Genome-Wide Associations with Body and Fleece Weight in United States Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Description and Analysis of Phenotypic Records
2.2. Genotype Data Preparation for Analyses
2.2.1. Genotype Preparation for Genome-Wide Association Study
2.2.2. Genotype Preparation for Signature of Selection Analyses
2.3. Genome-Wide Association Studies for Ewe Fleece and Body Weight
2.4. Runs of Homozygosity Analysis
2.5. Weir–Cockerham FST Analysis
2.6. Genomic Context of Significant Results
3. Results
3.1. Statistical Analyses of Phenotypic Records
3.2. Genome-Wide Association Studies for Ewe Fleece and Body Weight
3.3. Runs of Homozygosity Analysis
3.4. Weir–Cockerham FST Analysis
4. Discussion
4.1. Genes of Interest Identified by GWAS for LFW, AFW and PLEW
4.2. Signatures of Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LFW | Lifetime fleece weight (kg) |
AFW | Average fleece weight (kg) |
PLEW | Average post-lambing ewe weight (kg) |
References
- Doyle, E.K.; Preston, J.W.V.; Mcgregor, B.A.; Hynd, P.I. The science behind the wool industry. The importance and value of wool production from sheep. Anim. Front. 2021, 11, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.W.; Stewart, W.C.; Notter, D.R.; Mousel, M.R.; Lewis, G.S.; Taylor, J.B. Evaluation of Rambouillet, Polypay, and Romanov-white dorper × Rambouillet ewes mated to terminal sires in an extensive rangeland production system: Body weight and wool characteristics. J. Anim. Sci. 2019, 97, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Arzik, Y.; Kizilaslan, M.; Behrem, S.; White, S.N.; Piel, L.M.W.; Cinar, M.U. Genome-Wide Scan of Wool Production Traits in Akkaraman Sheep. Genes 2023, 14, 713. [Google Scholar] [CrossRef] [PubMed]
- Bolormaa, S.; Swan, A.A.; Stothard, P.; Khansefid, M.; Moghaddar, N.; Duijvesteijn, N.; van der Werf, J.H.; Daetwyler, H.D.; MacLeod, I.M. A conditional multi-trait sequence GWAS discovers pleiotropic candidate genes and variants for sheep wool, skin wrinkle and breech cover traits. Genet. Sel. Evol. 2021, 53, 1–14. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, T.; Lu, Z.; Liu, J.; Zhu, S.; Qiao, G.; Han, M.; Yuan, C.; Wang, T.; Li, F.; et al. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genom. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Zhao, B.; Luo, H.; Huang, X.; Wei, C.; Di, J.; Tian, Y.; Fu, X.; Li, B.; Liu, G.E.; Fang, L.; et al. Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep. Genet. Sel. Evol. 2021, 53, 56. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, S.; Guo, T.; Han, M.; Chen, B.; Qiao, G.; Wu, Y.; Yuan, C.; Liu, J.; Lu, Z.; et al. Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep. J. Anim. Sci. 2021, 99, skab210. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wei, T.; Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix. (Version 0.95), 2024. Available online: https://github.com/taiyun/corrplot (accessed on 29 May 2025).
- Mousel, M.R.; White, S.N.; Herndon, M.K.; Herndon, D.R.; Taylor, J.B.; Becker, G.M.; Murdoch, B.M. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS ONE 2021, 16, e0247209. [Google Scholar] [CrossRef]
- Smitchger, J.A.; Taylor, J.B.; Mousel, M.R.; Schaub, D.; Thorne, J.W.; Becker, G.M.; Murdoch, B.M. Genome-wide associations with longevity and reproductive traits in U.S. rangeland ewes. Front. Genet. 2024, 15, 1398123. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, s13742-015-0047-8. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 29 May 2025).
- Wilson, C.S.; Petersen, J.L.; Blackburn, H.D.; Lewis, R.M. Assessing Population Structure and Genetic Diversity in US Suffolk Sheep to Define a Framework for Genomic Selection. J. Hered. 2022, 113, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Linck, E.; Battey, C.J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 2019, 19, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using plink? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Yin, L. CMplot: Circle Manhattan Plot. R Package Version 4.5.1, 2024. Available online: https://CRAN.R-project.org/package=CMplot (accessed on 29 May 2025).
- Wickham, H.; Henry, L. purrr: Functional Programming Tools. R package Version 1.0.4, 2025. Available online: https://purrr.tidyverse.org/ (accessed on 29 May 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R package version 1.1.4, 2025. Available online: https://dplyr.tidyverse.org (accessed on 29 May 2025).
- Biscarini, F.; Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes. CRAN (The Comprehensive R Archive Network). 2018. Available online: https://cran.r-project.org/web/packages/detectRUNS/index.html (accessed on 29 May 2025).
- Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017, 12, e0176780. [Google Scholar] [CrossRef]
- Signer-Hasler, H.; Burren, A.; Ammann, P.; Drögemüller, C.; Flury, C. Runs of homozygosity and signatures of selection: A comparison among eight local Swiss sheep breeds. Anim. Genet. 2019, 50, 512–525. [Google Scholar] [CrossRef]
- Gorssen, W.; Meyermans, R.; Janssens, S.; Buys, N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet. Sel. Evol. 2021, 53, 1–10. [Google Scholar] [CrossRef]
- Becker, G.M.; Thorne, J.W.; Burke, J.M.; Lewis, R.M.; Notter, D.R.; Morgan, J.L.; Schauer, C.S.; Stewart, W.C.; Redden, R.R.; Murdoch, B.M. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet. Sel. Evol. 2024, 56, 56. [Google Scholar] [CrossRef]
- Dickinson, W.F.; Lush, J.L. Inbreeding and the Genetic History of the Rambouillet Sheep in America. J. Hered. 1933, 24, 19–33. [Google Scholar] [CrossRef]
- Wilson, C.S.; Petersen, J.L.; Brito, L.F.; Freking, B.A.; Nilson, S.M.; Taylor, J.B.; Murphy, T.W.; Lewis, R.M. Assessment of genetic diversity and population structure of U.S. Polypay sheep from breed origins to future genomic selection. Front. Genet. 2024, 15, 1436990. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Zhao, F.; Ren, H.; Xu, L.; Lu, J.; Zhang, S.; Zhang, X.; Wei, C.; Lu, G.; et al. Genome-Wide Association Studies for Growth and Meat Production Traits in Sheep. PLoS ONE 2013, 8, e66569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mousel, M.R.; Wu, X.; Michal, J.J.; Zhou, X.; Ding, B.O.; Dodson, M.V.; El-Halawany, N.K.; Lewis, G.S.; Jiang, Z. Genome-Wide Genetic Diversity and Differentially Selected Regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee Sheep. PLoS ONE 2013, 8, e65942. [Google Scholar] [CrossRef]
- Davenport, K.M.; Bickhart, D.M.; Worley, K.; Murali, S.C.; Salavati, M.; Clark, E.L.; Cockett, N.E.; Heaton, M.P.; Smith, T.P.; Murdoch, B.M.; et al. An improved ovine reference genome assembly to facilitate in-depth functional annotation of the sheep genome. Gigascience 2022, 11, giab096. [Google Scholar] [CrossRef] [PubMed]
- Davenport, K.M.; Hiemke, C.; McKay, S.D.; Thorne, J.W.; Lewis, R.M.; Taylor, T.; Murdoch, B.M. Genetic structure and admixture in sheep from terminal breeds in the United States. Anim. Genet. 2020, 51, 284–291. [Google Scholar] [CrossRef]
- Khan, M.J.; Abbas, A.; Ayaz, M.; Naeem, M.; Akhter, M.S.; Soomro, M.H. Factors affecting wool quality and quantity in sheep. Afr. J. Biotechnol. 2012, 11, 13761–13766. [Google Scholar] [CrossRef]
- Walkom, S.F.; Brown, D.J. Genetic evaluation of adult ewe bodyweight and condition: Relationship with lamb growth, reproduction, carcass and wool production. Anim. Prod. Sci. 2017, 57, 20–32. [Google Scholar] [CrossRef]
- Adams, N.R.; Cronjé, P.B. A review of the biology linking fibre diameter with fleece weight, liveweight, and reproduction in Merino sheep. Aust. J. Agric. Res. 2003, 54, 1–10. [Google Scholar] [CrossRef]
- Gao, X.; Dai, P.; Yuan, Y.Y. Genetic Architecture and Phenotypic Landscape of Deafness and Onychodystrophy Syndromes; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Yamahara, K.; Nakagawa, T.; Ito, J.; Kinoshita, K.; Omori, K.; Yamamoto, N. Netrin 1 mediates protective effects exerted by insulin-like growth factor 1 on cochlear hair cells. Neuropharmacology 2017, 119, 26–39. [Google Scholar] [CrossRef]
- Kominakis, A.; Hager-Theodorides, A.L.; Zoidis, E.; Saridaki, A.; Antonakos, G.; Tsiamis, G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol. 2017, 49, 1–16. [Google Scholar] [CrossRef]
- Posbergh, C.J.; Huson, H.J. All sheeps and sizes: A genetic investigation of mature body size across sheep breeds reveals a polygenic nature. Anim. Genet. 2021, 52, 99–107. [Google Scholar] [CrossRef]
- Fleming-Waddell, J.N.; Olbricht, G.R.; Taxis, T.M.; White, J.D.; Vuocolo, T.; Craig, B.A.; Tellam, R.L.; Neary, M.K.; Cockett, N.E.; Bidwell, C.A. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in callipyge lambs. PLoS ONE 2009, 4, e7399. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhao, B.; Huang, X.; Fu, X.; Liu, G.; Tian, Y.; Wu, C.; Mao, J.; Liu, J.; Gun, S.; et al. Gene network analysis reveals candidate genes related with the hair follicle development in sheep. BMC Genom. 2022, 23, 428. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Ma, S.; Zhao, B.; Tang, S.; Lu, Q.; Liu, W.; Wang, Y.; Cen, Y.; Wu, C.; Fu, X. Transcriptome meta-analysis reveals the hair genetic rules in six animal breeds and genes associated with wool fineness. Front. Genet. 2024, 15, 1401369. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, P.; Ye, N.; Zhou, X.; Zhang, Y.; Liang, C.; Guo, X.; Chu, M.; Pei, J.; Yan, P. Identification of the key genes associated with the yak hair follicle cycle. Genes 2022, 13, 32. [Google Scholar] [CrossRef]
- Luo, L.-Y.; Wu, H.; Zhao, L.M.; Zhang, Y.H.; Huang, J.H.; Liu, Q.Y.; Wang, H.T.; Mo, D.X.; EEr, H.H.; Zhang, L.Q.; et al. Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness. Nat. Genet. 2025, 57, 218–230. [Google Scholar] [CrossRef]
- Wang, S.; Wu, T.; Sun, J.; Li, Y.; Yuan, Z.; Sun, W. Single-Cell Transcriptomics Reveals the Molecular Anatomy of Sheep Hair Follicle Heterogeneity and Wool Curvature. Front. Cell Dev. Biol. 2021, 9, 800157. [Google Scholar] [CrossRef]
- Bhat, B.; Yaseen, M.; Singh, A.; Ahmad, S.M.; Ganai, N.A. Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-Seq and integrated bioinformatics analysis. Sci. Rep. 2021, 11, 1766. [Google Scholar] [CrossRef]
- Li, S.; Chen, W.; Zheng, X.; Liu, Z.; Yang, G.; Hu, X.; Mou, C. Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity. Gene 2020, 758, 144968. [Google Scholar] [CrossRef]
- Shi, R.; Li, S.; Liu, P.; Zhang, S.; Wu, Z.; Wu, T.; Gong, S.; Wan, Y. Identification of key genes and signaling pathways related to Hetian sheep wool density by RNA-seq technology. PLoS ONE 2022, 17, e0265989. [Google Scholar] [CrossRef]
- Shangguan, A.; Xiang, C.; Deng, Z.; Zhang, N.; Yu, M.; Zhang, F.; Suo, X.; Chen, M.; Chen, C.; Tao, H.; et al. Genome-wide association study of growth and reproductive traits based on low-coverage whole-genome sequencing in a Chubao black-head goat population. Gene 2024, 931, 148891. [Google Scholar] [CrossRef]
- Li, R.; Brockschmidt, F.F.; Kiefer, A.K.; Stefansson, H.; Nyholt, D.R.; Song, K.; Vermeulen, S.H.; Kanoni, S.; Glass, D.; Medland, S.E.; et al. Six novel susceptibility loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012, 8, e1002746. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, J.H.; Wilk, E.J.; Howton, T.C.; Clark, A.D.; Lasseigne, B.N. The landscape of SETBP1 gene expression and transcription factor activity across human tissues. PLoS ONE 2024, 19, e296328. [Google Scholar] [CrossRef] [PubMed]
- Amberg, N.; Sotiropoulou, P.A.; Heller, G.; Lichtenberger, B.M.; Holcmann, M.; Camurdanoglu, B.; Baykuscheva-Gentscheva, T.; Blanpain, C.; Sibilia, M. EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner. iScience 2019, 15, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Liu, J.; Li, L.; Ren, J.; Guo, S.; Bai, L. Analysis of Differential β Variable Region of T Cell Receptor Expression and NAV3/TNFRSF1B Gene Mutation in Mycosis Fungoides. 2016. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4951265/ (accessed on 24 April 2025).
- Deonizio, J.M.D.; Guitart, J.; Yazdan, P.; Mulinari-Brenner, F.; Sotto, M.N.; Sanches, J.A. Immune privilege disruption in folliculotropic mycosis fungoides: Investigation of major histocompatibility complex antigen expression. Int. J. Dermatol. 2019, 57, 675–680. [Google Scholar] [CrossRef]
- Paus, R.; Ito, N.; Takigawaw, M.; Ito, T. The Hair Follicle and Immune Privilege. In Journal of Investigative Dermatology Symposium Proceedings; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Zhao, J.; Liu, N.; Liu, K.; He, J.; Yu, J.; Bu, R.; Cheng, M.; De, W.; Liu, J.; Li, H. Identification of genes and proteins associated with anagen wool growth. Anim. Genet. 2017, 48, 67–79. [Google Scholar] [CrossRef]
- Rahmani, W.; Sinha, S.; Biernaskie, J. Immune modulation of hair follicle regeneration. Nat. Res. 2020, 5, 1–13. [Google Scholar] [CrossRef]
- Karabaş, M.; Yılmaz, O. Identification of selection signatures and genetic diversity in the sheep. Trop. Anim. Health Prod. 2025, 57, 68. [Google Scholar] [CrossRef]
- Belman, S.; Pesonen, H.; Croucher, N.J.; Bentley, S.D.; Corander, J. Estimating between-country migration in pneumococcal populations. G3 Genes Genomes Genet. 2024, 14, jkae058. [Google Scholar] [CrossRef]
- Selli, A.; Ventura, R.V.; Fonseca, P.A.; Buzanskas, M.E.; Andrietta, L.T.; Balieiro, J.C.; Brito, L.F. Detection and visualization of heterozygosity-rich regions and runs of homozygosity in worldwide sheep populations. Animals 2021, 11, 2696. [Google Scholar] [CrossRef]
- Sorbolini, S.; Gaspa, G.; Steri, R.; Dimauro, C.; Cellesi, M.; Stella, A.; Marras, G.; Marsan, P.A.; Valentini, A.; Macciotta, N.P.P. Use of Canonical discriminant analysis to study signatures of selection in Cattle. Genet. Sel. Evol. 2016, 48, 1–13. [Google Scholar] [CrossRef]
- Manunza, A.; Cardoso, T.F.; Noce, A.; Martínez, A.; Pons, A.; Bermejo, L.A.; Landi, V.; Sánchez, A.; Jordana, J.; Delgado, J.V.; et al. Population structure of eleven Spanish ovine breeds and detection of selective sweeps with BayeScan and hapFLK. Sci. Rep. 2016, 6, 27296. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Larrañaga, O.; Langa, J.; Rendo, F.; Manzano, C.; Iriondo, M.; Estonba, A. Genomic selection signatures in sheep from the Western Pyrenees. Genet. Sel. Evol. 2018, 50, 1–12. [Google Scholar] [CrossRef]
- He, S.; Di, J.; Han, B.; Chen, L.; Liu, M.; Li, W. Genome-wide scan for runs of homozygosity identifies candidate genes related to economically important traits in Chinese merino. Animals 2020, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Zlobin, A.S.; Nikulin, P.S.; Volkova, N.A.; Zinovieva, N.A.; Iolchiev, B.S.; Bagirov, V.A.; Borodin, P.M.; Aksenovich, T.I.; Tsepilov, Y.A. Multivariate analysis identifies eight novel loci associated with meat productivity traits in sheep. Genes 2021, 12, 367. [Google Scholar] [CrossRef]
- La, Y.; Zhang, X.; Li, F.; Zhang, D.; Li, C.; Mo, F.; Wang, W. Molecular characterization and expression of SPP1, LAP3 and LCORL and their association with growth traits in sheep. Genes 2019, 10, 616. [Google Scholar] [CrossRef]
- Al-Mamun, H.A.; Kwan, P.; Clark, S.A.; Ferdosi, M.H.; Tellam, R.; Gondro, C. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Sel. Evol. 2015, 47, 1–11. [Google Scholar] [CrossRef]
- Mohammadi, H.; Farahani, A.H.K.; Moradi, M.H.; Mastrangelo, S.; Di Gerlando, R.; Sardina, M.T.; Scatassa, M.L.; Portolano, B.; Tolone, M. Weighted Single-Step Genome-Wide Association Study Uncovers Known and Novel Candidate Genomic Regions for Milk Production Traits and Somatic Cell Score in Valle del Belice Dairy Sheep. Animals 2022, 12, 1155. [Google Scholar] [CrossRef]
- Buaban, S.; Lengnudum, K.; Boonkum, W.; Phakdeedindan, P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J. Dairy Sci. 2022, 105, 468–494. [Google Scholar] [CrossRef]
- Naserkheil, M.; Mehrban, H.; Lee, D.; Park, M.N. Genome-wide Association Study for Carcass Primal Cut Yields Using Single-step Bayesian Approach in Hanwoo Cattle. Front. Genet. 2021, 12, 752424. [Google Scholar] [CrossRef]
- Ramos, Z.; Garrick, D.J.; Blair, H.T.; Vera, B.; Ciappesoni, G.; Kenyon, P.R. Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep. Genes 2023, 14, 167. [Google Scholar] [CrossRef]
- Anaya, G.; Laseca, N.; Granero, A.; Ziadi, C.; Arrebola, F.; Domingo, A.; Molina, A. Genomic Characterization of Quality Wool Traits in Spanish Merino Sheep. Genes 2024, 15, 795. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Fan, Y.; Yan, X.; Li, W.; Yan, X.; Liu, H.; Zhang, L.; Su, Y.; Zhang, J.; Jiang, W.; et al. Identification of Genes Related to Hair Follicle Cycle Development in Inner Mongolia Cashmere Goat by WGCNA. Front. Vet. Sci. 2022, 9, 894380. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ding, H.; Wang, Y.; Cheng, G.; Wang, X.; Leng, T.; Zhao, H. Hair Follicle Transcriptome Analysis Reveals Differentially Expressed Genes That Regulate Wool Fiber Diameter in Angora Rabbits. Biology 2023, 12, 445. [Google Scholar] [CrossRef] [PubMed]
Breed | Class | Wool Type | AVG FD (µm) | GF Wt (kg) | Yield (%) | SL (cm) | Background and Origin |
---|---|---|---|---|---|---|---|
Columbia | Dual-purpose | Medium | 30–23 | 5.4–7.3 | 45–55 | 10.2–15.2 | Established in the U.S. from Lincoln × Rambouillet crosses around 1912. |
Polypay | Dual-purpose | Medium (variable) | 33–22 | 2.7–4.5 | 57 | 7.6–12.7 | Established in the U.S. from Targhee × Dorest and Rambouillet × Finnsheep crosses around 1968. |
Rambouillet | Fine-wool, dual-purpose | Fine | 24–19 | 4.5–6.8 | 45–55 | 6.4–10.2 | Originated in France and Germany from the Spanish Merino. The U.S. population was established around 1840. |
Suffolk | Meat, dual-purpose | Medium | 33–26 | 1.8–3.6 | 50–60 | 5.0–8.9 | Originated in England from Southdown × Norfolk crosses. The U.S. population was established around 1888. |
LFW (kg) | AFW (kg) | PLEW (kg) | ||
---|---|---|---|---|
All | Average ± SD | 19.36 ± 8.01 | 3.53 ± 0.89 | 68.66 ± 9.64 |
Min | 1.54 | 0.86 | 35.38 | |
Max | 43.54 | 6.49 | 106.14 | |
Rambouillet | Average ± SD | 24.20 ± 6.92 | 4.20 ± 0.61 | 67.71 ± 8.44 |
Min | 3.90 | 2.59 | 43.54 | |
Max | 43.54 | 6.10 | 92.08 | |
Columbia | Average ± SD | 23.99 ± 8.98 | 4.26 ± 0.72 | 76.60 ± 9.16 |
Min | 4.35 | 2.00 | 44.91 | |
Max | 41.55 | 6.49 | 106.14 | |
Polypay | Average ± SD | 16.19 ± 5.60 | 3.05 ± 0.56 | 66.45 ± 9.16 |
Min | 1.54 | 1.54 | 42.18 | |
Max | 35.74 | 5.11 | 99.79 | |
Suffolk | Average ± SD | 11.90 ± 5.21 | 2.55 ± 0.52 | 73.27 ± 10.87 |
Min | 1.72 | 0.86 | 35.38 | |
Max | 24.13 | 4.58 | 98.88 |
Trait | SNP | Chr | bp | A1 | A2 | Freq | Beta | SE | p-Value |
---|---|---|---|---|---|---|---|---|---|
LFW | rs423559749 | 4 | 106,967,335 | A | G | 0.03 | −2.22 | 0.44 | 4.87 × 10−7 ^ |
rs401427029 | 23 | 32,984,219 | C | A | 0.41 | 0.87 | 0.16 | 8.86 × 10−8 | |
AFW | rs407174590 | 1 | 104,876,990 | C | T | 0.34 | 0.13 | 0.03 | 6.27 × 10−7 ^ |
rs418816169 | 23 | 42,855,873 | C | T | 0.27 | −0.16 | 0.03 | 4.73 × 10−7 ^ | |
rs430733414 | 23 | 44,917,577 | A | G | 0.33 | −0.15 | 0.03 | 3.99 × 10−7 ^ | |
rs403221986 | 23 | 44,936,182 | T | C | 0.28 | −0.16 | 0.03 | 5.39 × 10−8 | |
rs427745519 | 23 | 44,938,238 | T | C | 0.34 | −0.16 | 0.03 | 4.73 × 10−8 | |
rs413519109 | 23 | 44,977,724 | C | A | 0.27 | −0.15 | 0.03 | 3.37 × 10−7 ^ | |
PLEW | rs161045311 | 11 | 27,131,851 | T | A | 0.48 | −2.45 | 0.44 | 2.48 × 10−8 |
rs430590929 | 11 | 27,132,389 | C | T | 0.48 | −2.42 | 0.44 | 3.45 × 10−8 | |
rs161045330 | 11 | 27,132,449 | T | C | 0.48 | −2.48 | 0.44 | 1.82 × 10−8 | |
rs161045389 | 11 | 27,135,432 | C | A | 0.49 | −2.45 | 0.43 | 1.73 × 10−8 | |
rs401081841 | 11 | 27,150,195 | A | G | 0.48 | −2.48 | 0.44 | 1.82 × 10−8 | |
rs419921875 | 11 | 27,153,661 | G | A | 0.48 | −2.48 | 0.44 | 1.78 × 10−8 | |
rs421850429 | 11 | 27,175,522 | T | C | 0.48 | −2.45 | 0.44 | 2.64 × 10−8 | |
rs162128226 | 11 | 27,199,959 | C | T | 0.40 | −2.65 | 0.44 | 1.83 × 10−9 | |
rs417779412 | 11 | 27,201,632 | A | C | 0.39 | −2.59 | 0.44 | 5.88 × 10−9 | |
rs399877817 | 11 | 27,215,959 | A | G | 0.47 | −2.21 | 0.43 | 3.16 × 10−7 ^ | |
rs161046190 | 11 | 27,217,384 | C | T | 0.49 | −2.27 | 0.43 | 1.46 × 10−7 ^ | |
rs426045550 | 11 | 27,262,177 | A | G | 0.43 | 2.33 | 0.44 | 8.26 × 10−8 | |
rs425193551 | 11 | 27,269,772 | T | C | 0.43 | 2.33 | 0.44 | 8.47 × 10−8 | |
rs161050016 | 11 | 28,113,457 | G | C | 0.47 | −2.18 | 0.43 | 3.57 × 10−7 ^ | |
rs420045693 | 11 | 28,383,822 | C | T | 0.39 | −2.34 | 0.42 | 2.66 × 10−8 | |
rs420358530 | 11 | 28,784,756 | A | G | 0.45 | 2.15 | 0.42 | 2.82 × 10−7 ^ |
rsID | Nearest Gene [Orientation] | All Genes in Region ± 50,000 bp |
---|---|---|
rs423559749 | LOC114114557 (TRBV6-2) [exonic] | LOC121819444 (TRBV3-1), LOC121816042, LOC101114438 (TRBV7-9), LOC101114950 (TRBV5-5), LOC114114445 (TRBV6-2), LOC105613885, LOC114114557 (TRBV6-2), LOC101115704 (TRBV5-6), LOC121819450 (TRBV5-1), LOC121819446 (TRBV5-1), LOC132657147 (TRBV6-9), LOC114114447 (TRBV6-2), LOC114114448 (TRBV6-1), LOC121819457 (TRBV5-5), LOC132659772, LOC114114558 (TRBV9) |
rs401427029 | TTC39C [intronic] | TTC39C, LOC114110499 |
rs407174590 | ADAR [5′] | ADAR, KCNN3 |
rs418816169 | PIEZO2 [intronic] | PIEZO2 |
rs430733414 | SETBP1 [intronic] | SETBP1 |
rs403221986 | ||
rs427745519 | ||
rs413519109 | ||
rs161045311 | SOX15 [exonic], EIF4A1 [exonic], CD68 [exonic] | LOC114116879, TNFSF12, TNFSF13, SENP3, EIF4A1, LOC114117084 (SNORA48), LOC114117085 (SNORA48), LOC114117101 (SNORD10), LOC114117063 (SNORA67), SOX15, CD68, MPDU1, FXR2, SAT2, SHBG, ATP1B2, TP53, WRAP53, EFNB3, DNAH2 |
rs430590929 | SOX15 [exonic], EIF4A1 [exonic], CD68 [intronic] | |
rs161045330 | ||
rs161045389 | MPDU1 [exonic], SOX15 [exonic] | |
rs401081841 | FXR2 [intronic] | |
rs419921875 | ||
rs421850429 | SHBG [3′] | |
rs162128226 | TP53 [intronic] | |
rs417779412 | ||
rs399877817 | WRAP53 [intronic] | |
rs161046190 | ||
rs426045550 | DNAH2 [intronic] | |
rs425193551 | ||
rs161050016 | MFSD6L [exonic] | MFSD6L, PIK3R6, CCDC42 |
rs420045693 | NTN1 [intronic] | NTN1 |
rs420358530 | GSG1L2 [exonic] | USP43, DHRS7C, GSG1L2, GLP2R |
ROH (0.5 Mb) | ROH (0.5 Mb) | ROH (0.5 Mb) | ROH (1 Mb) | ROH (0.5 Mb) | ROH (1 Mb) | ROH (0.5 Mb) | ||
---|---|---|---|---|---|---|---|---|
Chr:Start-End | 2:114,908,538–115,694,442 | 2:123,322,344–123,534,483 | 3:153,875,227–154,922,651 | 3:153,959,687–154,922,651 | 6:37,715,516–39,354,587 | 10:29,230,492–29,662,445 | ||
ROH Length | 785,905 | 212,140 | 1,047,425 | 962,965 | 1,639,072 | 1,639,072 | 431,954 | |
SNP Count | 98 | 32 | 157 | 141 | 199 | 199 | 61 | |
Polypay | Min % | 24.06 | 31.83 | 6.77 | 7.02 | 33.83 | 33.83 | 40.60 |
Max % | 51.63 | 40.60 | 11.53 | 8.02 | 41.35 | 41.35 | 57.64 | |
Rambouillet | Min % | 37.21 | 70.89 * | 10.40 | 7.69 | 80.46 * | 79.63 * | 33.06 |
Max % | 42.00 | 71.73 * | 18.09 | 8.52 | 95.63 * | 94.39 * | 38.46 | |
Suffolk | Min % | 72.11 * | 29.75 | 70.04 * | 72.11 * | 39.88 | 31.82 | 70.66 * |
Max % | 79.13 * | 30.17 | 77.48 * | 73.76 * | 49.59 | 45.45 | 72.93 * |
Region of ROH Island (±50,000 bp) | Breed and ROH Analysis | Genes |
---|---|---|
2:114,858,538–115,744,442 | Suffolk ROH (0.5 Mb) | FAM168B, PLEKHB2, LOC105608693, LOC114113320, LOC101106144 (EEF1A1), LOC101106402 (ARPC4), LOC106990902 (MSX2) |
2:123,272,344–123,584,483 | Rambouillet ROH (0.5 Mb) | LOC101120641 (MTIF3), LOC101122056 (TMED2) |
3:153,825,227 */153,909,687–154,972,651 | Suffolk ROH (0.5 Mb) and ROH (1 Mb) | LLPH *, HMGA2, LOC132659626, LOC121819124, MSRB3, LOC105609948 (UBE2D3), LEMD3, WIF1, LOC114114191 |
6:37,665,516–39,404,587 | Rambouillet ROH (0.5 Mb) ROH (1 Mb) | TRNAA-CGC, LAP3, MED28, FAM184B, DCAF16, NCAPG, LCORL, LOC132660032 (CFDP2), LOC101104580 (SET), LOC121819821 |
10:29,180,492–29,712,445 | Suffolk ROH (0.5Mb) | FRY, LOC121820437, LOC101110773 (EEF1A1), RXFP2 |
rsID | Chr | Pos | R-S FST | R-P FST | P-S FST | Genes within ± 50,000 bp |
---|---|---|---|---|---|---|
rs421362086 | 1 | 226,945,393 | 0.484 | 0.399 | 0.016 | LOC114113867, LOC101104288 |
rs424868844 | 2 | 214,749,839 | 0.560 | 0.410 | 0.050 | -- |
rs430105435 | 2 | 214,757,669 | 0.560 | 0.412 | 0.050 | -- |
rs422033355 | 3 | 122,187,178 | 0.480 | 0.364 | 0.027 | LOC121819172 |
rs159911297 | 3 | 211,616,229 | 0.532 | 0.331 | 0.071 | TIGAR, CCND2, LOC105608579, LOC121819220, LOC132659637 |
rs408105992 | 4 | 105,852,382 | 0.471 | 0.393 | 0.011 | TMEM178B |
rs423710982 | 6 | 37,132,187 | 0.486 | 0.367 | 0.037 | PPM1K, ABCG2 |
rs403906365 | 8 | 61,597,763 | 0.488 | 0.325 | 0.059 | BCLAF1, LOC105608893 |
rs418992975 | 10 | 73,712,633 | 0.490 | 0.409 | 0.013 | LOC132657267, MBNL2 |
rs401322014 | 14 | 43,365,324 | 0.474 | 0.369 | 0.024 | PEPD, LOC132657685 |
rs429950267 | 14 | 43,367,902 | 0.474 | 0.369 | 0.024 | PEPD, LOC132657685 |
rs406252998 | 16 | 2,861,069 | 0.492 | 0.364 | 0.026 | KCNIP1, GABRP |
rs417106434 | 16 | 20,059,879 | 0.471 | 0.337 | 0.031 | PDE4D, TRNAH-AUG_7 |
rs426980318 | 18 | 29,393,657 | 0.497 | 0.352 | 0.051 | ETFA, LOC105603147, ISL2, LOC132658148, SCAPER |
rs401153126 | 18 | 33,166,790 | 0.499 | 0.404 | 0.016 | -- |
rs413553624 | 20 | 30,923,860 | 0.472 | 0.387 | 0.012 | LOC101113632, LOC101113108, LOC114109686, LOC101113369, LOC101112606, H1-1, TRIM38, LOC132658266, SLC17A2, SLC17A3 |
rs400967878 | 23 | 44,688,779 | 0.481 | 0.331 | 0.041 | SETBP1 |
rs402778861 | 23 | 44,691,416 | 0.488 | 0.332 | 0.043 | SETBP1 |
Gene | Trait | Previous Analyses | Reference |
---|---|---|---|
ADAR | AFW | DEG for hair follicle development in Merino sheep; transcriptomics analysis of sheep skin and other species | [40,41] |
ATP1B2 | PLEW | DEG for hair follicle development in Merino sheep | [40] |
CD68 | PLEW | DEG in Yak hair cycle | [42] |
DHRS7C | PLEW | DEG in Yak hair cycle | [42] |
EFNB3 | PLEW | DEG for hair follicle development in Merino sheep; signature of selection analysis for domestication | [40,43] |
EIF4A1 | PLEW | Expressed in Suzhou sheep skin | [44] |
GLP2R | PLEW | DEG for hair follicle development in Merino sheep | [40] |
KCNN3 | AFW | DEG for hair follicle development in Merino sheep; transcriptomics analysis of sheep skin and other species; DEG in Yak hair cycle; DEG between anagen and telogen phases in Pashmina fiber | [40,41,42,45] |
LOC101114438 (TRBV7-9) | LFW | Signature of selection analysis for wool fineness | [43] |
NTN1 | PLEW | DEG between anagen and telogen phases in Pashmina fiber; DEG for hair follicle development in Merino sheep; DEG in coarse vs. fine wool; signature of selection analysis for wool fineness; transcriptomics analysis of sheep skin and other species | [40,41,43,45,46] |
PIEZO2 | AFW | DEG in Yak hair cycle | [42] |
PIK3R6 | PLEW | Transcriptomics analysis of sheep skin and other species | [41] |
SETBP1 | AFW | DEG in Yak hair cycle | [42] |
SHBG | PLEW | DEG in Yak hair cycle | [42] |
SOX15 | PLEW | DEG for hair follicle density in Hetian sheep | [47] |
TNFSF12 | PLEW | DEG between anagen and telogen phases in Pashmina fiber; expressed in Suzhou sheep skin; DEG in Yak hair cycle | [42,44,45] |
TNFSF13 | PLEW | DEG in Yak hair cycle | [42] |
TP53 | PLEW | Expressed in Suzhou sheep skin | [44] |
WRAP53 | PLEW | Signature of selection analysis for domestication | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, G.M.; Schaub, D.; Taylor, J.B.; Mousel, M.R.; Wilson, C.S.; Smitchger, J.A.; Thorne, J.W.; Murdoch, B.M. Genome-Wide Associations with Body and Fleece Weight in United States Sheep. Genes 2025, 16, 733. https://doi.org/10.3390/genes16070733
Becker GM, Schaub D, Taylor JB, Mousel MR, Wilson CS, Smitchger JA, Thorne JW, Murdoch BM. Genome-Wide Associations with Body and Fleece Weight in United States Sheep. Genes. 2025; 16(7):733. https://doi.org/10.3390/genes16070733
Chicago/Turabian StyleBecker, Gabrielle M., Daniel Schaub, J. Bret Taylor, Michelle R. Mousel, Carrie S. Wilson, Jamin A. Smitchger, Jacob W. Thorne, and Brenda M. Murdoch. 2025. "Genome-Wide Associations with Body and Fleece Weight in United States Sheep" Genes 16, no. 7: 733. https://doi.org/10.3390/genes16070733
APA StyleBecker, G. M., Schaub, D., Taylor, J. B., Mousel, M. R., Wilson, C. S., Smitchger, J. A., Thorne, J. W., & Murdoch, B. M. (2025). Genome-Wide Associations with Body and Fleece Weight in United States Sheep. Genes, 16(7), 733. https://doi.org/10.3390/genes16070733