Identification of a Homozygous Variant in the CYP21A2 Gene by Next-Generation Sequencing Analysis of Circulating Cell-Free Fetal DNA
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auer, M.K.; Nordenstrom, A.; Lajic, S.; Reisch, N. Congenital adrenal hyperplasia. Lancet 2023, 401, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Espinosa Reyes, T.M.; Collazo Mesa, T.; Lantigua Cruz, P.A.; Agramonte Machado, A.; Dominguez Alonso, E.; Falhammar, H. Molecular diagnosis of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. BMC Endocr. Disord. 2020, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, M.L.; Khattab, A. Genetics of congenital adrenal hyperplasia and genotype-phenotype correlation. Fertil. Steril. 2019, 111, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, R.; Aebisher, D.; Stompor, M.; Podgorska, D.; Mazur, A. Congenital adrenal hyperplasia: Clinical symptoms and diagnostic methods. Acta Biochim. Pol. 2018, 65, 25–33. [Google Scholar] [CrossRef]
- Abdelhamed, M.H.; Al-Ghamdi, W.M.; Al-Agha, A.E. Polycystic Ovary Syndrome Among Female Adolescents with Congenital Adrenal Hyperplasia. Cureus 2021, 13, e20698. [Google Scholar] [CrossRef]
- Ishii, T.; Kashimada, K.; Amano, N.; Takasawa, K.; Nakamura-Utsunomiya, A.; Yatsuga, S.; Mukai, T.; Ida, S.; Isobe, M.; Fukushi, M.; et al. Clinical guidelines for the diagnosis and treatment of 21-hydroxylase deficiency (2021 revision). Clin. Pediatr. Endocrinol. 2022, 31, 116–143. [Google Scholar] [CrossRef]
- Scotchman, E.; Shaw, J.; Paternoster, B.; Chandler, N.; Chitty, L.S. Non-invasive prenatal diagnosis and screening for monogenic disorders. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 320–327. [Google Scholar] [CrossRef]
- Dorr, H.G.; Wollmann, H.A.; Hauffa, B.P.; Woelfle, J.; on behalf of the German Society of Pediatric Endocrinology and Diabetology. Mortality in children with classic congenital adrenal hyperplasia and 21-hydroxylase deficiency (CAH) in Germany. BMC Endocr. Disord. 2018, 18, 37. [Google Scholar] [CrossRef]
- Abedalthagafi, M.; Bawazeer, S.; Fawaz, R.I.; Heritage, A.M.; Alajaji, N.M.; Faqeih, E. Non-invasive prenatal testing: A revolutionary journey in prenatal testing. Front. Med. 2023, 10, 1265090. [Google Scholar] [CrossRef]
- Finkielstain, G.P.; Vieites, A.; Bergada, I.; Rey, R.A. Disorders of Sex Development of Adrenal Origin. Front. Endocrinol. 2021, 12, 770782. [Google Scholar] [CrossRef]
- Dudzinska, B.; Leubner, J.; Ventz, M.; Quinkler, M. Sexual well-being in adult male patients with congenital adrenal hyperplasia. Int. J. Endocrinol. 2014, 2014, 469289. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, D.; Carvalho, B.L.; Palmeiro, A.; Barros, A.; Guerreiro, S.G.; Macut, D. The Complexities in Genotyping of Congenital Adrenal Hyperplasia: 21-Hydroxylase Deficiency. Front. Endocrinol. 2019, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Thibaut, D.; Walter, M.R.; McGonegal, C.; Daniel, R.; Goodman, J. Congenital Adrenal Hyperplasia and Human Leukocyte Antigen B: A Meta-Analysis. Cureus 2023, 15, e35900. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, G.H.; Yoo, H.W. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann. Pediatr. Endocrinol. Metab. 2016, 21, 1–6. [Google Scholar] [CrossRef]
- Ozdemir, C.M.; Nielsen, M.M.; Liimatta, J.; Voegel, C.D.; Elzenaty, R.N.; Wasehuus, V.S.; Lind-Holst, M.; Ornstrup, M.J.; Gram, S.B.; Ousager, L.B.; et al. Late diagnosis of partial 3beta-hydroxysteroid dehydrogenase type 2 deficiency-characterization of a new genetic variant. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024. [Google Scholar] [CrossRef]
- Higashi, Y.; Tanae, A.; Inoue, H.; Hiromasa, T.; Fujii-Kuriyama, Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: Possible gene conversion products. Proc. Natl. Acad. Sci. USA 1988, 85, 7486–7490. [Google Scholar] [CrossRef]
- Fahim, A.T.; Daiger, S.P.; Weleber, R.G. Nonsyndromic Retinitis Pigmentosa Overview. In GeneReviews(R); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; NIH NLM: Seattle, WA, USA, 1993. [Google Scholar]
- Boucher, I.; Yu, W.; Beaudry, S.; Negoro, H.; Tran, M.; Pollak, M.R.; Henderson, J.M.; Denker, B.M. Galpha12 activation in podocytes leads to cumulative changes in glomerular collagen expression, proteinuria and glomerulosclerosis. Lab. Investig. 2012, 92, 662–675. [Google Scholar] [CrossRef]
- Khattab, A.; Yuen, T.; Sun, L.; Yau, M.; Barhan, A.; Zaidi, M.; Lo, Y.M.; New, M.I. Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia. Endocr. Dev. 2016, 30, 37–41. [Google Scholar] [CrossRef]
- Ma, D.; Yuan, Y.; Luo, C.; Wang, Y.; Jiang, T.; Guo, F.; Zhang, J.; Chen, C.; Sun, Y.; Cheng, J.; et al. Noninvasive prenatal diagnosis of 21-Hydroxylase deficiency using target capture sequencing of maternal plasma DNA. Sci. Rep. 2017, 7, 7427. [Google Scholar] [CrossRef]
- New, M.I.; Tong, Y.K.; Yuen, T.; Jiang, P.; Pina, C.; Chan, K.C.; Khattab, A.; Liao, G.J.; Yau, M.; Kim, S.M.; et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J. Clin. Endocrinol. Metab. 2014, 99, E1022–E1030. [Google Scholar] [CrossRef]
- Prior-de Castro, C.; Gomez-Gonzalez, C.; Rodriguez-Lopez, R.; Macher, H.C.; Prenatal Diagnosis, C.; Prenatal Diagnosis Commission and the Genetics Commission of the Spanish Society of Laboratory Medicine. Prenatal genetic diagnosis of monogenic diseases. Adv. Lab. Med. 2023, 4, 28–51. [Google Scholar] [CrossRef]
- Cleary-Goldman, J.; D’Alton, M.E.; Berkowitz, R.L. Prenatal diagnosis and multiple pregnancy. Semin. Perinatol. 2005, 29, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Chiu, E.K.L.; Hui, W.W.I.; Chiu, R.W.K. cfDNA screening and diagnosis of monogenic disorders-where are we heading? Prenat. Diagn. 2018, 38, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Militaru, M.S.; Babliuc, I.M.; Bloaje-Florica, V.L.; Danci, V.A.; Filip-Deac, I.; Kutasi, E.; Simon, V.; Militaru, M.; Catana, A. The Impact of Chromosomal Mosaicisms on Prenatal Diagnosis and Genetic Counseling—A Narrative Review. J. Pers. Med. 2024, 14, 774. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Lin, Y.; Luo, C.; Li, H.; Hu, P.; Xu, Z. Noninvasive prenatal screening in a pregnant woman with a history of stem cell transplant from a male donor: A case report and literature review. Mol. Genet. Genom. Med. 2024, 12, e2479. [Google Scholar] [CrossRef]
- Nabieva, E.; Sharma, S.M.; Kapushev, Y.; Garushyants, S.K.; Fedotova, A.V.; Moskalenko, V.N.; Serebrenikova, T.E.; Glazyrina, E.; Kanivets, I.V.; Pyankov, D.V.; et al. Accurate fetal variant calling in the presence of maternal cell contamination. Eur. J. Hum. Genet. 2020, 28, 1615–1623. [Google Scholar] [CrossRef]
- Hanif, A.; Akbar, F.; Kirmani, S.; Jaffarali, A.; Zainab, G.; Malik, A.; Ansar, Z.; Afroze, B. Experience in prenatal genetic testing and reproductive decision-making for monogenic disorders from a single tertiary care genetics clinic in a low-middle income country. BMC Pregnancy Childbirth 2023, 23, 431. [Google Scholar] [CrossRef]
- Cosme Cruz, R.M.; Clark, C.M.; Shin, L. A 10-year-old boy with ADHD symptoms. Pediatr. Ann. 2012, 41, 456–458. [Google Scholar] [CrossRef]
- Stolz, E.; Gill, T.M.; Mayerl, H.; Freidl, W. Short-Term Disability Fluctuations in Late Life. J. Gerontol. B Psychol. Sci. Soc. Sci. 2019, 74, e135–e140. [Google Scholar] [CrossRef]
- Tam, J.C.W.; Chan, Y.M.; Tsang, S.Y.; Yau, C.I.; Yeung, S.Y.; Au, K.K.; Chow, C.K. Noninvasive prenatal paternity testing by means of SNP-based targeted sequencing. Prenat. Diagn. 2020, 40, 497–506. [Google Scholar] [CrossRef]
- Li, J.P.; Fu, Y.P.; Chang, W.X.; Yi, C.R.; Liu, L.H.; Xing, H.Y. Functional Variant of C-689T in the Peroxisome Proliferator-Activated Receptor-gamma2 Promoter is Associated with Coronary Heart Disease in Chinese Nondiabetic Han People. Chin. Med. Sci. J. 2017, 32, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hochrein, A.; Zinser, W.; Spahn, G.; Angele, P.; Loer, I.; Albrecht, D.; Niemeyer, P. What parameters affect knee function in patients with untreated cartilage defects: Baseline data from the German Cartilage Registry. Int. Orthop. 2019, 43, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Yong, Y.; Lee, T.J.; Tse, C.; McLennan, A.C.; da Silva Costa, F. Influence of Body Mass Index on Fetal Fraction Increase with Gestation and Cell-Free DNA Test Failure. Obstet. Gynecol. 2018, 132, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Manokhina, I.; Singh, T.K.; Robinson, W.P. Cell-Free Placental DNA in Maternal Plasma in Relation to Placental Health and Function. Fetal Diagn. Ther. 2017, 41, 258–264. [Google Scholar] [CrossRef]
- Shree, R.; Kolarova, T.R.; MacKinnon, H.J.; Hedge, J.M.; Vinopal, E.; Ma, K.K.; Lockwood, C.M.; Chandrasekaran, S. Low fetal fraction in obese women at first trimester cell-free DNA based prenatal screening is not accompanied by differences in total cell-free DNA. Prenat. Diagn. 2021, 41, 1277–1286. [Google Scholar] [CrossRef]
- Wang, E.; Batey, A.; Struble, C.; Musci, T.; Song, K.; Oliphant, A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat. Diagn. 2013, 33, 662–666. [Google Scholar] [CrossRef]
- Krone, N.; Arlt, W. Genetics of congenital adrenal hyperplasia. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 181–192. [Google Scholar] [CrossRef]
- Maher, J.Y.; Gomez-Lobo, V.; Merke, D.P. The management of congenital adrenal hyperplasia during preconception, pregnancy, and postpartum. Rev. Endocr. Metab. Disord. 2023, 24, 71–83. [Google Scholar] [CrossRef]
- Ahmed, S.; Soliman, A.T.; Ramadan, M.A.; Elawwa, A.; Abugabal, A.M.S.; Emam, M.H.A.; De Sanctis, V. Long-term prednisone versus hydrocortisone treatment in children with classic Congenital Adrenal Hyperplasia (CAH) and a brief review of the literature. Acta Biomed. 2019, 90, 360–369. [Google Scholar] [CrossRef]
- Livadas, S.; Bothou, C. Management of the Female with Non-classical Congenital Adrenal Hyperplasia (NCCAH): A Patient-Oriented Approach. Front. Endocrinol. 2019, 10, 366. [Google Scholar] [CrossRef]
Hormone Profile | 1st Month | 2nd Month | 3rd Month | 4th Month | 5th Month | Normal Range Values |
---|---|---|---|---|---|---|
17-OHP (ng/mL) | >20 | 208 | 4.17 | 0.2 | 0.43 | 0.2–2, 9 |
ACTH (pg/mL) | 724 | 549 | 22.5 | 133.1 | 9.6 | 7.0–65 |
Testosterone (ng/dL) | 389.9 | 275.9 | 7.8 | 0.5 | 0.05 | Male < 10 years:0.30 Female < 10: 0.01–0.12 |
DHEA-S (mcg/dL) | 2986 | 1600 | 144 | 798 | 261 | <2500 |
Androstenedione (ng/mL) | >10 | 86.4 | 1.75 | 30 | 72 | 20–290 |
Cortisol (mcg/dL) | 12.72 | 13.63 | <0.5 | 2.9 | 22.7 | Morning: 3.2–12.0 Evening: 0.1–8.0 |
Renin (pUI/mL) | 88.23 | 608.30 | 149.2 | 55 | 26.2 | 3.11–41.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrillo, N.; Marcella, S.; Sirica, R.; Ianniello, M.; Ruggiero, R.; Mori, A.; Castiello, R.; Ramiro, C.; D’Angelo, R.; Pennacchio, G.; et al. Identification of a Homozygous Variant in the CYP21A2 Gene by Next-Generation Sequencing Analysis of Circulating Cell-Free Fetal DNA. Genes 2025, 16, 311. https://doi.org/10.3390/genes16030311
Petrillo N, Marcella S, Sirica R, Ianniello M, Ruggiero R, Mori A, Castiello R, Ramiro C, D’Angelo R, Pennacchio G, et al. Identification of a Homozygous Variant in the CYP21A2 Gene by Next-Generation Sequencing Analysis of Circulating Cell-Free Fetal DNA. Genes. 2025; 16(3):311. https://doi.org/10.3390/genes16030311
Chicago/Turabian StylePetrillo, Nadia, Simone Marcella, Roberto Sirica, Monica Ianniello, Raffaella Ruggiero, Alessio Mori, Rosa Castiello, Cristina Ramiro, Rossana D’Angelo, Giuliano Pennacchio, and et al. 2025. "Identification of a Homozygous Variant in the CYP21A2 Gene by Next-Generation Sequencing Analysis of Circulating Cell-Free Fetal DNA" Genes 16, no. 3: 311. https://doi.org/10.3390/genes16030311
APA StylePetrillo, N., Marcella, S., Sirica, R., Ianniello, M., Ruggiero, R., Mori, A., Castiello, R., Ramiro, C., D’Angelo, R., Pennacchio, G., Barletta, E., Passaro, R., Fico, A., & Savarese, G. (2025). Identification of a Homozygous Variant in the CYP21A2 Gene by Next-Generation Sequencing Analysis of Circulating Cell-Free Fetal DNA. Genes, 16(3), 311. https://doi.org/10.3390/genes16030311