Epigenetic Clocks and Their Prospective Application in the Complex Landscape of Aging and Alzheimer’s Disease
Abstract
1. Introduction
1.1. Aging and Underlying Mechanisms of Age-Related Declines
1.2. Epigenetics and Its Role in the Landscape of Aging
1.3. Epigenetic Clocks and Their Advancements in Measuring Aging and Age-Related Damages
1.4. Alzheimer’s Disease as a Consequence of Aging Process
2. Materials and Methods
3. Results
References | Samples | Epigenetic Clocks | Tissues | Aim | Main Findings |
---|---|---|---|---|---|
Levine et al. [48] | 700 subjects | Horvath | DLPFCTX | Association between epigenetic age, AD and neuropathological markers | Epigenetic age acceleration was linked to neuritic plaques, β-amyloid load and neurofibrillary status |
Lu et al. [49] | 1163 subjects | Horvath | Brain biopsies | Evaluation of aging rate and investigation of genetic loci associated with accelerated aging in several brain regions | Epigenetic age correlated with chronological age. Genes associated with cognitive decline, dementia and AD have been detected |
McCartney et al. [50] | 5100 subjects | Horvath and Hannum | Blood | Detection of a link between AD risk factors and age acceleration | Age acceleration was linked with BMI, total cholesterol to HDL ratios, socioeconomic status, high blood pressure and smoking levels |
Coninx et al. [37] | Mice | Cortical and Hippocampal | Cortex and hippocampus | Validation of two tissue-specific epigenetic clocks to estimate epigenetic age acceleration | Epigenetic age acceleration was more noticeable in brain cortex in comparison with hippocampus |
Grodstein et al. [53] | 721 subjects | Hannum, Horvath, PhenoAge, GrimAge, Cortical Age | DLPFCTX | Association between epigenetic clocks, brain disease and clinical aging phenotypes | Hannum, Horvath, PhenoAge and Cortical clock were associated with diagnosis of AD. Otherwise, there was no association between epigenetic clocks and clinical aging phenotypes |
Milicic et al. [54] | 859 subjects | Horvath, Hannum, PhenoAge, Zhang EN, Zhang BLUP | Blood | Establishing a relationship between five measure of age acceleration and AD-related neuroimaging phenotypes | The use of Hannum, PhenoAge and Zhang EN demonstrated an important association between accelerated aging and hippocampal volume. Accelerated aging was also associated with cross-sectional measure of brain volume |
Lynch et al. [55] | 367 subjects | Cortical | DLPFCTX | Association between cortical clock age and cognitive status, TL and mtDNA- CN | Cortical clock was inversely related to global cognition and positively associated with Aβ aggregates and tau tangles’ deposition. mtDNA-CN levels reflected global AD pathology and tau tangles |
Whitman et al. [56] | 2322 subjects | DunedinPACE, GrimAge | Blood | Association between DunedinPACE and different measures of brain structure | Accelerated aging, reported as faster DunedinPACE, was related to total brain volume, lower HC and thinner cerebral cortex |
Cruz- Gonzàlez et al. [57] | 621 subjects | Horvath, Hannum, Zhang EN, Zhang BLUP, PhenoAge | Blood | Reliability of epigenetic clocks to detect AD risk in different ethnic groups | A strong relationship between epigenetic age and chronological age, with all generations of epigenetic clocks, was detected in the AD white cohort, while in the African ancestry cohort, this correlation was weaker |
Savin et al. [58] | 2296 subjects | PhenoAge, GrimAge and DunedinPACE | Blood | Association between age acceleration and cognitive decline | Participants with a faster pace of aging showed a rapid cognitive decline |
Bonham et al. [59] | 404 subjects | PhenoAge, GrimAge | Blood | Recognition of a link between accelerated epigenetic aging and AD prediction and progression | Accelerated epigenetic aging was associated with progression of MCI or AD |
Guo et al. [60] | 63926 subjects, data obtained from GWAS Dataset | GrimAge, PhenoAge, IEAA, Hannum | Blood | Estimation of a causal relationship between epigenetic clocks and AD | There is an association between AD and GrimAge age acceleration |
4. Discussion
4.1. Epigenetic Clocks: Advantages and Challenges in Measuring Biological Aging in Neurodegenerative Disorders and Alzheimer’s Disease
4.2. Epigenetic Clocks as Biomarkers to Monitor Healthy Aging and Cognitive Decline
4.3. Epigenetic Clocks: Limitations and Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CpG | Cytosine-phosphate-guanine |
AD | Alzheimer’s Disease |
DNA | Deoxyribonucleic Acid |
ROS | Reactive Oxygen Species |
MMR | Mismatch Repair |
BER | Base Excision Repair |
MAPK | Mitogen-Activated Protein Kinase |
METTL3 | Methyl Transferase-like 3 |
METTL14 | Methyl Transferase-like 14 |
WTAP | Wilm’s Tumor-1-Associated Protein |
m6A | N6-methyladenosine |
tRNA | RNA transfer |
rRNA | ribosomal RNA |
ATP | Adenosine Triphosphate |
OXPHOS | Oxidative Phosphorylation |
IgG | Immunoglobulin G |
IgA | Immunoglobulin A |
DNMTs | DNA Methyltransferases |
SAM | S-Adenosyl-Methionine |
DunedinPoAm38 | Dunedin Pace of Aging Methylation |
DunedinPACE | Dunedin Pace of Aging calculated from the Epigenome |
CRP | C-Reactive Protein |
NFTs | Neurofibrillary Tangles |
APP | Amyloid Precursor Protein |
MAPT | Microtubule Associated Protein Tau |
Ach | Acetylcholine |
5hmC | 5-hydroxymethylcytosine |
Aβ | Amyloid-β |
NLRP3 | NOD-like Receptor Protein 3 |
NF-kB | Nuclear Factor Kappa B |
SAD | Sporadic Alzheimer’s Disease |
FAD | Familial Alzheimer’s Disease |
EOAD | Early-Onset Alzheimer’s Disease |
LOAD | Late-Onset Alzheimer’s Disease |
PSEN1 | Presenilin 1 |
PSEN2 | Presenilin 2 |
EM | Episodic Memory |
WM | Working Memory |
SM | Semantic Memory |
PO | Perceptual Orientation |
PS | Perceptual Speed |
GCF | Global Cognitive Functioning |
GCTA | Genome-Wide Complex Trait Analyses |
PFCTX | Prefrontal Cortex |
DLPFCTX | Dorsolateral Prefrontal Cortex |
CRBLM | Cerebellum |
FCTX | Frontal Cortex |
PONS | Pons |
TCTX | Temporal Cortex |
GWAS | Genome-Wide Association Study |
CETS | Cell Epigenotype Specific |
DNAm | DNA Methylation |
IEAA | Intrinsic Epigenetic Age Acceleration |
EEAA | Extrinsic Epigenetic Age Acceleration |
HDL | High-Density Lipoprotein |
APOE | Apolipoprotein E |
ROS | Religious Orders Study |
MAP | Rush Memory Aging Project |
AIBL | Australians Imaging Biomarkers and Lifestyle |
ADNI | Alzheimer’s Disease Neuroimaging initiative |
CU | Cognitively Unimpaired |
MCI | Mild Cognitive Impairment |
PET | Positron Emission Tomography |
MRI | Magnetic Resonance Imaging |
EN | Zhang Elastic Net |
BLUP | Zhang Best Linear Unbiased Prediction |
DBAge | Disproportionate Biological Age |
DiffAge | Difference in Age |
TL | Telomere length |
mtDNACN | Mitochondrial DNA Copy Number |
US | United States |
WGS | Whole-Genome Sequencing |
NIA | National Institute on Aging |
(CCage+) | Accelerated Cortical Clock Age |
(CCage-) | Non-Accelerated Cortical Clock Age |
(mtDNACage+) | Age-Accelerated mtDNA-CN |
(mtDNACage-) | Non-Age-Accelerated mtDNA-CN |
ADRDs | AD-Related Disorders |
FSH-OC | Framingham Heart Study Offspring Cohort |
TBV | Total Brain Volume |
HC | Hippocampal Grey Matter Hyperintensity |
SA | Total Cortical Surface Area |
meQTLs | Methylation Quantitative Trait Loci |
CN | Cognitively Normal |
BMI | Body Mass Index |
D-loop | Displacement loop |
CYTB | Cytochrome b |
COX II | Cytochrome C Oxidase Subunit II |
References
- Belsky, D.W.; Caspi, A.; Houts, R.; Cohen, H.J.; Corcoran, D.L.; Danese, A.; Harrington, H.; Israel, S.; Levine, M.E.; Schaefer, J.D.; et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA 2015, 112, E4104–E4110. [Google Scholar] [CrossRef]
- Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef] [PubMed]
- Bocklandt, S.; Lin, W.; Sehl, M.E.; Sánchez, F.J.; Sinsheimer, J.S.; Horvath, S.; Vilain, E. Epigenetic predictor of age. PLoS ONE 2011, 6, e14821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christmann, M.; Tomicic, M.T.; Roos, W.P.; Kaina, B. Mechanisms of human DNA repair: An update. Toxicology 2003, 193, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Guo, Y. Epigenetic Clock: DNA Methylation in Aging. Stem Cells Int. 2020, 2020, 1047896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Tazi, M.; Caution, K.; Ahmed, A.; Kanneganti, A.; Assani, K.; Kopp, B.; Marsh, C.; Dakhlallah, D.; Amer, A.O. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics 2016, 11, 381–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, L.Y.; Zhai, M.; Huang, Y.; Xu, S.; An, T.; Wang, Y.H.; Zhang, R.C.; Liu, C.Y.; Dong, Y.H.; Wang, M.; et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ. 2019, 26, 1299–1315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Shang, E.; Dong, Q.; Li, Y.; Zhang, J.; Xu, S.; Zhao, Z.; Shao, W.; Lv, C.; Zheng, Y.; et al. Small molecules capable of activating DNA methylation-repressed genes targeted by the p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 2018, 293, 7423–7436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Selberg, S.; Blokhina, D.; Aatonen, M.; Koivisto, P.; Siltanen, A.; Mervaala, E.; Kankuri, E.; Karelson, M. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep. 2019, 26, 3762–3771.e5. [Google Scholar] [CrossRef] [PubMed]
- Casanova, A.; Wevers, A.; Navarro-Ledesma, S.; Pruimboom, L. Mitochondria: It is all about energy. Front. Physiol. 2023, 14, 1114231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 35, 724–742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zinovkina, L.A.; Zinovkin, R.A. DNA Methylation, Mitochondria, and Programmed Aging. Biochemistry 2015, 80, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Lee, Y.D.; Wagers, A.J. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat. Med. 2014, 20, 870–880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rübe, C.E.; Fricke, A.; Widmann, T.A.; Fürst, T.; Madry, H.; Pfreundschuh, M.; Rübe, C. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE 2011, 6, e17487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pawelec, G. Hallmarks of human “immunosenescence”: Adaptation or dysregulation? Immun. Ageing 2012, 9, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aiello, A. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019, 10, 2247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cedar, H.; Bergman, Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat. Rev. Genet. 2009, 10, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Teplova, M.; Ishibe-Murakami, S.; Patel, D.J. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 2012, 335, 709–712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes 2017, 8, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blanch, M.; Mosquera, J.L.; Ansoleaga, B.; Ferrer, I.; Barrachina, M. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease. Am. J. Pathol. 2016, 186, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Monti, N.; Cavallaro, R.A.; Stoccoro, A.; Nicolia, V.; Scarpa, S.; Kovacs, G.G.; Fiorenza, M.T.; Lucarelli, M.; Aronica, E.; Ferrer, I.; et al. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 2020, 15, 781–799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, K.; Jeon, M.C.; Lee, D.; Kim, J.I.; Im, S.W. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol. Cells 2024, 47, 100137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, S.M.; Johnson, A.; Tarapore, P.; Janakiram, V.; Zhang, X.; Leung, Y.K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 2012, 53, 289–305, Erratum in ILAR J. 2017, 58, 413. https://doi.org/10.1093/ilar/ilx029. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015, 16, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, 3156, Erratum in Genome Biol. 2015, 16, 96. https://doi.org/10.1186/s13059-015-0649-6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCrory, C.; Fiorito, G.; Hernandez, B.; Polidoro, S.; O’Halloran, A.M.; Hever, A.; Ni Cheallaigh, C.; Lu, A.T.; Horvath, S.; Vineis, P.; et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 741–749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Khoury, L.Y.; Gorrie-Stone, T.; Smart, M.; Hughes, A.; Bao, Y.; Andrayas, A.; Burrage, J.; Hannon, E.; Kumari, M.; Mill, J.; et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 2019, 20, 283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Föhr, T.; Waller, K.; Viljanen, A.; Sanchez, R.; Ollikainen, M.; Rantanen, T.; Kaprio, J.; Sillanpää, E. Does the epigenetic clock GrimAge predict mortality independent of genetic influences: An 18-year follow-up study in older female twin pairs. Clin. Epigenet. 2021, 13, 128. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Arseneault, L.; Baccarelli, A.; Corcoran, D.L.; Gao, X.; Hannon, E.; Harrington, H.L.; Rasmussen, L.J.; Houts, R.; et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 2020, 9, e54870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crimmins, E.M.; Klopack, E.T.; Kim, J.K. Generations of epigenetic clocks and their links to socioeconomic status in the Health and Retirement Study. Epigenomics 2024, 16, 1031–1042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ying, K.; Liu, H.; Tarkhov, A.E. Causality-enriched epigenetic age uncouples damage and adaptation. Nat. Aging. 2024, 4, 231–246. [Google Scholar] [CrossRef]
- Coninx, E.; Chew, Y.C.; Yang, X.; Guo, W.; Coolkens, A.; Baatout, S.; Moons, L.; Verslegers, M.; Quintens, R. Hippocampal and cortical tissue-specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer’s disease. Aging 2020, 12, 20817–20834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ju, Y.; Tam, K.Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2022, 17, 543–549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naseri, N.N.; Wang, H.; Guo, J.; Sharma, M.; Luo, W. The complexity of tau in Alzheimer’s disease. Neurosci. Lett. 2019, 705, 183–194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krawczuk, D.; Kulczyńska-Przybik, A.; Mroczko, B. Clinical Application of Blood Biomarkers in Neurodegenerative Diseases-Present and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 8132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Terry, A.V., Jr.; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 2003, 306, 821–827. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.; Kucharska, E.; Garcez, M.L.; Rodrigues, M.S.; Quevedo, J.; Moreno-Gonzalez, I.; Budni, J. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings. Cells 2021, 10, 2581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Min, J.H.; Sarlus, H.; Harris, R.A. MAD-microbial (origin of) Alzheimer’s disease hypothesis: From infection and the antimicrobial response to disruption of key copper-based systems. Front. Neurosci. 2024, 18, 1467333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alves, V.C.; Carro, E.; Figueiro-Silva, J. Unveiling DNA methylation in Alzheimer’s disease: A review of array-based human brain studies. Neural Regen. Res. 2024, 19, 2365–2376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levine, M.E.; Lu, A.T.; Bennett, D.A.; Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 2015, 7, 1198–1211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, A.T.; Hannon, E.; Levine, M.E.; Crimmins, E.M.; Lunnon, K.; Mill, J.; Geschwind, D.H.; Horvath, S. Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nat. Commun. 2017, 8, 15353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCartney, D.L.; Stevenson, A.J.; Walker, R.M.; Gibson, J.; Morris, S.W.; Campbell, A.; Murray, A.D.; Whalley, H.C.; Porteous, D.J.; McIntosh, A.M.; et al. Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease. Alzheimers Dement 2018, 10, 429–437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, B.H.; Campbell, H.; Blackwood, D.; Connell, J.; Connor, M.; Deary, I.J.; Dominiczak, A.F.; Fitzpatrick, B.; Ford, I.; Jackson, C.; et al. Generation Scotland: The Scottish Family Health Study; a new resource for researching genes and heritability. BMC Med. Genet. 2006, 7, 74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, B.H.; Campbell, A.; Linksted, P.; Fitzpatrick, B.; Jackson, C.; Kerr, S.M.; Deary, I.J.; Macintyre, D.J.; Campbell, H.; McGilchrist, M.; et al. Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. Int. J. Epidemiol. 2013, 42, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Grodstein, F.; Lemos, B.; Yu, L.; Klein, H.U.; Iatrou, A.; Buchman, A.S.; Shireby, G.L.; Mill, J.; Schneider, J.A.; De Jager, P.L.; et al. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiol. Dis. 2021, 157, 105428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milicic, L.; Vacher, M.; Porter, T.; Doré, V.; Burnham, S.C.; Bourgeat, P.; Shishegar, R.; Doecke, J.; Armstrong, N.J.; Tankard, R.; et al. Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume. Geroscience 2022, 44, 1807–1823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lynch, M.T.; Taub, M.A.; Farfel, J.M.; Yang, J.; Abadir, P.; De Jager, P.L.; Grodstein, F.; Bennett, D.A.; Mathias, R.A. Evaluating genomic signatures of aging in brain tissue as it relates to Alzheimer’s disease. Sci. Rep. 2023, 13, 14747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitman, E.T.; Ryan, C.P.; Abraham, W.C.; Addae, A.; Corcoran, D.L.; Elliott, M.L.; Hogan, S.; Ireland, D.; Keenan, R.; Knodt, A.R.; et al. A Blood Biomarker of Accelerated Aging in the Body Associates with Worse Structural Integrity in the Brain: Replication Across Three Cohorts. medRxiv 2023, 2023.09.06.23295140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cruz-González, S.; Gu, E.; Gomez, L.; Mews, M.; Vance, J.M.; Cuccaro, M.L.; Cornejo-Olivas, M.R.; Feliciano-Astacio, B.E.; Byrd, G.S.; Haines, J.L.; et al. Methylation Clocks Do Not Predict Age or Alzheimer’s Disease Risk Across Genetically Admixed Individuals. bioRxiv 2024, 2024.10.16.618588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savin, M.J.; Wang, H.; Pei, H.; Aiello, A.E.; Assuras, S.; Caspi, A.; Moffitt, T.E.; Muenning, P.A.; Ryan, C.P.; Shi, B.; et al. Association of a pace of aging epigenetic clock with rate of cognitive decline in the Framingham Heart Study Offspring Cohort. Alzheimers Dement 2024, 16, e70038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonham, L.; Sirkis, D.; Pang, A.; Sugrue, L.; Santamaría-García, H.; Ibanez, A.; Miller, B.; Yokoyama, J.; Corley, M. DNA methylation age from peripheral blood predicts progression to Alzheimer’s disease, white matter disease burden, and cortical atrophy. Res. Sq. 2024, rs.3.rs-5273529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, Y.; Ma, G.; Wang, Y.; Lin, T.; Hu, Y.; Zang, T. Causal associations and shared genetic etiology of neurodegenerative diseases with epigenetic aging and human longevity. Aging Cell 2024, 23, e14271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, M.; Pfeifer, G.P. Aging and DNA methylation. BMC Biol. 2015, 13, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerreiro, R.; Bras, J. The age factor in Alzheimer’s disease. Genome Med. 2015, 7, 106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gensous, N.; Bacalini, M.G.; Pirazzini, C.; Marasco, E.; Giuliani, C.; Ravaioli, F.; Mengozzi, G.; Bertarelli, C.; Palmas, M.G.; Franceschi, C.; et al. The epigenetic landscape of age-related diseases: The geroscience perspective. Biogerontology 2017, 18, 549–559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016, 12, 292–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.D.; Conneely, K.N. The role of DNA methylation and hydroxymethylation in immunosenescence. Ageing Res. Rev. 2019, 51, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.H.; Testa, C.; Chen, J.T.; De Vivo, I.; Simpkin, A.J.; Tilling, K.; Diez Roux, A.V.; Davey Smith, G.; Waterman, P.D.; Suderman, M.; et al. Epigenetic clocks and research implications of the lack of data on whom they have been developed: A review of reported and missing sociodemographic characteristics. Environ Epigenet. 2023, 9, dvad005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yokoyama, A.S.; Rutledge, J.C.; Medici, V. DNA methylation alterations in Alzheimer’s disease. Environ Epigenet. 2017, 3, dvx008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Yu, J.T.; Wang, H.F.; Jiang, T.; Tan, C.C.; Meng, X.F.; Soares, H.D.; Tan, L. Meta-analysis of peripheral blood apolipoprotein E levels in Alzheimer’s disease. PLoS ONE 2014, 9, e89041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coupland, K.G.; Kim, W.S.; Halliday, G.M.; Hallupp, M.; Dobson-Stone, C.; Kwok, J.B. Effect of PSEN1 mutations on MAPT methylation in early-onset Alzheimer’s disease. Curr. Alzheimer Res. 2015, 12, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.Y.; Liu, J.Y.; Fang, C.L.; Deng, Y.P.; Zhang, Y. DNA methylation: The epigenetic mechanism of Alzheimer’s disease. Ibrain 2023, 9, 463–472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chouliaras, L.; Mastroeni, D.; Delvaux, E.; Grover, A.; Kenis, G.; Hof, P.R.; Steinbusch, H.W.; Coleman, P.D.; Rutten, B.P.; van den Hove, D.L. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol. Aging. 2013, 34, 2091–2099. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomita, H.; Vawter, M.P.; Walsh, D.M.; Evans, S.J.; Choudary, P.V.; Li, J.; Overman, K.M.; Atz, M.E.; Myers, R.M.; Jones, E.G.; et al. Effect of agonal and postmortem factors on gene expression profile: Quality control in microarray analyses of postmortem human brain. Biol. Psychiatry 2004, 55, 346–352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blanco-Luquin, I.; Acha, B.; Urdánoz-Casado, A.; Sánchez-Ruiz De Gordoa, J.; Vicuña-Urriza, J.; Roldán, M.; Labarga, A.; Zelaya, M.V.; Cabello, C.; Méndez-López, I.; et al. Early epigenetic changes of Alzheimer’s disease in the human hippocampus. Epigenetics 2020, 15, 1083–1092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Y.; Zhu, X.Y.; Zhang, X.M.; Xiong, H. Targeted Mitochondrial Epigenetics: A New Direction in Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2022, 23, 9703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belsky, D.W.; Moffitt, T.E.; Cohen, A.A.; Corcoran, D.L.; Levine, M.E.; Prinz, J.A.; Schaefer, J.; Sugden, K.; Williams, B.; Poulton, R.; et al. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am. J. Epidemiol. 2018, 187, 1220–1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, A.; Wu, Z.; Zaw Phyo, A.Z.; Torres, D.; Vishwanath, S.; Ryan, J. Epigenetic aging as a biomarker of dementia and related outcomes: A systematic review. Epigenomics 2022, 14, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- Moqri, M.; Herzog, C.; Poganik, J.R.; Biomarkers of Aging Consortium; Justice, J.; Belsky, D.W.; Higgins-Chen, A.; Moskalev, A.; Fuellen, G.; Cohen, A.A.; et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 2023, 186, 3758–3775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, L.; Shang, L.; Goodrich, J.M.; Peterson, K.; Song, P.X.K. Bridging the gap: Enhancing the generalizability of epigenetic clocks through transfer learning. medRXiv 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerantonio, A.; Greco, B.M.; Citrigno, L.; De Benedittis, S.; Qualtieri, A.; Maletta, R.; Montesanto, A.; Passarino, G.; Spadafora, P.; Cavalcanti, F. Epigenetic Clocks and Their Prospective Application in the Complex Landscape of Aging and Alzheimer’s Disease. Genes 2025, 16, 679. https://doi.org/10.3390/genes16060679
Cerantonio A, Greco BM, Citrigno L, De Benedittis S, Qualtieri A, Maletta R, Montesanto A, Passarino G, Spadafora P, Cavalcanti F. Epigenetic Clocks and Their Prospective Application in the Complex Landscape of Aging and Alzheimer’s Disease. Genes. 2025; 16(6):679. https://doi.org/10.3390/genes16060679
Chicago/Turabian StyleCerantonio, Annamaria, Beatrice Maria Greco, Luigi Citrigno, Selene De Benedittis, Antonio Qualtieri, Raffaele Maletta, Alberto Montesanto, Giuseppe Passarino, Patrizia Spadafora, and Francesca Cavalcanti. 2025. "Epigenetic Clocks and Their Prospective Application in the Complex Landscape of Aging and Alzheimer’s Disease" Genes 16, no. 6: 679. https://doi.org/10.3390/genes16060679
APA StyleCerantonio, A., Greco, B. M., Citrigno, L., De Benedittis, S., Qualtieri, A., Maletta, R., Montesanto, A., Passarino, G., Spadafora, P., & Cavalcanti, F. (2025). Epigenetic Clocks and Their Prospective Application in the Complex Landscape of Aging and Alzheimer’s Disease. Genes, 16(6), 679. https://doi.org/10.3390/genes16060679