Association Between the COL5A1 rs12722 Genotype and the Prevalence of Anterior Cruciate Ligament Rupture in Professional Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Genetic Testing
2.3. History of ACL Rupture During Football Exposure and Mechanism of Injury
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Variables and Field Position
3.2. History of ACL Rupture and Its Mechanism of Injury
3.3. Characteristics of the ACL Ruptures
3.4. Characteristics of Non-Contact ACL Ruptures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
COL5A1 | Gene codifying the α1 chain of type V collagen |
DNA | Deoxyribonucleic Acid |
FIFA | Fédération Internationale de Football Association |
HWE | Hardy-Weinberg Equilibrium |
MRI | Magnetic Resonance Imaging |
PCR | Polymerase Chain Reaction |
UEFA | Union of European Football Associations |
References
- Mazza, D.; Viglietta, E.; Monaco, E.; Iorio, R.; Marzilli, F.; Princi, G.; Massafra, C.; Ferretti, A. Impact of Anterior Cruciate Ligament Injury on European Professional Players. Orthop. J. Sports Med. 2022, 10, 23259671221076865. [Google Scholar] [CrossRef] [PubMed]
- Krutsch, W.; Memmel, C.; Alt, V.; Krutsch, V.; Tröß, T.; aus der Fünten, K.; Meyer, T. Timing Return-to-Competition: A Prospective Registration of 45 Different Types of Severe Injuries in Germany’s Highest Football League. Arch. Orthop. Trauma. Surg. 2022, 142, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Requejo-Herrero, P.; Pineda-Galan, C.; Medina-Porqueres, I. Anterior Cruciate Ligament Ruptures in Spanish Soccer First Division: An Epidemiological Retrospective Study. Knee 2023, 41, 48–57. [Google Scholar] [CrossRef]
- Erickson, B.J.; Harris, J.D.; Cvetanovich, G.L.; Bach, B.R.; Bush-Joseph, C.A.; Abrams, G.D.; Gupta, A.K.; McCormick, F.M.; Cole, B.J. Performance and Return to Sport After Anterior Cruciate Ligament Reconstruction in Male Major League Soccer Players. Orthop. J. Sports Med. 2013, 1, 2325967113497189. [Google Scholar] [CrossRef]
- Waldén, M.; Hägglund, M.; Magnusson, H.; Ekstrand, J. ACL Injuries in Men’s Professional Football: A 15-Year Prospective Study on Time Trends and Return-to-Play Rates Reveals Only 65% of Players Still Play at the Top Level 3 Years after ACL Rupture. Br. J. Sports Med. 2016, 50, 744–750. [Google Scholar] [CrossRef]
- Szymski, D.; Achenbach, L.; Weber, J.; Huber, L.; Memmel, C.; Kerschbaum, M.; Alt, V.; Krutsch, W. Reduced Performance after Return to Competition in ACL Injuries: An Analysis on Return to Competition in the ‘ACL Registry in German Football’. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 133–141. [Google Scholar] [CrossRef]
- Longstaffe, R.; Leiter, J.; Gurney-Dunlop, T.; McCormack, R.; MacDonald, P. Return to Play and Career Length After Anterior Cruciate Ligament Reconstruction Among Canadian Professional Football Players. Am. J. Sports Med. 2020, 48, 1682–1688. [Google Scholar] [CrossRef]
- Niederer, D.; Engeroff, T.; Wilke, J.; Vogt, L.; Banzer, W. Return to Play, Performance, and Career Duration after Anterior Cruciate Ligament Rupture: A Case-Control Study in the Five Biggest Football Nations in Europe. Scand. J. Med. Sci. Sports 2018, 28, 2226–2233. [Google Scholar] [CrossRef]
- Della Villa, F.; Hägglund, M.; Della Villa, S.; Ekstrand, J.; Waldén, M. High Rate of Second ACL Injury Following ACL Reconstruction in Male Professional Footballers: An Updated Longitudinal Analysis from 118 Players in the UEFA Elite Club Injury Study. Br. J. Sports Med. 2021, 55, 1350–1356. [Google Scholar] [CrossRef]
- Serpell, B.G.; Scarvell, J.M.; Ball, N.B.; Smith, P.N. Mechanisms and Risk Factors for Noncontact ACL Injury in Age Mature Athletes Who Engage in Field or Court Sports: A Summary of the Literature since 1980. J. Strength. Cond. Res. 2012, 26, 3160–3176. [Google Scholar] [CrossRef]
- Bisciotti, G.N.; Chamari, K.; Cena, E.; Bisciotti, A.; Bisciotti, A.; Corsini, A.; Volpi, P. Anterior Cruciate Ligament Injury Risk Factors in Football. J. Sports Med. Phys. Fit. 2019, 59, 1724–1738. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Flore, L.; Scorcu, M.; Monteleone, G.; Tiloca, A.; Salvi, M.; Tocco, F.; Calò, C.M. Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report. Genes 2023, 14, 1418. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.T.; Gao, S.T.; Cheng, P.; Liang, S.; Yu, S.Y.; Yang, Q.; Chen, A.M. Association between Polymorphism Rs12722 in COL5A1 and Musculoskeletal Soft Tissue Injuries: A Systematic Review and Meta-Analysis. Oncotarget 2018, 9, 15365–15374. [Google Scholar] [CrossRef]
- Sun, Z.; Cięszczyk, P.; Humińska-Lisowska, K.; Michałowska-Sawczyn, M.; Yue, S. Genetic Determinants of the Anterior Cruciate Ligament Rupture in Sport: An Up-to-Date Systematic Review. J. Hum. Kinet. 2023, 88, 105–117. [Google Scholar] [CrossRef]
- İpekoğlu, G.; Çakır, H.İ.; Bozkurt, N.; Bülbül, A.; Savkin, S.T.; Apaydın, N. Genetic Factors and Anterior Cruciate Ligament Injury Risk in Professional Football Players: COL3A1 (Rs1800255) and COL5A1 (Rs12722) Polymorphisms. Turk. J. Kinesiol. 2023, 9, 195–203. [Google Scholar] [CrossRef]
- Rodas, G.; Cáceres, A.; Ferrer, E.; Balagué-Dobón, L.; Osaba, L.; Lucia, A.; González, J.R. Sex Differences in the Association between Risk of Anterior Cruciate Ligament Rupture and COL5A1 Polymorphisms in Elite Footballers. Genes 2023, 14, 33. [Google Scholar] [CrossRef]
- Calò, C.M.; Massidda, M.; Sorge, R.; Tiloca, A.; Monteleone, G. The COL5A1 Gene Allelic Combination and ACL Injury Risk in Team-Sport: A Preliminary Report. Rev. Bras. Ortopedia 2024, 59, 584–589. [Google Scholar] [CrossRef]
- Bulbul, A.; Ari, E.; Apaydin, N.; Ipekoglu, G. The Impact of Genetic Polymorphisms on Anterior Cruciate Ligament Injuries in Athletes: A Meta-Analytical Approach. Biology 2023, 12, 1526. [Google Scholar] [CrossRef]
- Sivertsen, E.A.; Haug, K.B.F.; Kristianslund, E.K.; Trøseid, A.M.S.; Parkkari, J.; Lehtimäki, T.; Mononen, N.; Pasanen, K.; Bahr, R. No Association Between Risk of Anterior Cruciate Ligament Rupture and Selected Candidate Collagen Gene Variants in Female Elite Athletes From High-Risk Team Sports. Am. J. Sports Med. 2019, 47, 52–58. [Google Scholar] [CrossRef]
- Laguette, M.J.; Abrahams, Y.; Prince, S.; Collins, M. Sequence Variants within the 3′-UTR of the COL5A1 Gene Alters MRNA Stability: Implications for Musculoskeletal Soft Tissue Injuries. Matrix Biol. 2011, 30, 338–345. [Google Scholar] [CrossRef]
- Collins, M.; Posthumus, M. Type V Collagen Genotype and Exercise-Related Phenotype Relationships: A Novel Hypothesis. Exerc. Sport. Sci. Rev. 2011, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.D.; Shultz, S.J.; Wideman, L.; Henrich, V.C. Collagen Gene Variants Previously Associated with Anterior Cruciate Ligament Injury Risk Are Also Associated with Joint Laxity. Sports Health 2012, 4, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Posthumus, M.; September, A.V.; O’cuinneagain, D.; Van Der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 Gene Is Associated with Increased Risk of Anterior Cruciate Ligament Ruptures in Female Participants. Am. J. Sports Med. 2009, 37, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Romero, J.; Laguette, M.J.N.; Seale, K.; Jacques, M.; Voisin, S.; Hiam, D.; Feller, J.A.; Tirosh, O.; Miyamoto-Mikami, E.; Kumagai, H.; et al. Genetic Variants within the COL5A1 Gene Are Associated with Ligament Injuries in Physically Active Populations from Australia, South Africa, and Japan. Eur. J. Sport. Sci. 2023, 23, 284–293. [Google Scholar] [CrossRef]
- Lulińska-Kuklik, E.; Rahim, M.; Domańska-Senderowska, D.; Ficek, K.; Michałowska-Sawczyn, M.; Moska, W.; Kaczmarczyk, M.; Brzeziański, M.; Brzeziańska-Lasota, E.; Ciȩszczyk, P.; et al. Interactions between COL5A1 Gene and Risk of the Anterior Cruciate Ligament Rupture. J. Hum. Kinet. 2018, 62, 65–71. [Google Scholar] [CrossRef]
- O’Connell, K.; Knight, H.; Ficek, K.; Leonska-Duniec, A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Stepien-Slodkowska, M.; O’Cuinneagain, D.; van der Merwe, W.; Posthumus, M.; et al. Interactions between Collagen Gene Variants and Risk of Anterior Cruciate Ligament Rupture. Eur. J. Sport. Sci. 2015, 15, 341–350. [Google Scholar] [CrossRef]
- Tanisawa, K.; Wang, G.; Seto, J.; Verdouka, I.; Twycross-Lewis, R.; Karanikolou, A.; Tanaka, M.; Borjesson, M.; Di Luigi, L.; Dohi, M.; et al. Sport and Exercise Genomics: The FIMS 2019 Consensus Statement Update. Br. J. Sports Med. 2020, 54, 969–975. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor: New York, NY, USA, 1991; ISBN 0879693738. [Google Scholar]
- Hägglund, M.; Waldén, M.; Bahr, R.; Ekstrand, J. Methods for Epidemiological Study of Injuries to Professional Football Players: Developing the UEFA Model. Br. J. Sports Med. 2005, 39, 340. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic Video Analysis of ACL Injuries in Professional Male Football (Soccer): Injury Mechanisms, Situational Patterns and Biomechanics Study on 134 Consecutive Cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Rs12722 (SNP)—Population Genetics—Homo_Sapiens—Ensembl Genome Browser 113. Available online: https://www.ensembl.org/Homo_sapiens/Variation/Population?r=9:134842070-134843070;v=rs12722;vdb=variation;vf=605957036 (accessed on 18 October 2024).
- Vales-Vázquez, Á.; Casal-López, C.; Gómez-Rodríguez, P.; Blanco-Pita, H.; Serra-Olivares, J. Competitive Profile Differences between the Best-Ranked European Football Championships. Hum. Mov. 2017, 18, 97–105. [Google Scholar] [CrossRef]
- Kaynak, M.; Nijman, F.; van Meurs, J.; Reijman, M.; Meuffels, D.E. Genetic Variants and Anterior Cruciate Ligament Rupture: A Systematic Review. Sports Med. 2017, 47, 1637–1650. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Pirli Capitani, L.; Olivares-Jabalera, J.; Olmo, J.; Della Villa, F. Systematic Video Analysis of ACL Injuries in Professional Spanish Male Football (Soccer): Injury Mechanisms, Situational Patterns, Biomechanics and Neurocognitive Errors—A Study on 115 Consecutive Cases. BMJ Open Sport. Exerc. Med. 2024, 10, e002149. [Google Scholar] [CrossRef] [PubMed]
- Mandalidis, G.; Franco, D.; Ambrosio, L.; Za, P.; Maltese, G.; Russo, F.; Vadalà, G.; Papalia, R.; Denaro, V. Effective Prevention and Rehabilitation Strategies to Mitigate Non-Contact Anterior Cruciate Ligament Injuries: A Narrative Review. Appl. Sci. 2024, 14, 9330. [Google Scholar] [CrossRef]
- Sandon, A.; Krutsch, W.; Alt, V.; Forssblad, M. Increased Occurrence of ACL Injuries for Football Players in Teams Changing Coach and for Players Going to a Higher Division. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1380–1387. [Google Scholar] [CrossRef]
- Taylor, J.L.; Todd, G.; Gandevia, S.C. Evidence for a Supraspinal Contribution to Human Muscle Fatigue. Clin. Exp. Pharmacol. Physiol. 2006, 33, 400–405. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Muscle Fatigue: What, Why and How It Influences Muscle Function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef]
- Zago, M.; David, S.; Bertozzi, F.; Brunetti, C.; Gatti, A.; Salaorni, F.; Tarabini, M.; Galvani, C.; Sforza, C.; Galli, M. Fatigue Induced by Repeated Changes of Direction in Élite Female Football (Soccer) Players: Impact on Lower Limb Biomechanics and Implications for ACL Injury Prevention. Front. Bioeng. Biotechnol. 2021, 9, 666841. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of Non-Contact Anterior Cruciate Ligament Injuries in Soccer Players. Part 1: Mechanisms of Injury and Underlying Risk Factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Ehrmann, F.E.; Duncan, C.S.; Sindhusake, D.; Franzsen, W.N.; Greene, D.A. GPS and Injury Prevention in Professional Soccer. J. Strength. Cond. Res. 2016, 30, 360–367. [Google Scholar] [CrossRef]
- Tiernan, C.; Comyns, T.; Lyons, M.; Nevill, A.M.; Warrington, G. The Association Between Training Load Indices and Injuries in Elite Soccer Players. J. Strength. Cond. Res. 2022, 36, 3143–3150. [Google Scholar] [CrossRef]
- Barrett, S.; Midgley, A.; Reeves, M.; Joel, T.; Franklin, E.; Heyworth, R.; Garrett, A.; Lovell, R. The Within-Match Patterns of Locomotor Efficiency during Professional Soccer Match Play: Implications for Injury Risk? J. Sci. Med. Sport. 2016, 19, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Inclan, P.M.; Hicks, J.J.; Retzky, J.S.; Janosky, J.J.; Pearle, A.D. Team Approach: Neuromuscular Training for Primary and Secondary Prevention of Anterior Cruciate Ligament Injury. JBJS Rev. 2024, 12, e23.00207. [Google Scholar] [CrossRef] [PubMed]
- Pingault, J.B.; O’Reilly, P.F.; Schoeler, T.; Ploubidis, G.B.; Rijsdijk, F.; Dudbridge, F. Using Genetic Data to Strengthen Causal Inference in Observational Research. Nat. Rev. Genet. 2018, 19, 566–580. [Google Scholar] [CrossRef] [PubMed]
Variable | Categories |
---|---|
Injury mechanism | Non-contact; indirect contact; direct contact |
Injured limb | Dominant; non-dominant |
First vs. second injury | First injury; second injury in the same leg; second injury in the contralateral leg |
Season phase | Preseason; In-season |
Type of exposure | Match; training |
Context | Attacking; defending |
Action | Tackling/being tackled; landing; cutting; kicking; pressing; reaching; other |
Match injury time | 1st half; 2nd half |
Minutes played | 00-15; 16-30; 31-45; 46-60; 61-75; 76-90 |
Variable (Units) | CC | CT | TT | p Value |
---|---|---|---|---|
Sociodemographic variables | ||||
Number [frequency (%)] | 68 (25.4) | 134 (50.0) | 66 (24.6) | - |
Age (years) | 26.8 ± 4.8 | 26.8 ± 4.6 | 25.9 ± 4.6 | 0.362 |
Height (cm) | 183 ± 6 | 181 ± 6 * | 181 ± 6 | 0.027 |
Body mass (kg) | 77.8 ± 6.6 | 75.7 ± 6.4 | 76.7 ± 6.9 | 0.133 |
Body mass index (kg/m2) | 22.9 ± 3.1 | 22.8 ± 3.2 | 23.4 ± 1.5 | 0.405 |
Ethnicity | ||||
Caucasian [frequency (%)] | 57 ↓ (23.1) | 128 (51.8) | 62 (25.1) | 0.037 |
Afro-American [frequency (%)] | 10 ↑ (50.0) | 6 (30.0) | 4 (20.0) | |
Asian [frequency (%)] | 1 (100.0) | 0 (0.0) | 0 (0.0) | |
Field position | ||||
Goalkeeper | 9 (13.2) | 16 (11.9) | 3 (4.5) | 0.107 |
Center defender | 11 (16.2) | 16 (11.9) | 17 (25.8) | |
Full back | 13 (19.1) | 24 (17.9) | 8 (12.1) | |
Central midfielder | 18 (26.5) | 40 (29.9) | 18 (27.3) | |
Forward | 11 (16.2) | 25 (18.7) | 7 (10.6) | |
Winger | 6 (8.8) | 13 (9.7) | 13 (19.7) |
Variable | CC | CT | TT | p Value |
---|---|---|---|---|
Return to play (days) | 210 ± 66 | 211 ± 49 | 202 ± 33 | 0.631 |
Dominant leg | 81.8% | 58.3% | 35.7% | 0.068 |
Non-dominant leg | 18.2% | 41.7% | 64.3% | |
Pre-season | 9.1% | 12.5% | 7.1% | 0.862 |
In-season | 90.9% | 87.5% | 92.9% | |
Match | 90.9% | 100.0% | 78.6% | 0.066 |
Training | 9.1% | 0.0% | 21.4% | |
Attacking | 63.6% | 41.7% | 42.9% | 0.451 |
Defending | 36.4% | 58.3% | 57.1% | |
Tackling/tackled | 9.1% | 25.0% | 35.7% | 0.055 |
Landing | 27.3% | 4.2% | 0.0% | |
Cutting | 0.0% | 25.0% | 14.3% | |
Kicking | 27.3% | 8.3% | 7.1% | |
Pressing | 9.1% | 20.8% | 42.9% | |
Reaching | 18.1% | 8.3% | 0.0% | |
Other | 9.1% | 8.3% | 0.0% | |
1st half | 50.0% | 41.7% | 36.4% | 0.816 |
2nd half | 50.0% | 58.3% | 63.6% | |
0–15 | 0.0% | 12.5% | 18.2% | 0.626 |
16–30 | 30.0% | 16.7% | 0.0% | |
31–45 | 20.0% | 12.5% | 18.2% | |
46–60 | 10.0% | 37.4% | 36.3% | |
61–75 | 10.0% | 4.2% | 9.1% | |
76–90 | 30.0% | 16.7% | 18.2% |
Variable | CC | CT | TT | p Value |
---|---|---|---|---|
Return to play (days) | 204 ± 20 | 218 ± 61 | 203 ± 33 | 0.758 |
Dominant leg | 100.0% ↑ | 41.7% | 14.3% ↓ | 0.012 |
Non-dominant leg | 0.0% ↓ | 58.3% | 85.7% ↑ | |
Pre-season | 0.0% | 8.3% | 14.3% | 0.677 |
In-season | 100.0% | 91.7% | 85.7% | |
Match | 80.0% | 100.0% | 71.4% | 0.163 |
Training | 20.0% | 0.0% | 28.6% | |
Attacking | 100.0% ↑ | 41.7% | 14.3% ↓ | 0.012 |
Defending | 0.0% ↓ | 58.3% | 85.7% ↑ | |
Tackling/tackled | 0.0% | 0.0% | 0.0% | 0.047 |
Landing | 40.0% ↑ | 8.3% | 0.0% ↓ | |
Cutting | 0.0% | 41.8% | 28.6% | |
Kicking | 20.0% | 8.3% | 0.0% | |
Pressing | 0.0% | 33.3% | 71.4% ↑ | |
Reaching | 40.0% ↑ | 8.3% | 0.0% | |
Other | 0.0% | 0.0% | 0.0% | |
1st part | 0.0% ↓ | 75.0% | 80.0% | 0.018 |
2nd part | 100.0% ↑ | 25.0% | 20.0% | |
0–15 | 0.0% | 16.7% | 60.0% ↑ | 0.020 |
16–30 | 0.0% | 33.3% | 0.0% | |
31–45 | 0.0% | 25.0% | 20.0% | |
46–60 | 0.0% | 16.7% | 20.0% | |
61–75 | 25.0% ↑ | 0.0% | 0.0% | |
76–90 | 75.0% ↑ | 8.3% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manchón-Davó, M.; Del Coso, J.; Vera-Garcia, F.J.; González-Rodenas, J.; Miralles-Iborra, A.; Rodas, G.; López-Del Campo, R.; Moreno-Pérez, V. Association Between the COL5A1 rs12722 Genotype and the Prevalence of Anterior Cruciate Ligament Rupture in Professional Football Players. Genes 2025, 16, 649. https://doi.org/10.3390/genes16060649
Manchón-Davó M, Del Coso J, Vera-Garcia FJ, González-Rodenas J, Miralles-Iborra A, Rodas G, López-Del Campo R, Moreno-Pérez V. Association Between the COL5A1 rs12722 Genotype and the Prevalence of Anterior Cruciate Ligament Rupture in Professional Football Players. Genes. 2025; 16(6):649. https://doi.org/10.3390/genes16060649
Chicago/Turabian StyleManchón-Davó, Manuel, Juan Del Coso, Francisco J. Vera-Garcia, Joaquín González-Rodenas, Aarón Miralles-Iborra, Gil Rodas, Roberto López-Del Campo, and Víctor Moreno-Pérez. 2025. "Association Between the COL5A1 rs12722 Genotype and the Prevalence of Anterior Cruciate Ligament Rupture in Professional Football Players" Genes 16, no. 6: 649. https://doi.org/10.3390/genes16060649
APA StyleManchón-Davó, M., Del Coso, J., Vera-Garcia, F. J., González-Rodenas, J., Miralles-Iborra, A., Rodas, G., López-Del Campo, R., & Moreno-Pérez, V. (2025). Association Between the COL5A1 rs12722 Genotype and the Prevalence of Anterior Cruciate Ligament Rupture in Professional Football Players. Genes, 16(6), 649. https://doi.org/10.3390/genes16060649