Serum Markers of Bone Turnover and Bone Remodeling in Children with Noonan Syndrome: Genotype-Phenotype Correlation
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Data
2.2. Biochemical Assessments of Bone Metabolism Markers
2.3. Bone Remodeling Cytokines Assessment
2.4. Bone Mineral Measurements
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Bone Turnover and Bone Remodeling Markers
3.3. Bone Mineral Density Assessment
3.4. Bone Status According to the Genotype
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BALP | Bone-specific alkaline phosphatase |
BMD | Bone mineral density |
BMI | Body mass index |
BMI-SDS | Body mass index standard deviation score |
CTX | C-terminal telopeptide cross-links of type I collagen |
DEXA | Dual-energy X-ray absorptiometry |
GH | Growth hormone |
LZTR1 | Leucine zipper-like transcription regulator 1 |
NS | Noonan syndrome |
OC | Osteocalcin |
OPG | Osteoprotegerin |
P1NP | Procollagen type I N-terminal propeptide |
PTH | Parathyroid hormone |
PTPN11 | Protein tyrosine phosphatase non-receptor type 11 |
RAS | Rat sarcoma viral oncogene homolog |
RASopathies | Group of genetic disorders involving the RAS/MAPK pathway |
RANKL | Receptor activator of nuclear factor kappa-B ligand |
rhGH | Recombinant human growth hormone |
SHOC2 | Leucine-rich repeat scaffold protein |
SHP2 | Src homology-containing protein tyrosine phosphatase 2 |
SOS1 | Son of sevenless homolog 1 |
SDS | Standard deviation score |
SPSS | Statistical Package for the Social Sciences |
References
- Roberts, A.E.; Allanson, J.E.; Tartaglia, M.; Gelb, B.D. Noonan syndrome. Lancet 2013, 381, 333–342. [Google Scholar] [CrossRef]
- Libraro, A.; D’Ascanio, V.; Cappa, M.; Chiarito, M.; Digilio, M.C.; Einaudi, S.; Grandone, A.; Maghnie, M.; Mazzanti, L.; Mussa, A.; et al. Growth in children with noonan syndrome and effects of growth hormone treatment on adult height. Front. Endocrinol. 2021, 12, 761171. [Google Scholar] [CrossRef]
- Faienza, M.F.; Meliota, G.; Mentino, D.; Ficarella, R.; Gentile, M.; Vairo, U.; D’amato, G. Cardiac phenotype and gene mutations in RASopathies. Genes 2024, 15, 1015. [Google Scholar] [CrossRef]
- Zenker, M. Clinical overview on RASopathies. Am. J. Med. Genet. Pt. C 2022, 190, 414–424. [Google Scholar] [CrossRef]
- Aoki, Y.; Niihori, T.; Inoue, S.; Matsubara, Y. Recent advances in RASopathies. J. Hum. Genet. 2016, 61, 33–39. [Google Scholar] [CrossRef]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef]
- Tartaglia, M.; Gelb, B.D. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: Phenotypic spectrum and molecular mechanisms. Ann. N. Y. Acad. Sci. 2010, 1214, 99–121. [Google Scholar] [CrossRef]
- Tartaglia, M.; Mehler, E.L.; Goldberg, R.; Zampino, G.; Brunner, H.G.; Kremer, H.; Van Der Burgt, I.; Crosby, A.H.; Ion, A.; Jeffery, S.; et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause noonan syndrome. Nat. Genet. 2001, 29, 465–468. [Google Scholar] [CrossRef]
- Johnston, J.J.; Van Der Smagt, J.J.; Rosenfeld, J.A.; Pagnamenta, A.T.; Alswaid, A.; Baker, E.H.; Blair, E.; Borck, G.; Brinkmann, J.; Craigen, W.; et al. Autosomal recessive noonan syndrome associated with biallelic LZTR1 variants. Genet. Med. 2018, 20, 1175–1185. [Google Scholar] [CrossRef]
- Tartaglia, M.; Aoki, Y.; Gelb, B.D. The molecular genetics of RASopathies : An update on novel disease genes and new disorders. Am. J. Med. Genet. Pt. C 2022, 190, 425–439. [Google Scholar] [CrossRef]
- Choudhry, K.S.; Grover, M.; Tran, A.A.; O’Brian Smith, E.; Ellis, K.J.; Lee, B.H. Decreased bone mineralization in children with noonan syndrome: Another consequence of dysregulated RAS MAPKinase pathway? Mol. Genet. Metab. 2012, 106, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Malaquias, A.C.; Brasil, A.S.; Pereira, A.C.; Arnhold, I.J.P.; Mendonca, B.B.; Bertola, D.R.; Jorge, A.A.L. growth standards of patients with noonan and noonan-like syndromes with mutations in the RAS/MAPK pathway. Am. J. Med. Genet. Pt. A 2012, 158A, 2700–2706. [Google Scholar] [CrossRef] [PubMed]
- Delagrange, M.; Rousseau, V.; Cessans, C.; Pienkowski, C.; Oliver, I.; Jouret, B.; Cartault, A.; Diene, G.; Tauber, M.; Salles, J.-P.; et al. Low bone mass in noonan syndrome children correlates with decreased muscle mass and low IGF-1 levels. Bone 2021, 153, 116170. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, G.; Mussa, A.; Carli, D.; Molinatto, C.; Ferrero, G.B. Constitutional bone impairment in noonan syndrome. Am. J. Med. Genet. Pt. A 2017, 173, 692–698. [Google Scholar] [CrossRef]
- Reyad, M.; Murad, M.R.; Sobhy, A.; Hassan, A.M.; Nassar, O.; Hassan, A. Noonan syndrome and osteoporosis: A comprehensive case study and literature review. ASIDE Case Rep. 2025, 1, 1–4. [Google Scholar] [CrossRef]
- Stevenson, D.A.; Viscogliosi, G.; Leoni, C. Bone health in RASopathies. Am. J. Med. Genet. Pt. C 2022, 190, 459–470. [Google Scholar] [CrossRef]
- Brescia, V.; Lovero, R.; Fontana, A.; Zerlotin, R.; Colucci, S.C.; Grano, M.; Cazzolla, A.P.; Di Serio, F.; Crincoli, V.; Faienza, M.F. Reference intervals (RIs) of the bone turnover markers (BTMs) in children and adolescents: A proposal for effective use. Biomedicines 2024, 13, 34. [Google Scholar] [CrossRef]
- D’Amato, G.; Brescia, V.; Fontana, A.; Natale, M.P.; Lovero, R.; Varraso, L.; Di Serio, F.; Simonetti, S.; Muggeo, P.; Faienza, M.F. Biomarkers and biochemical indicators to evaluate bone metabolism in preterm neonates. Biomedicines 2024, 12, 1271. [Google Scholar] [CrossRef]
- Krishnan, V. Regulation of bone mass by Wnt signaling. J. Clin. Investig. 2006, 116, 1202–1209. [Google Scholar] [CrossRef]
- Theill, L.E.; Boyle, W.J.; Penninger, J.M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 2002, 20, 795–823. [Google Scholar] [CrossRef]
- Brunetti, G.; D’Amato, G.; Chiarito, M.; Tullo, A.; Colaianni, G.; Colucci, S.; Grano, M.; Faienza, M.F. An update on the role of RANKL–RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J. Pediatr. 2019, 15, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, E.; Milani, S.; Balsamo, A.; Dammacco, F.; De Luca, F.; Chiarelli, F.; Pasquino, A.; Tonini, G.; Vanelli, M. Italian cross-sectional growth charts for height, weight and BMI (6–20 y). Eur. J. Clin. Nutr. 2002, 56, 171–180. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Goldberg-Strassler, D.; Gripp, K.; Thacker, M.; Leoni, C.; Stevenson, D. Function and disability in children with costello syndrome and cardiofaciocutaneous syndrome. Am. J. Med. Genet. Pt. A 2015, 167, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Leoni, C.; Triumbari, E.K.A.; Vollono, C.; Onesimo, R.; Podagrosi, M.; Giorgio, V.; Kuczynska, E.; Veltri, S.; Tartaglia, M.; Zampino, G. Pain in individuals with RASopathies: Prevalence and clinical characterization in a sample of 80 affected patients. Am. J. Med. Genet. Pt. A 2019, 179, 940–947. [Google Scholar] [CrossRef]
- Stevenson, D.; Schwarz, E.; Carey, J.; Viskochil, D.; Hanson, H.; Bauer, S.; Cindy Weng, H.-Y.; Greene, T.; Reinker, K.; Swensen, J.; et al. Bone resorption in syndromes of the Ras/MAPK pathway. Clin. Genet. 2011, 80, 566–573. [Google Scholar] [CrossRef]
- Kim, H.K.; Feng, G.-S.; Chen, D.; King, P.D.; Kamiya, N. Targeted disruption of Shp2 in chondrocytes leads to metachondromatosis with multiple cartilaginous protrusions. J. Bone Miner. Res. 2014, 29, 761–769. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Moore, D.C.; Liang, H.; Dooner, M.; Wu, Q.; Terek, R.; Chen, Q.; Ehrlich, M.G.; Quesenberry, P.J.; et al. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 2013, 499, 491–495. [Google Scholar] [CrossRef]
- Matsushita, T.; Chan, Y.Y.; Kawanami, A.; Balmes, G.; Landreth, G.E.; Murakami, S. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol. Cell. Biol. 2009, 29, 5843–5857. [Google Scholar] [CrossRef]
- Sebastian, A.; Matsushita, T.; Kawanami, A.; Mackem, S.; Landreth, G.E.; Murakami, S. Genetic inactivation of ERK1 and ERK2 in chondrocytes promotes bone growth and anlarges the spinal canal. J. Orthop. Res. 2011, 29, 375–379. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Moore, D.C.; Zuo, C.; Wu, Q.; Xie, L.; Von Der Mark, K.; Yuan, X.; Chen, D.; Warman, M.L.; et al. SHP2 regulates the osteogenic fate of growth plate hypertrophic chondrocytes. Sci. Rep. 2017, 7, 12699, s41598–s017. [Google Scholar] [CrossRef]
- Noordam, C.; Span, J.; Van Rijn, R.R.; Gomes-Jardin, E.; Van Kuijk, C.; Otten, B.J. Bone mineral density and body composition in noonan’s syndrome: Effects of growth hormone treatment. J. Pediatr. Endocrinol. Metab. 2002, 15, 81–87. [Google Scholar] [CrossRef]
Function | Marker | Full Name | Biological Role |
---|---|---|---|
Bone Formation | BALP | Bone-specific Alkaline Phosphatase | Enzyme involved in bone matrix mineralization |
P1NP | Procollagen type 1 N-terminal propeptide | Released during type I collagen synthesis, indicator of osteoblast activity | |
Sclerostin | Sclerostin | Wnt -signaling pathway inhibitor, thus reducing bone formation | |
Bone Resorption | CTX | C-terminal telopeptide of type I collagen | Released during collagen degradation, marker of bone resorption. |
RANKL | Receptor Activator of Nuclear Factor κB Ligand | Stimulates osteoclast differentiation and activation | |
OPG | Osteoprotegerin | Decoy receptor that binds RANKL, inhibiting bone resorption |
NS (N = 28) | Controls (N = 35) | p Value | |
---|---|---|---|
Sex (M/F) | 20/8 | 21/14 | 0.3 |
Age (yr) | 10.49 ± 6.02 | 8.6 ± 4.86 | 0.2 |
Height (cm) | 123.26 ± 23.44 | 132.4 ± 19.8 | 0.09 |
Height (SDS) | −2.08 ± 1.24 | −0.12 ± 0.91 | 0.0003 |
Weight (Kg) | 27.30 ± 12.44 | 32.8 ± 11.1 | 0.07 |
Weight (SDS) | −1.79 ± 1.38 | 0.05 ± 1.03 | 0.0002 |
BMI (Kg/m2) | 17.0 ± 2.92 | 17.9 ± 2.4 | 0.4 |
BMI (SDS) | −0.75 ± 1.24 | 0.11 ± 1.02 | 0.005 |
Pre-pubertal n (%) | 18 (64.2) | 26 (74.3) | 0.4 |
Variable | NS Subjects (n = 28) | Controls (n = 35) | p |
---|---|---|---|
Osteocalcin (ng/mL) | 73.8 ± 34.7 | 82.0 ± 31.2 | 0.32 a |
P1NP (ng/mL) | 610.8 ± 242.5 | 690.5 ± 333.1 | 0.32 a |
BALP (ug/L) | 73.5 (53.9–95.4) | 68.0 (60.8–76.3) | 0.27 b |
CTX (ng/mL) | 1.8 ± 0.7 | 1.3±0.4 | 0.001 a |
RANKL (pmol/L) | 2582.0 (1091.7–9105.7) | 1458.0 (342.0–6358.0) | 0.09 b |
OPG (pmol/L) | 3.9 ± 1.7 | 3.6 ± 1.3 | 0.44 a |
RANKL/OPG ratio | 9000.0 ± 3390.3 | 1570.5 ± 3092.1 | 0.134 |
Sclerostin (pmol/L) | 17.0 (16.0–19.5) | 17.6 (15.2–19.7) | 0.93 b |
Variable | PTPN11+ (n = 17) | PTPN11− (n = 11) | p-Value |
---|---|---|---|
Age (years) | 10 ± 5 | 11 ± 8 | 0.972 |
Male (%) | 13 (76%) | 7 (64%) | 0.671 |
Height SDS | −2.1 ± 1.2 | −2.1 ± 1.4 | 0.995 |
Weight SDS | −1.8 ± 1.2 | −1.7 ± 1.7 | 0.891 |
BMI SDS | −0.8±1.2 | −0.7 ± 1.4 | 0.906 |
Calcium (mg/dL) | 9.81 ± 0.47 | 9.88 ± 0.43 | 0.615 |
Phosphate (mg/dL) | 4.71 ± 0.52 | 4.64 ± 0.41 | 0.669 |
PTH (pg/mL) | 28 ± 12 | 33 ± 12 | 0.311 |
25-OH Vitamin D (ng/mL) | 26 ± 13 | 28 ± 12 | 0.556 |
Osteocalcin (ng/mL) | 87 ± 37 | 73 ± 27 | 0.710 |
P1NP (ng/mL) | 634 ± 270 | 554 ± 162 | 0.759 |
BALP (ug/L) | 72 ± 35 | 57 ± 23 | 0.347 |
CTX (ng/mL) | 1.96 ± 0.74 | 1.74 ± 0.81 | 0.470 |
RANKL (pmol/L) | 6780 ± 8492 | 5422 ± 5647 | 0.443 |
OPG (pmol/L) | 4.0 ± 1.6 | 3.8 ± 2.0 | 0.978 |
BMD (Z-score) | −1.0 ± 1.1 | −1.8 ± 1.4 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiarito, M.; Farella, I.; Lattanzio, C.; Vitale, R.; Urbano, F.; Guida, P.; Piacente, L.; Muggeo, P.; Faienza, M.F. Serum Markers of Bone Turnover and Bone Remodeling in Children with Noonan Syndrome: Genotype-Phenotype Correlation. Genes 2025, 16, 668. https://doi.org/10.3390/genes16060668
Chiarito M, Farella I, Lattanzio C, Vitale R, Urbano F, Guida P, Piacente L, Muggeo P, Faienza MF. Serum Markers of Bone Turnover and Bone Remodeling in Children with Noonan Syndrome: Genotype-Phenotype Correlation. Genes. 2025; 16(6):668. https://doi.org/10.3390/genes16060668
Chicago/Turabian StyleChiarito, Mariangela, Ilaria Farella, Crescenza Lattanzio, Rossella Vitale, Flavia Urbano, Pietro Guida, Laura Piacente, Paola Muggeo, and Maria Felicia Faienza. 2025. "Serum Markers of Bone Turnover and Bone Remodeling in Children with Noonan Syndrome: Genotype-Phenotype Correlation" Genes 16, no. 6: 668. https://doi.org/10.3390/genes16060668
APA StyleChiarito, M., Farella, I., Lattanzio, C., Vitale, R., Urbano, F., Guida, P., Piacente, L., Muggeo, P., & Faienza, M. F. (2025). Serum Markers of Bone Turnover and Bone Remodeling in Children with Noonan Syndrome: Genotype-Phenotype Correlation. Genes, 16(6), 668. https://doi.org/10.3390/genes16060668