Research Progress in Hematological Malignancies: A Molecular Genetics Perspective
1. Resistance to Bruton Tyrosine Kinase (BTK) Inhibitors During the Treatment of Chronic Lymphocytic Leukemia
2. Prognostic Risk Evaluation in Acute Myeloid Leukemia (AML) by a Comprehensive 12-Gene Metabolic Signature Model
3. Diagnosis of Molecular Genetic Abnormalities in Acute Leukemias by Reverse Transcriptase Quantitative Polymerase Chain Reaction (RTqPCR) Assays
4. Correlation of the Genetic Polymorphisms, rs8259 T/A in the CD147 Gene and HLA DRB1*1501, with the Treatment of Cutaneous T-Cell Lymphomas
5. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Gene Editing Could Prevent Hematologic Malignancies in Patients Harboring a Germline Predisposition to Developing Cancer
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLL | Chronic lymphocytic leukemia |
BTK | Bruton tyrosine kinase |
AML | Acute myeloid leukemia |
LSC | Leukemia stem cell |
RT-qPCR | Reverse transcriptase quantitative polymerase chain reaction |
CTCL | Cutaneous T-cell lymphoma |
CRISPR | Clustered regularly interspaced short palindromic repeats |
HSCT | Hematopoietic stem cell transplant |
References
- Kansal, R. (Ed.) The World Health Organization (WHO) Classification of Tumors with Emphasis on the Classification of Hematolymphoid Neoplasms. In Precision Medicine: Where Are We and Where Are We Going? Nova Science Publishers, Inc.: New York, NY, USA, 2023; pp. 315–416. [Google Scholar]
- Kansal, R. Diagnosis and Molecular Pathology of Lymphoblastic Leukemias and Lymphomas in the Era of Genomics and Precision Medicine: Historical Evolution and Current Concepts—Part 3: Mature Leukemias/Lymphomas. Lymphatics 2023, 1, 155–219. [Google Scholar] [CrossRef]
- American Cancer Society. Key Statistics for Chronic Lymphocytic Leukemia (CLL). Available online: https://www.cancer.org/cancer/types/chronic-lymphocytic-leukemia/about/key-statistics.html (accessed on 18 May 2025).
- Ponader, S.; Burger, J.A. Bruton’s tyrosine kinase: From X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies. J. Clin. Oncol. 2014, 32, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Fresa, A.; Innocenti, I.; Tomasso, A.; Stirparo, L.; Mosca, A.; Iadevaia, F.; Autore, F.; Ghia, P.; Laurenti, L. Treatment Sequencing in Chronic Lymphocytic Leukemia in 2024: Where We Are and Where We Are Headed. Cancers 2024, 16, 2011. [Google Scholar] [CrossRef] [PubMed]
- Alsouqi, A.; Woyach, J.A. SOHO State of the Art Updates and Next Questions | Covalent Bruton’s Tyrosine Kinase Inhibitors in Chronic Lymphocytic Leukemia. Clin. Lymphoma Myeloma Leuk. 2025, 25, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.; Thompson, P.A. BTK inhibitors in CLL: Second-generation drugs and beyond. Blood Adv. 2024, 8, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Furman, R.R.; Liu, T.M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.; Steggerda, S.M.; Versele, M.; et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, K.; Puła, B. A Review of Resistance Mechanisms to Bruton’s Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2024, 25, 5246. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Jones, D.; Jurczak, W.; Robak, T.; Illés, Á.; Kater, A.P.; Ghia, P.; Byrd, J.C.; Seymour, J.F.; Long, S.; et al. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood 2024, 144, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Chirino, A.; Montoya, S.; Safronenka, A.; Taylor, J. Resisting the Resistance: Navigating BTK Mutations in Chronic Lymphocytic Leukemia (CLL). Genes 2023, 14, 2182. [Google Scholar] [CrossRef]
- Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug. Discov. 2021, 20, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Hayama, M.; Riches, J.C. Taking the Next Step in Double Refractory Disease: Current and Future Treatment Strategies for Chronic Lymphocytic Leukemia. Onco. Targets Ther. 2024, 17, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Montoya, S.; Bourcier, J.; Noviski, M.; Lu, H.; Thompson, M.C.; Chirino, A.; Jahn, J.; Sondhi, A.K.; Gajewski, S.; Tan, Y.S.M.; et al. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 2024, 383, eadi5798. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Shen, H.; Wei, H. A Comprehensive Metabolism-Related Gene Signature Predicts the Survival of Patients with Acute Myeloid Leukemia. Genes 2024, 15, 63. [Google Scholar] [CrossRef]
- Wei, H. Acute Myeloid Leukemia: A Global Perspective of Epidemiology, Prognosis, Treatment and Outcomes. In Acute Myeloid Leukemia: Diagnosis, Prognosis, Treatment, and Outcomes; Kansal, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2024; pp. 1–64. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Acute Myeloid Leukemia. Version 2.2025. 27 January 2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf (accessed on 20 May 2025).
- Boscaro, E.; Urbino, I.; Catania, F.M.; Arrigo, G.; Secreto, C.; Olivi, M.; D’Ardia, S.; Frairia, C.; Giai, V.; Freilone, R.; et al. Modern Risk Stratification of Acute Myeloid Leukemia in 2023: Integrating Established and Emerging Prognostic Factors. Cancers 2023, 15, 3512. [Google Scholar] [CrossRef] [PubMed]
- Kansal, R. Fructose Metabolism and Acute Myeloid Leukemia. Explor. Res. Hypothesis Med. 2022, 7, 25–38. [Google Scholar] [CrossRef]
- O’Brien, C.; Jones, C.L. Unraveling lipid metabolism for acute myeloid leukemia therapy. Curr. Opin. Hematol. 2025, 32, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, F.M.C.d.P.; Viana, V.B.d.J.; de Oliveira, M.B.; Nogueira, B.M.D.; Ribeiro, R.M.; Oliveira, D.d.S.; Lopes, G.S.; Vieira, R.P.G.; de Moraes Filho, M.O.; de Moraes, M.E.A.; et al. Validation of Endogenous Control Genes by Real-Time Quantitative Reverse Transcriptase Polymerase Chain Reaction for Acute Leukemia Gene Expression Studies. Genes 2024, 15, 151. [Google Scholar] [CrossRef]
- Pessoa, F.M.C.d.P.; de Oliveira, M.B.; Barreto, I.V.; Machado, A.K.d.C.; Oliveira, D.S.d.; Ribeiro, R.M.; Medeiros, J.C.; Maciel, A.d.R.; Silva, F.A.C.; Gurgel, L.A.; et al. Nested-PCR vs. RT-qPCR: A Sensitivity Comparison in the Detection of Genetic Alterations in Patients with Acute Leukemias. DNA 2024, 4, 285. [Google Scholar] [CrossRef]
- Vašků, V.; Fialová, P.; Vašků, A. New Genetic Markers of Skin T-Cell Lymphoma Treatment. Genes 2024, 15, 358. [Google Scholar] [CrossRef]
- Spinello, I.; Labbaye, C.; Saulle, E. Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview. Int. J. Mol. Sci. 2024, 25, 9178. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz Concepción, B.; Bartolo-García, L.D.; Tizapa-Méndez, M.D.; Martínez-Vélez, M.; Valerio-Diego, J.J.; Illades-Aguiar, B.; Salmerón-Bárcenas, E.G.; Ortiz-Ortiz, J.; Torres-Rojas, F.I.; Mendoza-Catalán, M.Á.; et al. EMMPRIN is an emerging protein capable of regulating cancer hallmarks. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6700–6724. [Google Scholar] [CrossRef] [PubMed]
- Kansal, R. The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes 2024, 15, 863. [Google Scholar] [CrossRef] [PubMed]
- Kansal, R. Germline predisposition in hematologic malignancies. In Comprehensive Hematology and Stem Cell Research; Rezaei, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–38. [Google Scholar] [CrossRef]
- Breda, L.; Papp, T.E.; Triebwasser, M.P.; Yadegari, A.; Fedorky, M.T.; Tanaka, N.; Abdulmalik, O.; Pavani, G.; Wang, Y.; Grupp, S.A.; et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 2023, 381, 436–443. [Google Scholar] [CrossRef]
- Musunuru, K.; Grandinette, S.A.; Wang, X.; Hudson, T.R.; Briseno, K.; Berry, A.M.; Hacker, J.L.; Hsu, A.; Silverstein, R.A.; Hille, L.T.; et al. Patient-Specific In Vivo Gene Editing to Treat a Rare Genetic Disease. N. Engl. J. Med 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansal, R. Research Progress in Hematological Malignancies: A Molecular Genetics Perspective. Genes 2025, 16, 663. https://doi.org/10.3390/genes16060663
Kansal R. Research Progress in Hematological Malignancies: A Molecular Genetics Perspective. Genes. 2025; 16(6):663. https://doi.org/10.3390/genes16060663
Chicago/Turabian StyleKansal, Rina. 2025. "Research Progress in Hematological Malignancies: A Molecular Genetics Perspective" Genes 16, no. 6: 663. https://doi.org/10.3390/genes16060663
APA StyleKansal, R. (2025). Research Progress in Hematological Malignancies: A Molecular Genetics Perspective. Genes, 16(6), 663. https://doi.org/10.3390/genes16060663