Methylation of LINE-1 Retroelement in People with Type 1 Diabetes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Laboratory Methods
2.3. DNA Extraction and Bisulfate DNA Modification
2.4. Methylation Analysis
- -
- Total methylated loci % mC = 100 × (C + A)/(C + 2A + B + D);
- -
- Methylated pattern % mCmC = 100 × ((C − D + B)/2)/((C − D + B)/2 +D + A);
- -
- Unmethylated pattern % uCuC = 100 × B/((C − D + B)/2 +A + D);
- -
- Partially methylated pattern % uCmC = 100 × ((D − B)/((C − D + B)/2) +A + D);
- -
- Partially methylated pattern % mCuC = 100 × A/((C − D + B)/2 +A + D);
2.5. Statistical Analysis
3. Results
3.1. Total Methylation and Methylation Patterns of LINE-1 Element in Patients with T1D Compared to Healthy Controls
3.2. Association of LINE-1 Total Methylation and Methylation Patterns with Patients’ Characteristics and Glycemic Control
3.3. Association of LINE-1 Total Methylation and Methylation Patterns with the Age at Diagnosis of T1D and the Duration of Diabetes
4. Discussion
- (i)
- LINE-1 methylation and T1D
- (ii)
- Correlation between LINE-1 methylation and hyperglycemia
- (iii)
- Alteration of total LINE-1 methylation and methylation patterns in T1D
- (iv)
- Correlation of LINE-1 methylation with age or sex
- (v)
- Strengths and Limitations
- (vi)
- Future perspectives
- (vii)
- Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawrence, J.M.; Mayer-Davis, E.J. What do we know about the trends in incidence of childhood-onset type 1 diabetes? Diabetologia 2019, 62, 370–372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powers, A.C. Type 1 diabetes mellitus: Much progress, many opportunities. J. Clin. Investig. 2021, 131, e142242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hasham, A.; Tomer, Y. The recent rise in the frequency of type 1 diabetes: Who pulled the trigger? J. Autoimmun. 2011, 37, 1–2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mei, X.; Zhang, B.; Zhao, M.; Lu, Q. An update on epigenetic regulation in autoimmune diseases. J. Transl. Autoimmun. 2022, 5, 100176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerna, M. Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus. Int. J. Mol. Sci. 2019, 21, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, R.G.; Mychaleckyj, J.C.; Onengut-Gumuscu, S.; Orchard, T.J.; Costacou, T. TXNIP DNA methylation is associated with glycemic control over 28 years in type 1 diabetes: Findings from the Pittsburgh Epidemiology of Diabetes Complications (EDC) study. BMJ Open Diabetes Res. Care 2023, 11, e003068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laajala, E.; Kalim, U.U.; Grönroos, T.; Rasool, O.; Halla-Aho, V.; Konki, M.; Kattelus, R.; Mykkänen, J.; Nurmio, M.; Vähä-Mäkilä, M.; et al. Umbilical cord blood DNA methylation in children who later develop type 1 diabetes. Diabetologia 2022, 65, 1534–1540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, R.K.; Vanderlinden, L.A.; Dong, F.; Carry, P.M.; Seifert, J.; Waugh, K.; Shorrosh, H.; Fingerlin, T.; Frohnert, B.I.; Yang, I.V.; et al. Longitudinal DNA methylation differences precede type 1 diabetes. Sci. Rep. 2020, 10, 3721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsanou, A.; Kostoulas, C.A.; Liberopoulos, E.; Tsatsoulis, A.; Georgiou, I.; Tigas, S. Alu Methylation Patterns in Type 1 Diabetes: A Case-Control Study. Genes 2023, 14, 2149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsanou, A.; Kostoulas, C.; Liberopoulos, E.; Tsatsoulis, A.; Georgiou, I.; Tigas, S. Retrotransposons and Diabetes Mellitus. Epigenomes 2024, 8, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mills, R.E.; Bennett, E.A.; Iskow, R.C.; Devine, S.E. Which transposable elements are active in the human genome? Trends Genet 2007, 23, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Sae-Lee, C.; Biasi, J.; Robinson, N.; Barrow, T.M.; Mathers, J.C.; Koutsidis, G.; Byun, H.M. DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes. PLoS ONE 2020, 15, e0234578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beck, C.R.; Collier, P.; Macfarlane, C.; Malig, M.; Kidd, J.M.; Eichler, E.E.; Badge, R.M.; Moran, J.V. LINE-1 retrotransposition activity in human genomes. Cell 2010, 141, 1159–1170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Štangar, A.; Kovač, J.; Šket, R.; Tesovnik, T.; Zajec, A.; Čugalj Kern, B.; Jenko Bizjan, B.; Battelino, T.; Dovč, K. Contribution of Retrotransposons to the Pathogenesis of Type 1 Diabetes and Challenges in Analysis Methods. Int. J. Mol. Sci. 2023, 24, 3104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McLaughlin, R.N., Jr. Reading the tea leaves: Dead transposon copies reveal novel host and transposon biology. PLoS Biol. 2018, 16, e2005470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Du, J.; Wang, Y.; Wang, Q.; Wang, S.; Zhao, K. BST2 Suppresses LINE-1 Retrotransposition by Reducing the Promoter Activity of LINE-1 5’ UTR. J. Virol. 2022, 96, e0161021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faulkner, G.J.; Garcia-Perez, J.L. L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet. 2017, 33, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Perera, B.P.U.; Faulk, C.; Svoboda, L.K.; Goodrich, J.M.; Dolinoy, D.C. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen. 2020, 61, 176–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopes, L.L.; Bressan, J.; Peluzio, M.D.C.G.; Hermsdorff, H.H.M. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J. Am. Coll. Nutr. 2019, 38, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cui, W.; Zhang, D.; Wu, W.; Yang, Z. The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget 2017, 8, 73964–73973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, A.S.; Doshi, K.D.; Choi, S.W.; Mason, J.B.; Mannari, R.K.; Gharybian, V.; Luna, R.; Rashid, A.; Shen, L.; Estecio, M.R.; et al. DNA methylation changes after 5-aza-2’-deoxycytidine therapy in patients with leukemia. Cancer Res. 2006, 66, 5495–5503. [Google Scholar] [CrossRef] [PubMed]
- Erichsen, L.; Beermann, A.; Arauzo-Bravo, M.J.; Hassan, M.; Dkhil, M.A.; Al-Quraishy, S.; Hafiz, T.A.; Fischer, J.C.; Santourlidis, S. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J. Biol. Sci. 2018, 25, 1220–1226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, S.; Pociot, F. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes? Genes 2015, 6, 577–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buj, R.; Mallona, I.; Díez-Villanueva, A.; Barrera, V.; Mauricio, D.; Puig-Domingo, M.; Reverter, J.L.; Matias-Guiu, X.; Azuara, D.; Ramírez, J.L.; et al. Quantification of unmethylated Alu (QUAlu): A tool to assess global hypomethylation in routine clinical samples. Oncotarget 2016, 7, 10536–10546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tam, P.L.F.; Leung, D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int. J. Mol. Sci. 2023, 24, 16418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Richardson, S.R.; Doucet, A.J.; Kopera, H.C.; Moldovan, J.B.; Garcia-Perez, J.L.; Moran, J.V. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol Spectr. 2015, 3, 1165–1208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hancks, D.C.; Kazazian, H.H., Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 2016, 7, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wangsri, S.; Subbalekha, K.; Kitkumthorn, N.; Mutirangura, A. Patterns and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS ONE 2012, 7, e45292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sukapan, P.; Promnarate, P.; Avihingsanon, Y.; Mutirangura, A.; Hirankarn, N. Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J. Hum. Genet. 2014, 59, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Malipatil, N.; Lunt, M.; Narayanan, R.P.; Siddals, K.; Cortés Moreno, G.Y.; Gibson, M.J.; Gu, H.F.; Heald, A.H.; Donn, R.P. Assessment of global long interspersed nucleotide element-1 (LINE-1) DNA methylation in a longitudinal cohort of type 2 diabetes mellitus (T2DM) individuals. Int. J. Clin. Pract. 2018, 21, e13270. [Google Scholar] [CrossRef] [PubMed]
- Rönn, T.; Ling, C. DNA methylation as a diagnostic and therapeutic target in the battle against Type 2 diabetes. Epigenomics 2015, 7, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.C.; Harjutsalo, V.; Rosenbauer, J.; Neu, A.; Cinek, O.; Skrivarhaug, T.; Rami-Merhar, B.; Soltesz, G.; Svensson, J.; Parslow, R.C.; et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: A multicentre prospective registration study. Diabetologia 2019, 62, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Luttmer, R.; Spijkerman, A.M.; Kok, R.M.; Jakobs, C.; Blom, H.J.; Serne, E.H.; Dekker, J.M.; Smulders, Y.M. Metabolic syndrome components are associated with DNA hypomethylation. Obes. Res. Clin. Pract. 2013, 7, e106–e115. [Google Scholar] [CrossRef] [PubMed]
- Kitkumthorn, N.; Keelawat, S.; Rattanatanyong, P.; Mutirangura, A. LINE-1 and Alu methylation patterns in lymph node metastases of head and neck cancers. Asian Pac. J. Cancer Prev. 2012, 13, 4469–4475. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.C.; Dahlquist, G.G.; Gyürüs, E.; Green, A.; Soltész, G.; EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: A multicentre prospective registration study. Lancet 2009, 373, 2027–2033. [Google Scholar] [CrossRef] [PubMed]
- Sirivanichsuntorn, P.; Keelawat, S.; Danuthai, K.; Mutirangura, A.; Subbalekha, K.; Kitkumthorn, N. LINE-1 and Alu hypomethylation in mucoepidermoid carcinoma. BMC Clin. Pathol. 2013, 13, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chalitchagorn, K.; Shuangshoti, S.; Hourpai, N.; Kongruttanachok, N.; Tangkijvanich, P.; Thong-ngam, D.; Voravud, N.; Sriuranpong, V.; Mutirangura, A. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2004, 23, 8841–8846. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chang, C.; Huang, G.; Zhou, Z. The Role of Epigenetics in Type 1 Diabetes. Adv. Exp. Med. Biol. 2020, 1253, 223–257. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Stefan-Lifshitz, M.; Tomer, Y. Genetic and environmental factors regulate the type 1 diabetes gene CTSH via differential DNA methylation. J. Biol. Chem. 2021, 296, 100774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fradin, D.; Le Fur, S.; Mille, C.; Naoui, N.; Groves, C.; Zelenika, D.; McCarthy, M.I.; Lathrop, M.; Bougnères, P. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS ONE 2012, 7, e36278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, A.; Han, K.; Liang, P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life 2021, 11, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stefan, M.; Zhang, W.; Concepcion, E.; Yi, Z.; Tomer, Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J. Autoimmun. 2014, 50, 33–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Z.; Miao, F.; Braffett, B.H.; Lachin, J.M.; Zhang, L.; Wu, X.; Roshandel, D.; Carless, M.; Li, X.A.; Tompkins, J.D.; et al. DNA methylation mediates development of HbA1c-associated complications in type 1 diabetes. Nat. Metab. 2020, 2, 744–762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roshandel, D.; Chen, Z.; Canty, A.J.; Bull, S.B.; Natarajan, R.; Paterson, A.D.; DCCT/EDIC Research Group. DNA methylation age calculators reveal association with diabetic neuropathy in type 1 diabetes. Clin. Epigenet. 2020, 12, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smyth, L.J.; Kilner, J.; Nair, V.; Liu, H.; Brennan, E.; Kerr, K.; Sandholm, N.; Cole, J.; Dahlström, E.; Syreeni, A.; et al. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: An exploratory study. Clin. Epigenet. 2021, 13, 99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swan, E.J.; Maxwell, A.P.; McKnight, A.J. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with Type 1 diabetes. Diabet. Med. 2015, 32, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Pinney, S.E. DNA methylation and its role in the pathogenesis of diabetes. Pediatr. Diabetes 2017, 18, 167–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pearce, M.S.; McConnell, J.C.; Potter, C.; Barrett, L.M.; Parker, L.; Mathers, J.C.; Relton, C.L. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int. J. Epidemiol. 2012, 41, 210–217, Erratum in Int. J. Epidemiol. 2013, 42, 919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carraro, J.C.; Mansego, M.L.; Milagro, F.I.; Chaves, L.O.; Vidigal, F.C.; Bressan, J.; Martínez, J.A. LINE-1 and inflammatory gene methylation levels are early biomarkers of metabolic changes: Association with adiposity. Biomarkers 2016, 21, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Martín-Núñez, G.M.; Rubio-Martín, E.; Cabrera-Mulero, R.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Type 2 diabetes mellitus in relation to global LINE-1 DNA methylation in peripheral blood: A cohort study. Epigenetics 2014, 9, 1322–1328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, L.; Liu, S.; Su, Z.; Cheng, R.; Bai, X.; Li, X. LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population. Arq. Bras. Cardiol. 2014, 102, 481–488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turcot, V.; Tchernof, A.; Deshaies, Y.; Pérusse, L.; Bélisle, A.; Marceau, S.; Biron, S.; Lescelleur, O.; Biertho, L.; Vohl, M.C. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin. Epigenet. 2012, 4, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín-Núñez, G.M.; Cabrera-Mulero, A.; Alcaide-Torres, J.; García-Fuentes, E.; Tinahones, F.J.; Morcillo, S. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients. Surg. Obes. Relat. Dis. 2017, 13, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Remely, M.; Aumueller, E.; Merold, C.; Dworzak, S.; Hippe, B.; Zanner, J.; Pointner, A.; Brath, H.; Haslberger, A.G. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 2014, 537, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, A.B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F.I.; Navas-Carretero, S.; Carreira, M.C.; Gomez, A.; Hervas, D.; Monteiro, M.P.; Casanueva, F.F.; et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: A genome-wide analysis from non-obese and obese patients. Sci. Rep. 2017, 7, 41903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Lacarte, M.; Milagro, F.I.; Zulet, M.A.; Martinez, J.A.; Mansego, M.L. LINE-1 methylation levels, a biomarker of weight loss in obese subjects, are influenced by dietary antioxidant capacity. Redox Rep. 2016, 21, 67–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A.; MENA Project. DNA methylation signatures at endoplasmic reticulum stress genes are associated with adiposity and insulin resistance. Mol. Genet. Metab. 2018, 123, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Villamor, E.; Shroff, M.R.; Nettleton, J.A.; Pilsner, J.R.; Liu, Y.; Diez-Roux, A.V. Dietary intake, plasma homocysteine, and repetitive element DNA methylation in the Multi-Ethnic Study of Atherosclerosis (MESA). Nutr. Metab. Cardiovasc. Dis. 2014, 24, 614–622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yooyongsatit, S.; Ruchusatsawat, K.; Noppakun, N.; Hirankarn, N.; Mutirangura, A.; Wongpiyabovorn, J. Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J. Hum. Genet. 2015, 60, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Thongsroy, J.; Mutirangura, A. Decreased Alu methylation in type 2 diabetes mellitus patients increases HbA1c levels. J. Clin. Lab. Anal. 2023, 37, e24966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Starskaia, I.; Laajala, E.; Grönroos, T.; Härkönen, T.; Junttila, S.; Kattelus, R.; Kallionpää, H.; Laiho, A.; Suni, V.; Tillmann, V.; et al. Early DNA methylation changes in children developing beta cell autoimmunity at a young age. Diabetologia 2022, 65, 844–860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saul, D.; Kosinsky, R.L. Epigenetics of Aging and Aging-Associated Diseases. Int. J. Mol. Sci. 2021, 22, 401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thongsroy, J.; Mutirangura, A. The association between Alu hypomethylation and the severity of hypertension. PLoS ONE 2022, 17, e0270004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Yu, H.; Li, D.; Liu, N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res. Rev. 2024, 100, 102440. [Google Scholar] [CrossRef] [PubMed]
- Ndhlovu, L.C.; Bendall, M.L.; Dwaraka, V.; Pang, A.P.; Dopkins, N.; Carreras, N.; Smith, R.; Nixon, D.F.; Corley, M.J. Retroelement-Age Clocks: Epigenetic Age Captured by Human Endogenous Retrovirus and LINE-1 DNA methylation states. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dolcini, J.; Landi, R.; Ponzio, E.; Picchini, L.; Luciani, A.; Formenti, L.; Baroni, S.S.; Gabrielli, A.; D’errico, M.M.; Barbadoro, P. Association between TNF-α, cortisol levels, and exposure to PM10 and PM2.5: A pilot study. Environ. Sci. Eur. 2024, 36, 141. [Google Scholar] [CrossRef]
- Eze, I.C.; Hemkens, L.G.; Bucher, H.C.; Hoffmann, B.; Schindler, C.; Künzli, N.; Schikowski, T.; Probst-Hensch, N.M. Association between ambient air pollution and diabetes mellitus in Europe and North America: Systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 381–389. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, J.; Tang, S.; Deng, F.; Liu, X.; Shen, Y.; Liu, Y.; Kong, F.; Du, Y.; Cui, L.; et al. PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. Environ. Health Perspect. 2022, 130, 27001. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Nakiwala, D.; Goodrich, J.M. What Happens In Utero Does Not Stay In Utero: A Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Curr. Environ. Health Rep. 2023, 10, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Muka, T.; Koromani, F.; Portilla, E.; O’Connor, A.; Bramer, W.M.; Troup, J.; Chowdhury, R.; Dehghan, A.; Franco, O.H. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol. 2016, 212, 174–183. [Google Scholar] [CrossRef] [PubMed]
Variable | Patients with T1D | Controls | p-Value |
---|---|---|---|
(n = 35) | (n = 28) | ||
Subject Characteristics | |||
Age (years, median, IQR) | 28.0 (19.0–39.0) | 28.0 (20.0–31.5) | 0.658 |
Males/Females (%) | 56.7/43.3 | 56.7/43.3% | 0.866 |
Systolic blood pressure (mmHg, median, IQR) | 125.0 (110.0–130.0) | 115.0 (100.0–125.0) | 0.316 |
Diastolic blood pressure (mmHg, median, IQR) | 75.0 (70.0–85.0) | 70.0 (65.0–80.0) | 0.751 |
BMI (kg/m2) | 23.0 (21.0–24.0) | 22.0 (21.0–23.0) | 0.548 |
Fasting glucose (mg/dL, median, IQR) | 113 (94.0–146.0) | 79.5 (75.5–89.0) | <0.05 * |
HbA1c (%,median, IQR) | 7.3 (6.8–7.9) | 4.9 (4.7–5.2) | <0.05 * |
LINE-1 methylation | |||
mC (%, median, IQR) | 47.3 (46.6–47.8) | 46.5 (44.7–47.3) | 0.005 * |
mCmC (%, median, IQR) | 35.3 (26.0–48.3) | 31.8 (24.2–44.0) | 0.534 |
uCmC (%, median, IQR) | 28.4 (24.7–33.3) | 33.1 (27.8–37.9) | 0.019 * |
mCuC (%, median, IQR) | 16.4 (11.3–25.1) | 15.9 (12.3–19.4) | 0.463 |
uCuC (%, median, IQR) | 18.8 (12.1–23.4) | 18.0 (13.8–24.4) | 0.251 |
Variable | mC (%) | mCuC (%) | uCmC (%) | uCuC (%) | mCmC (%) |
---|---|---|---|---|---|
Age | rho = 0.096, p = 0.456 | rho = −0.109, p = 0.396 | rho = 0.009, p = 0.947 | rho = −0.203, p = 0.11 | rho = 0.156, p = 0.223 |
Age at diagnosis | rho = 0.117, p = 0.509 | rho = 0.091, p = 0.608 | rho = −0.341 *, p < 0.05 | rho = 0.070, p = 0.696 | rho = −0.015, p = 0.933 |
Sex (female) | rho = 0.140, p = 0.281 | rho = −0.202, p = 0.189 | rho = 0.198, p = 0.126 | rho = −0.168, p = 0.195 | rho = 0.129, p = 0.322 |
Duration of disease | rho = −0.020, p = 0.911 | rho = −0.046, p = 0.792 | rho = 0.388 p < 0.05 | rho = −0.233, p = 0.177 | rho = 0.026, p = 0.0883 |
Fasting glucose | rho = 0.380 *, p < 0.05 | rho = 0.022, p = 0.864 | rho = −0.383 *, p = 0.002 | rho = −0.113, p = 0.376 | rho = 0.122, p = 0.340 |
HbA1c | rho = 0.342, p < 0.05 | rho = 0.087, p = 0.496 | rho = −0.270 *, p = 0.033 | rho = −0.111, p = 0.385 | rho = 0.056, p = 0.665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsanou, A.; Kostoulas, C.; Liberopoulos, E.; Tsatsoulis, A.; Georgiou, I.; Tigas, S. Methylation of LINE-1 Retroelement in People with Type 1 Diabetes. Genes 2025, 16, 759. https://doi.org/10.3390/genes16070759
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Methylation of LINE-1 Retroelement in People with Type 1 Diabetes. Genes. 2025; 16(7):759. https://doi.org/10.3390/genes16070759
Chicago/Turabian StyleKatsanou, Andromachi, Charilaos Kostoulas, Evangelos Liberopoulos, Agathocles Tsatsoulis, Ioannis Georgiou, and Stelios Tigas. 2025. "Methylation of LINE-1 Retroelement in People with Type 1 Diabetes" Genes 16, no. 7: 759. https://doi.org/10.3390/genes16070759
APA StyleKatsanou, A., Kostoulas, C., Liberopoulos, E., Tsatsoulis, A., Georgiou, I., & Tigas, S. (2025). Methylation of LINE-1 Retroelement in People with Type 1 Diabetes. Genes, 16(7), 759. https://doi.org/10.3390/genes16070759