Screening and Validation of Reference Genes for Normalization of qRT-PCR in Rice BLB Pathogen Xanthomonas oryzae pv. oryzae Under Tetramycin Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Strains
2.2. Selection of Reference Genes and the Design of Primers
2.3. Extraction of RNA and Synthesis of cDNA
2.4. qRT-PCR Analysis
2.5. Reference Gene Screening
2.6. Validation of Reference Gene Stability
2.7. Statistical Analyses
3. Results
3.1. Validation of Primer Specificity for Candidate Reference Genes
3.2. CT Value Analysis
3.3. Delta Ct Values Analysis
3.4. GeNorm Analysis
3.5. Normfinder Analysis
3.6. BestKeeper Analysis
3.7. RefFinder Analysis
3.8. Validation of Reference Gene Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Xoo | Xanthomonas oryzae pv. oryzae |
Ct | Cycle threshold |
Ttm | tetramycin |
qRT-RCR | Real-time fluorescent quantitative PCR |
QS | Quorum sensing |
Rpf | Regulation of pathogenicity factors |
gyrB | RNA polymerase β gene |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase gene |
recA | recombinase A gene |
gyrA | citrate synthase encoding gene |
dnaK | molecular chaperone protein gene |
16S rRNA | 16S ribosomal RNA gene |
SV | Stability value |
SD | Standard deviation |
DSF | diffusible signal factor |
References
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Sanya, D.R.A.; Syed-Ab-Rahman, S.F.; Jia, A.; Onésime, D.; Kim, K.-M.; Ahohuendo, B.C.; Rohr, J.R. A review of approaches to control bacterial leaf blight in rice. World J. Microbiol. Biotechnol. 2022, 38, 113. [Google Scholar] [CrossRef]
- Ji, X.; Xue, J.; Shi, J.; Wang, W.; Zhang, X.; Wang, Z.; Lu, W.; Liu, J.; Fu, Y.V.; Xu, N. Noninvasive Raman spectroscopy for the detection of rice bacterial leaf blight and bacterial leaf streak. Talanta 2025, 282, 126962. [Google Scholar] [CrossRef] [PubMed]
- Boonsrangsom, T.; Boondech, A.; Chansongkram, W.; Suachaowna, N.; Buddhachat, K.; Rungrat, T.; Jumpathong, J.; Pongcharoen, P.; Inthima, P.; Aeksiri, N. Molecular characterization and pathogenicity of Xanthomonas oryzae pv. oryzae isolates from lower northern Thailand, the causal agent of rice bacterial blight. Physiol. Mol. Plant Pathol. 2025, 136, 102550. [Google Scholar] [CrossRef]
- Hu, X.-H.; Shen, S.; Wu, J.-L.; Liu, J.; Wang, H.; He, J.-X.; Yao, Z.-L.; Bai, Y.-F.; Zhang, X.; Zhu, Y. A natural allele of proteasome maturation factor improves rice resistance to multiple pathogens. Nat. Plants 2023, 9, 228–237. [Google Scholar] [CrossRef]
- Shekhar, S.; Sinha, D.; Kumari, A. An overview of bacterial leaf blight disease of rice and different strategies for its management. Int. J. Curr. Microbiol. App. Sci 2020, 9, 2250–2265. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, X.; Yang, H.; Huang, J.; Zhu, Z.; Lu, D.; Shen, S.; Yang, Y.; Rao, Y. Genetic dissection of rice resistance to bacterial blight. Chin. J. Biotechnol. 2024, 40, 1040–1049. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, W.; Li, W.; Zhao, J.; Zhou, L.; Yang, W. Advances in research and application of rice bacterial blight resistance genes. Crop J 2024, 3, 1–7. [Google Scholar] [CrossRef]
- Ayaz, M.; Li, C.-H.; Ali, Q.; Zhao, W.; Chi, Y.-K.; Shafiq, M.; Ali, F.; Yu, X.-Y.; Yu, Q.; Zhao, J.-T. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef]
- Nasir, M.; Iqbal, B.; Hussain, M.; Mustafa, A.; Ayub, M. Chemical management of bacterial leaf blight disease in rice. J. Agric. Res. (JAR) 2019, 57, 93–98. [Google Scholar]
- Singh, R.; Das, B.; Ahmed, K.; Pal, V. Chemical control of bacterial leaf blight of rice. Int. J. Pest Manag. 1980, 26, 21–25. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, X.; Qi, P. Resin acid copper salt, an interesting chemical pesticide, controls rice bacterial leaf blight by regulating bacterial biofilm, motility, and extracellular enzymes. Molecules 2024, 29, 4297. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Behera, S. Management of Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae through Integrated approach in western undulating zones of Odisha. J. Cereal Res. 2024, 16, 37–43. [Google Scholar] [CrossRef]
- Hastuti, R.D.; Lestari, Y.; Suwanto, A.; SARASWATI, R. Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J. Biosci. 2012, 19, 155–162. [Google Scholar] [CrossRef]
- Namburi, K.R.; Kora, A.J.; Chetukuri, A.; Kota, V.S.M.K. Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf blight causing rice phytopathogen Xanthomonas oryzae pv. oryzae. Bioprocess Biosyst. Eng. 2021, 44, 1975–1988. [Google Scholar] [CrossRef]
- Cui, H.; Ni, X.; Liu, S.; Wang, J.; Sun, Z.; Ren, J.; Su, J.; Chen, G.; Xia, H. Characterization of three positive regulators for tetramycin biosynthesis in Streptomyces ahygroscopicus. FEMS Microbiol. Lett. 2016, 363, fnw109. [Google Scholar] [CrossRef]
- Chen, G.; Wang, M.; Ni, X.; Xia, H. Optimization of tetramycin production in Streptomyces ahygroscopicus S91. J. Biol. Eng. 2021, 15, 16. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef]
- Qiu, X.J.; Fang, S.X.; Fang, F.Y.; Yang, Y.; Hu, A.; Ruan W., Z.; Gao, S.Y.; Wang, Z.J.; Yang, J.; Ji, G.H. Screening of bactericides to control bacterial blight caused by Xanthomonas oryzae pv. oryzae of plateau special Japonica rice cultivar “Chugeng”. Pesticides 2024, 63, 439–445+463. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Y.; Shi, H.; Qiu, J.; Ding, X.; Kou, Y. Recent progress in rice broad-spectrum disease resistance. Int. J. Mol. Sci. 2021, 22, 11658. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Thomsen, L.E.; Olsen, J.E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: A mini-review. J. Antimicrob. Chemother. 2022, 77, 556–567. [Google Scholar] [CrossRef] [PubMed]
- HU, D.-d.; GU, J.-g.; JIANG, R.-b.; DONG, J.-g. Quantitative RT-PCR and its application in botany research. J. Plant Nutr. Fertil. 2007, 13, 520–525. [Google Scholar] [CrossRef]
- Castanera, R.; López-Varas, L.; Pisabarro, A.G.; Ramírez, L. Validation of reference genes for transcriptional analyses in Pleurotus ostreatus by using reverse transcription-quantitative PCR. Appl. Environ. Microbiol. 2015, 81, 4120–4129. [Google Scholar] [CrossRef]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Dheda, K.; Huggett, J.F.; Bustin, S.A.; Johnson, M.A.; Rook, G.; Zumla, A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004, 37, 112–119. [Google Scholar] [CrossRef]
- Yan-Jun, Z.; Zhi-Feng, Z.; Rong, L.; Qiong, X.; Lin-Xi, S.; Xu, J.; Jun-Yan, L.; Zhi, Y. Selection of control genes in transcription analysis of gene expression. Prog. Biochem. Biophys. 2007, 34, 546–550. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Laborda, P.; Yang, Y.; Liu, F. Molecular Cloning and Characterization of a Serotonin N-Acetyltransferase Gene, xoSNAT3, from Xanthomonas oryzae pv. oryzae. Int. J. Environ. Res. Public Health 2023, 20, 1865. [Google Scholar] [CrossRef]
- Lee, S.-W.; Jeong, K.-S.; Han, S.-W.; Lee, S.-E.; Phee, B.-K.; Hahn, T.-R.; Ronald, P. The Xanthomonas oryzae pv.oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J. Bacteriol. 2008, 190, 2183–2197. [Google Scholar] [CrossRef]
- Kang, K.; Lee, K.; Park, S.; Byeon, Y.; Back, K. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J. Pineal Res. 2013, 55, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, G.; Zhang, Y.; Qian, G.; Liu, F. Dissecting the virulence-related functionality and cellular transcription mechanism of a conserved hypothetical protein in Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 2018, 19, 1859–1872. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, L.-H.; Cámara, M.; He, Y.-W. The DSF family of quorum sensing signals: Diversity, biosynthesis, and turnover. Trends Microbiol. 2017, 25, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Cai JunHuo, C.J.; Li JinFeng, L.J.; Wei XuYing, W.X.; Zhang Lu, Z.L. Dynamic change in biomass, root vigor and replacement rate during the green leaf period of Lycoris radiat. J. Nanjing For. Univ. 2018, 42, 55–59. [Google Scholar] [CrossRef]
- Wei, F.; Liang, X.; Shi, J.-C.; Luo, J.-N.; Qiu, L.-J.; Li, X.-X.; Lu, L.-J.; Wen, Y.-Q.; Feng, J.-Y. Pan-genomic analysis identifies the chinese strain as a new subspecies of xanthomonas fragariae. Plant Dis. 2024, 108, 45–49. [Google Scholar] [CrossRef]
- Tang, J.; Li, E.; Liu, J.; Zhang, Z.; Hua, B.; Jiang, J.; Miao, M. Selection of reliable reference genes for gene expression normalization in Sagittaria trifolia. Genes 2023, 14, 1321. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- de Oliveira, P.A.A.; Baboghlian, J.; Ramos, C.O.A.; Mançano, A.S.F.; Porcari, A.d.M.; Girardello, R.; Ferraz, L.F.C. Selection and validation of reference genes suitable for gene expression analysis by Reverse Transcription Quantitative real-time PCR in Acinetobacter baumannii. Sci. Rep. 2024, 14, 3830. [Google Scholar] [CrossRef]
- Wu, R.; Lu, J. Proteomics of Lactic Acid Bacteria. Lactic Acid Bacteria: Fundamentals and Practice; Springer: Dordrecht, The Netherlands, 2014; pp. 249–301. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, J.; Wang, X.; Wei, L.; Ji, G. Effect of culture medium optimization on the secondary metabolites activity of Lysobacter antibioticus 13-6. Prep. Biochem. Biotechnol. 2021, 51, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Feng, X.; Tang, M.; Hao, W.; Han, Y.; Zhang, G.; Wan, S. Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). Microbiol. Res. 2014, 169, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.; Sarang, M.; Gibson, N. Semiquantitative measurement of gene-expression by rt-PCR-a cautionary tale. Int. J. Oncol. 1993, 3, 1097–1102. [Google Scholar] [CrossRef]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef]
- Rocha, A.J.; Monteiro-Júnior, J.E.; Freire, J.E.; Sousa, A.J.; Fonteles, C.S. Real time PCR: The use of reference genes and essential rules required to obtain normalisation data reliable to quantitative gene expression. J. Mol. Biol. Res. 2015, 5, 45. [Google Scholar] [CrossRef]
- Gürtler, V.; Stanisich, V.A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 1996, 142, 3–16. [Google Scholar] [CrossRef]
- Liang, X.; Yu, X.; Pan, X.; Wu, J.; Duan, Y.; Wang, J.; Zhou, M. A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. Mol. Plant Pathol. 2018, 19, 116–128. [Google Scholar] [CrossRef]
- Volland, M.; Blasco, J.; Hampel, M. Validation of reference genes for RT-qPCR in marine bivalve ecotoxicology: Systematic review and case study using copper treated primary Ruditapes philippinarum hemocytes. Aquat. Toxicol. 2017, 185, 86–94. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, C.; Li, Y.; Yang, X.; Wang, Y.; Yan, Y.; Yang, R.; Huang, M.; Haq, F.; Yang, C.H. An improved, versatile and efficient modular plasmid assembly system for expression analyses of genes in Xanthomonas oryzae. Mol. Plant Pathol. 2021, 22, 480–492. [Google Scholar] [CrossRef]
- Dubey, S.M.; Han, S.; Stutzman, N.; Prigge, M.J.; Medvecká, E.; Platre, M.P.; Busch, W.; Fendrych, M.; Estelle, M. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Mol. Plant 2023, 16, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Chervoneva, I.; Li, Y.; Schulz, S.; Croker, S.; Wilson, C.; Waldman, S.A.; Hyslop, T. Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinform. 2010, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Liu, Y.; Wu, M.; Liu, X.; Shen, X.; Liu, C.; Wang, Y. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lycium. PLoS ONE 2014, 9, e97039. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.L.B.; dos Santos, T.B.; Figueiredo, M.d.O.V.; Cacefo, V.; Vieira, L.G.E.; Ribas, A.F. Validation of reference genes for real-time quantitative PCR in brachiaria grass under salt stress. Plant Gene 2021, 27, 100319. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Qian, P.-Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 2016, 17, 100319. [Google Scholar] [CrossRef]
- He, Y.-W.; Wu, J.e.; Cha, J.-S.; Zhang, L.-H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 2010, 10, 187. [Google Scholar] [CrossRef]
- Song, K.; Chen, B.; Cui, Y.; Zhou, L.; Chan, K.-G.; Zhang, H.-Y.; He, Y.-W. The plant defense signal salicylic acid activates the RpfB-dependent quorum sensing signal turnover via altering the culture and cytoplasmic pH in the phytopathogen Xanthomonas campestris. Mbio 2022, 13, e0364421. [Google Scholar] [CrossRef]
- Singh, P.; Verma, R.K.; Chatterjee, S. The diffusible signal factor synthase, RpfF, in Xanthomonas oryzae pv. oryzae is required for the maintenance of membrane integrity and virulence. Mol. Plant Pathol. 2022, 23, 118–132. [Google Scholar] [CrossRef]
- Cho, J.-H.; Yoon, J.-M.; Lee, S.-W.; Noh, Y.-H.; Cha, J.-S. Xanthomonas oryzae pv. oryzae RpfE regulates virulence and carbon source utilization without change of the DSF production. Plant Pathol. J. 2013, 29, 364. [Google Scholar] [CrossRef]
Bestkeeper | Means Ct ± Standard Deviation | Correlation Coefficient r | p-Value | Significance |
---|---|---|---|---|
gyrB | 22.31 ± 0.151 | 0.693 | 0.127 | ns |
recA | 21.52 ± 0.185 | 0.876 | 0.022 | ns |
16S rRNA | 26.06 ± 0.273 | 0.986 | 0.001 | ** |
gyrA | 21.42 ± 0.298 | 0.941 | 0.005 | * |
dnak | 23.00 ± 0.330 | 0.971 | 0.001 | ** |
GADPH | 22.58 ± 0.330 | 0.996 | 0.001 | ** |
Order of Precedence | Delta CT | Genorm | Normfinder | Bestkeeper | Overall Ranking |
---|---|---|---|---|---|
1 | 16S rRNA | 16S rRNA | 16S rRNA | gyrB | 16S rRNA |
2 | dnak | gyrA | dnak | recA | gyrA |
3 | gyrA | dnak | gyrA | 16S rRNA | dnak |
4 | GADPH | GADPH | recA | gyrA | recA |
5 | recA | recA | GADPH | dnak | gyrB |
6 | gyrB | gyrB | gyrB | GADPH | GADPH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, F.; Miao, X.; Mou, T.; Wang, Z.; Guo, Y.; Yang, Y.; Gao, S.; Wang, Z.; Xu, C.; Yang, J. Screening and Validation of Reference Genes for Normalization of qRT-PCR in Rice BLB Pathogen Xanthomonas oryzae pv. oryzae Under Tetramycin Stress. Genes 2025, 16, 788. https://doi.org/10.3390/genes16070788
Fang F, Miao X, Mou T, Wang Z, Guo Y, Yang Y, Gao S, Wang Z, Xu C, Yang J. Screening and Validation of Reference Genes for Normalization of qRT-PCR in Rice BLB Pathogen Xanthomonas oryzae pv. oryzae Under Tetramycin Stress. Genes. 2025; 16(7):788. https://doi.org/10.3390/genes16070788
Chicago/Turabian StyleFang, Feiyan, Xinli Miao, Tong Mou, Zian Wang, Yanhe Guo, Yingfen Yang, Shunyu Gao, Zhenji Wang, Chengdong Xu, and Jun Yang. 2025. "Screening and Validation of Reference Genes for Normalization of qRT-PCR in Rice BLB Pathogen Xanthomonas oryzae pv. oryzae Under Tetramycin Stress" Genes 16, no. 7: 788. https://doi.org/10.3390/genes16070788
APA StyleFang, F., Miao, X., Mou, T., Wang, Z., Guo, Y., Yang, Y., Gao, S., Wang, Z., Xu, C., & Yang, J. (2025). Screening and Validation of Reference Genes for Normalization of qRT-PCR in Rice BLB Pathogen Xanthomonas oryzae pv. oryzae Under Tetramycin Stress. Genes, 16(7), 788. https://doi.org/10.3390/genes16070788