. BMC Urol. 2014, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Simpson, G.; Gray, S.; Gillett, C.; Tabi, Z.; Spicer, J.; Harrington, K.J.; Pandha, H.S. HOX Transcription Factors are Potential Targets and Markers in Malignant Mesothelioma. BMC Cancer 2016, 16, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Errico, M.C.; Felicetti, F.; Bottero, L.; Mattia, G.; Boe, A.; Felli, N.; Petrini, M.; Bellenghi, M.; Pandha, H.S.; Calvaruso, M.; et al. The Abrogation of the HOXB7/PBX2 Complex Induces Apoptosis in Melanoma through the miR-221&222-C-FOS Pathway. Int. J. Cancer 2013, 133, 879–892. [Google Scholar] [PubMed]
- Kasibhatla, S.; Brunner, T.; Genestier, L.; Echeverri, F.; Mahboubi, A.; Green, D.R. DNA Damaging Agents Induce Expression of Fas Ligand and Subsequent Apoptosis in T Lymphocytes Via the Activation of NF-Kappa B and AP-1. Mol. Cell 1998, 1, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Lu, D.; Hai, T.; Boyd, D.D. Activating Transcription Factor 3, a Stress Sensor, Activates p53 by Blocking its Ubiquitination. EMBO J. 2005, 24, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, Y.; Yu, H.; Shen, B.; Liang, Y.; Jin, R.; Liu, X.; Shi, L.; Cai, X. Role of DUSP1/MKP1 in Tumorigenesis, Tumor Progression and Therapy. Cancer Med. 2016, 5, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Ben, S.; Ding, Z.; Xin, J.; Li, F.; Cheng, Y.; Chen, S.; Fan, L.; Zhang, Q.; Li, S.; Du, M.; et al. piRNA PROPER Suppresses DUSP1 Translation by Targeting N(6)-Methyladenosine-Mediated RNA Circularization to Promote Oncogenesis of Prostate Cancer. Adv. Sci. (Weinh) 2024, 11, e2402954. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, C.; Wu, Y.; Han, C.; Liu, J.; Chen, R.; Wang, T. Revealing the Mechanism of Ethyl Acetate Extracts of Semen Impatientis Against Prostate Cancer Based on Network Pharmacology and Transcriptomics. J. Ethnopharmacol. 2024, 330, 118228. [Google Scholar] [CrossRef] [PubMed]
- Ross-Adams, H.; Lamb, A.D.; Dunning, M.J.; Halim, S.; Lindberg, J.; Massie, C.M.; Egevad, L.A.; Russell, R.; Ramos-Montoya, A.; Vowler, S.L.; et al. Integration of Copy Number and Transcriptomics Provides Risk Stratification in Prostate Cancer: A Discovery and Validation Cohort Study. EBioMedicine 2015, 2, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; et al. Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell 2010, 18, 11–22. [Google Scholar] [CrossRef] [PubMed]
- McFarland, J.M.; Ho, Z.V.; Kugener, G.; Dempster, J.M.; Montgomery, P.G.; Bryan, J.G.; Krill-Burger, J.M.; Green, T.M.; Vazquez, F.; Boehm, J.S.; et al. Improved Estimation of Cancer Dependencies from Large-Scale RNAi Screens using Model-Based Normalization and Data Integration. Nat. Commun. 2018, 9, 4610–4615. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, H.; Parker, B.; Rubin, E.; Zhu, T.; Lee, J.S.; Argani, P.; Sukumar, S. HOXB7, a Homeodomain Protein, is Overexpressed in Breast Cancer and Confers Epithelial-Mesenchymal Transition. Cancer Res. 2006, 66, 9527–9534. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, F.; Sun, X.; Jiang, L.; Mao, R.; Zhou, S.; Shang, W.; Bi, R.; Lu, F.; Li, S. HOXB8 Enhances the Proliferation and Metastasis of Colorectal Cancer Cells by Promoting EMT Via STAT3 Activation. Cancer Cell Int. 2019, 19, 3–6, eCollection 2019. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Yang, Z.; Deng, P.; Chen, Y.; He, Z.; Yang, X.; Zhang, S.; Wu, H.; Ren, Z. HOXC10 Promotes Migration and Invasion Via the WNT-EMT Signaling Pathway in Oral Squamous Cell Carcinoma. J. Cancer 2019, 10, 4540–4551. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhou, Q.; Liu, G.; Liu, X.; Li, X. Homeodomain-Containing Gene 10 Inhibits Cell Apoptosis and Promotes Cell Invasion and Migration in Osteosarcoma Cell Lines. Tumour Biol. 2017, 39, 1010428317697566. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Hamada, J.; Tada, M.; Aoyama, T.; Furuuchi, K.; Takahashi, Y.; Totsuka, Y.; Moriuchi, T. HOXD3-Overexpression Increases Integrin Alpha V Beta 3 Expression and Deprives E-Cadherin while it Enhances Cell Motility in A549 Cells. Clin. Exp. Metastasis 2006, 23, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Niu, M.; Wang, P.; Zhu, X.; Li, S.; Song, J.; He, H.; Wang, Y.; Xue, L.; Fang, W.; et al. Elevated HOXB9 Expression Promotes Differentiation and Predicts a Favourable Outcome in Colon Adenocarcinoma Patients. Br. J. Cancer 2014, 111, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, M.; Li, D.; Zhu, S.; Zou, J.; Xu, S.; Wang, Y.; Shi, J.; Li, Y. Homeobox C8 is a Transcriptional Repressor of E-Cadherin Gene Expression in Non-Small Cell Lung Cancer. Int. J. Biochem. Cell Biol. 2019, 114, 105557. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Tanaka, O.; Sekiguchi, M.; Takekoshi, S.; Tsukamoto, H.; Kimura, M.; Imai, K.; Inoko, H. Enforced Expression of the Transcription Factor HOXD3 Under the Control of the Wnt1 Regulatory Element Modulates Cell Adhesion Properties in the Developing Mouse Neural Tube. J. Anat. 2011, 219, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Hu, Y.; Lin, R.; Ye, H. The Effect of Overexpression of the HOXD10 Gene on the Malignant Proliferation, Invasion, and Tumor Formation of Pancreatic Cancer Cell PANC-1. Gland. Surg. 2020, 9, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.; Wu, X.; Zhu, T.; Cheung, J.C.Y.; Chen, H.; Lorincz, A.; Pandita, R.K.; Sharma, G.G.; Ha, H.C.; Gasson, J.; et al. A Role for the HOXB7 Homeodomain Protein in DNA Repair. Cancer Res. 2007, 67, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Chiba, N.; Comaills, V.; Shiotani, B.; Takahashi, F.; Shimada, T.; Tajima, K.; Winokur, D.; Hayashida, T.; Willers, H.; Brachtel, E.; et al. Homeobox B9 Induces Epithelial-to-Mesenchymal Transition-Associated Radioresistance by Accelerating DNA Damage Responses. Proc. Natl. Acad. Sci. USA 2012, 109, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, J.Y.; Kim, J.E.; Kim, S.; Chung, H.; Park, C. HOXA10 is Associated with Temozolomide Resistance through Regulation of the Homologous Recombinant DNA Repair Pathway in Glioblastoma Cell Lines. Genes Cancer 2014, 5, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Begum, R.; Theti, D.; Chansa, M.; Pettengell, R.; Sohal, J. HOXA9 Expression Increases with Age in Human Haemopoietic Cells. Leuk. Res. 2005, 29, 1221–1222. [Google Scholar] [CrossRef] [PubMed]
- Feiner, L.; Tierling, S.; Hollander, S.; Glanemann, M.; Rubie, C. An Aging and p53 Related Marker: HOXA5 Promoter Methylation Negatively Correlates with mRNA and Protein Expression in Old Age. Aging 2021, 13, 4831–4849. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.C.; Gorski, P.P.; Maasar, M.F.; Seaborne, R.A.; Baumert, P.; Brown, A.D.; Kitchen, M.O.; Erskine, R.M.; Dos-Remedios, I.; Voisin, S.; et al. DNA Methylation Across the Genome in Aged Human Skeletal Muscle Tissue and Muscle-Derived Cells: The Role of HOX Genes and Physical Activity. Sci. Rep. 2020, 10, 15360. [Google Scholar] [CrossRef] [PubMed]
ATF3 | DUSP1 | Fos | ||||
---|---|---|---|---|---|---|
p-Value | R-Value | p-Value | R-Value | p-Value | R-Value | |
HOXA6 | - | - | 0.00207 | −0.217 | 0.05 | −0.139 |
HOXA9 | 0.00135 | −0.226 | - | - | 0.05 | −0.133 |
HOXA10 | 0.000383 | −0.249 | 0.023 | −0.161 | 0.000436 | −0.247 |
HOXB3 | 0.03 | −0.154 | 0.05 | −0.123 | - | - |
HOXB5 | 0.012 | −0.179 | 0.000777 | −0.236 | - | - |
HOXB6 | - | - | 0.00304 | −0.209 | 0.037 | −0.148 |
HOXB7 | 0.041 | −0.145 | 0.013 | −0.176 | - | - |
HOXC4 | 0.046 | −0.141 | 0.00000000273 | −0.406 | 0.00000785 | −0.311 |
HOXC5 | - | - | 0.045 | −0.142 | 0.05 | −0.123 |
HOXC6 | 0.024 | −0.160 | 0.00000000889 | −0.394 | 0.000000452 | −0.349 |
HOXC9 | 0.05 | −0.138 | 0.000134 | −0.267 | 0.00841 | −0.186 |
HOXD1 | 0.000151 | −0.265 | - | - | 0.025 | −0.159 |
HOXD3 | 0.037 | −0.148 | 0.000406 | −0.248 | - | - |
HOXD8 | 0.016 | −0.170 | 0.00696 | −0.191 | 0.00885 | −0.185 |
Tested Association: HOX_DFA3 vs | Ross-Adams (Analysed in This Paper; [16]) | Taylor [17] |
---|---|---|
DUSP1_FOS_ATF3 | r = −0.469, p = 2.70 × 10−12 | r = −0.232, p = 6.22 × 10−6 |
Fanconi anaemia pathway | r = 0.407, p = 2.49 × 10−9 | r = 0.279, p = 4.82 × 10−8 |
Base excision repair | r = 0.382, p = 2.48 × 10−8 | r = 0.431, p = 3.32 × 10−18 |
Aminoacyl tRNA synthesis | r = 0.425, p = 4.02 × 10−10 | r = 0.158, p = 0.0023 |
Pyrimidine metabolism | r = 0.326, p = 2.60 × 10−6 | r = 0.277, p = 6.15 × 10−8 |
Folate one-carbon pool | r = 0.369, p = 8.36 × 10−8 | r = 0.231, p = 7.02 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, R.; Smith, C.; Pandha, H. A Subset of HOX Genes Negatively Correlates with HOX/PBX Inhibitor Target Gene Expression and Is Associated with Apoptosis, DNA Repair, and Metabolism in Prostate Cancer. Genes 2025, 16, 824. https://doi.org/10.3390/genes16070824
Morgan R, Smith C, Pandha H. A Subset of HOX Genes Negatively Correlates with HOX/PBX Inhibitor Target Gene Expression and Is Associated with Apoptosis, DNA Repair, and Metabolism in Prostate Cancer. Genes. 2025; 16(7):824. https://doi.org/10.3390/genes16070824
Chicago/Turabian StyleMorgan, Richard, Christopher Smith, and Hardev Pandha. 2025. "A Subset of HOX Genes Negatively Correlates with HOX/PBX Inhibitor Target Gene Expression and Is Associated with Apoptosis, DNA Repair, and Metabolism in Prostate Cancer" Genes 16, no. 7: 824. https://doi.org/10.3390/genes16070824
APA StyleMorgan, R., Smith, C., & Pandha, H. (2025). A Subset of HOX Genes Negatively Correlates with HOX/PBX Inhibitor Target Gene Expression and Is Associated with Apoptosis, DNA Repair, and Metabolism in Prostate Cancer. Genes, 16(7), 824. https://doi.org/10.3390/genes16070824