Association Between Genetically Predicted Memory and Self-Reported Foreign Language Proficiency
Abstract
:1. Introduction
- To investigate the association between a polygenic memory score and self-reported foreign language proficiency in children.
- To replicate this association in an independent adult cohort.
- To assess the combined contribution of genetically predicted memory capacity, age, sex, ethnicity, verbal IQ, and level of immersion in foreign languages to children’s self-reported foreign language proficiency.
2. Materials and Methods
2.1. The Ethics Statement
2.2. Participants
2.3. Psychometric Methods
- (a)
- (b)
- 16–21 years old: Wechsler Adult Intelligence Scale (WAIS) test—designed to test adults [31]. This version was adapted and standardized for Russian speakers by A. Yu. Panasyuk, and supplemented and corrected by Yu. I. Filimonenko and V. I. Timofeev at the State Enterprise “Imaton”, St. Petersburg [32].
2.4. Genetic Analysis
2.5. Genotyping of Children’s DNA Samples
2.6. Genotyping of Adults’ DNA Samples
2.7. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APOE | Apolipoprotein E |
CAMTA1 | Calmodulin-Binding Transcription Activator 1 |
CLSTN2 | Calsyntenin 2 |
COMT | Catechol-O-Methyltransferase |
CPEB3 | Cytoplasmic Polyadenylation Element-Binding Protein 3 |
DNA | Deoxyribonucleic acid |
EDTA | Ethylenediaminetetraacetic acid |
IELTS | International English Language Testing System |
IQ | Intelligence quotient |
PCR | Polymerase chain reaction |
SCN1A | Sodium Voltage-Gated Channel α Subunit 1 |
SNAP25 | Synaptosome-Associated Protein 25 |
SNP | Single nucleotide polymorphism |
TOEFL | Test of English as a Foreign Language |
WAIS | Wechsler Adult Intelligence Scale |
WISC | Wechsler Intelligence Scale for Children |
WWC1 | WW and C2 Domain-Containing 1 |
References
- Baddeley, A. Working Memory and Language: An Overview. J. Commun. Disord. 2003, 36, 189–208. [Google Scholar] [CrossRef]
- Dörnyei, Z. The Psychology of the Language Learner: Individual Differences in Second Language Acquisition, 1st ed.; Routledge: London, UK, 2005. [Google Scholar] [CrossRef]
- Bialystok, E.; Craik, F.I.; Luk, G. Bilingualism: Consequences for Mind and Brain. Trends Cogn. Sci. 2012, 16, 240–250. [Google Scholar] [CrossRef]
- Dewaele, J.-M.; Furnham, A. Personality and Speech Production: A Pilot Study of Second Language Learners. Pers. Individ. Dif. 2000, 28, 355–365. [Google Scholar] [CrossRef]
- Oxford, L. Language Learning Strategies: What Every Teacher Should Know; Heinle & Heinle: Boston, MA, USA, 1990. [Google Scholar]
- Horwitz, E.K.; Horwitz, M.B.; Cope, J. Foreign Language Classroom Anxiety. Mod. Lang. J. 1986, 70, 125–132. [Google Scholar] [CrossRef]
- Carroll, J.B. Twenty-Five Years of Research on Foreign Language Aptitude. In Individual Differences and Universals in Language Learning Aptitude; Diller, K.C., Ed.; Newbury House: Rowley, MA, USA, 1981; pp. 83–118. [Google Scholar]
- Birdsong, D.; Molis, M. On the Evidence for Maturational Constraints in Second-Language Acquisition. J. Mem. Lang. 2001, 44, 235–249. [Google Scholar] [CrossRef]
- Dörnyei, Z.; Skehan, P. Individual Differences in Second Language Learning. In The Handbook of Second Language Acquisition; Doughty, C.J., Long, M.H., Eds.; Blackwell: Oxford, UK, 2003; pp. 589–630. [Google Scholar] [CrossRef]
- Abrahamsson, N.; Hyltenstam, K. The Robustness of Aptitude Effects in Near-Native Second Language Acquisition. Stud. Second Lang. Acquis. 2008, 30, 481–509. [Google Scholar] [CrossRef]
- Thompson, C. The role of practice within second language acquisition. In Practice in Second Language Learning; Jones, C., Ed.; Cambridge University Press: Cambridge, UK, 2018; pp. 30–52. [Google Scholar] [CrossRef]
- Fisher, S.E.; Vernes, S.C. Genetics and the Language Sciences. Annu. Rev. Linguist. 2015, 1, 289–310. [Google Scholar] [CrossRef]
- Kovas, Y.; Plomin, R. Generalist Genes: Implications for the Cognitive Sciences. Trends Cogn. Sci. 2006, 10, 198–203. [Google Scholar] [CrossRef]
- Mozzi, A.; Riva, V.; Forni, D.; Sironi, M.; Marino, C.; Molteni, M.; Riva, S.; Guerini, F.R.; Clerici, M.; Cagliani, R.; et al. A Common Genetic Variant in FOXP2 Is Associated with Language-Based Learning (Dis)Abilities: Evidence from Two Italian Independent Samples. Am. J. Med. Genet. B Neuropsychiatry Genet. 2017, 174, 578–586. [Google Scholar] [CrossRef]
- Koppel, J.; Goldberg, T. The Genetics of Episodic Memory. Cogn. Neuropsychiatry 2009, 14, 356–376. [Google Scholar] [CrossRef]
- Plomin, R.; Spinath, F.M. Intelligence: Genetics, genes, and genomics. J. Pers. Soc. Psychol. 2004, 86, 112–129. [Google Scholar] [CrossRef]
- Kremen, W.S.; Jacobsen, K.C.; Xian, H.; Eisen, S.A.; Eaves, L.J.; Tsuang, M.T.; Lyons, M.J. Genetics of Verbal Working Memory Processes: A Twin Study of Middle-Aged Men. Neuropsychology 2007, 21, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Papassotiropoulos, A.; de Quervain, D.J. Genetics of human episodic memory: Dealing with complexity. Trends Cogn. Sci. 2011, 15, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Kere, J. The molecular genetics and neurobiology of developmental dyslexia as a model of a complex phenotype. Biochem. Biophys. Res. Commun. 2014, 452, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Pennington, B.F. From single to multiple deficit models of developmental disorders. Cognition 2006, 101, 385–413. [Google Scholar] [CrossRef]
- Abdellaoui, A.; Yengo, L.; Verweij, K.J.H.; Visscher, P.M. 15 Years of GWAS Discovery: Realizing the Promise. Am. J. Hum. Genet. 2023, 110, 179–194. [Google Scholar] [CrossRef]
- Service, E. Phonology, Working Memory, and Foreign-Language Learning. Q. J. Exp. Psychol. A 1992, 45, 21–50. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. Genomic predictors of testosterone levels are associated with muscle fiber size and strength. Eur. J. Appl. Physiol. 2022, 122, 415–423. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2022, 36, 2509–2514. [Google Scholar] [CrossRef]
- Ross, S. Self-Assessment in Second Language Testing: A Meta-Analysis and Analysis of Experiential Factors. Lang. Test. 1998, 15, 1–20. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X. A Meta-Analysis of Self-Assessment and Language Performance in Language Testing and Assessment. Lang. Test. 2020, 38, 189–218. [Google Scholar] [CrossRef]
- Hržica, G.; Košutar, S.; Poropat Jeletić, N. The Relationship between Self-Assessment of Language Proficiency and Measures of Lexical Diversity and Syntactic Complexity: Evidence from Bilingual Speakers of Italian in Croatia. Front. Commun. 2024, 9, 1371126. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Semenova, E.A.; Bondareva, E.A.; Borisov, O.V.; Andryushchenko, O.N.; Andryushchenko, L.B.; Zmijewski, P.; Generozov, E.V.; Ahmetov, I.I. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biol. Sport 2021, 38, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Intelligence Scale for Children; The Psychological Corporation: New York, NY, USA, 1949. [Google Scholar]
- Panasyk, A. Adaptirovannyi Variant Metodiki D. Vekslera (WISC) (Adapted Version of the Methodology of D. Wexler (WISC)); Institute of Hygiene of Children and Adolescents of the USSR Ministry of Health: Moscow, Russia, 1973. [Google Scholar]
- Wechsler, D. Manual for the Wechsler Adult Intelligence Scale; The Psychological Corporation: New York, NY, USA, 1955. [Google Scholar]
- Panasyk, A.; Filimonenko, Y.; Timofeev, V. Rukovodstvo k Metodike Issledovaniya Intellekta u Detei D. Veksler (Guide to the Methodology of the Study of Intelligence in Children by D. Wexler); State Enterprise “IMATON”: St. Petersburg, Russia, 1992. [Google Scholar]
- Huentelman, M.J.; Papassotiropoulos, A.; Craig, D.W.; Hoerndli, F.J.; Pearson, J.V.; Huynh, K.D.; Corneveaux, J.; Hänggi, J.; Mondadori, C.R.; Buchmann, A.; et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum. Mol. Genet. 2007, 16, 1469–1477. [Google Scholar] [CrossRef]
- Papassotiropoulos, A.; Stephan, D.A.; Huentelman, M.J.; Hoerndli, F.J.; Craig, D.W.; Pearson, J.V.; Huynh, K.D.; Brunner, F.; Corneveaux, J.; Osborne, D.; et al. Common Kibra alleles are associated with human memory performance. Science 2006, 314, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Preuschhof, C.; Heekeren, H.R.; Li, S.C.; Sander, T.; Lindenberger, U.; Bäckman, L. KIBRA and CLSTN2 polymorphisms exert interactive effects on human episodic memory. Neuropsychologia 2010, 48, 402–408. [Google Scholar] [CrossRef]
- Laukka, E.J.; Köhncke, Y.; Papenberg, G.; Fratiglioni, L.; Bäckman, L. Combined genetic influences on episodic memory decline in older adults without dementia. Neuropsychology 2020, 34, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M.; Barrantes-Vidal, N.; Arias, B.; Moya, J.; Villa, H.; Ibáñez, M.I.; Ruipérez, M.A.; Ortet, G.; Fañanás, L. Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 898–902. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Kjaerstad, H.L.; Støttrup, M.M.; Svendsen, A.M.; Demant, K.M.; Hoeffding, L.K.; Werge, T.M.; Burdick, K.E.; Domschke, K.; Carvalho, A.F.; et al. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder. Bipolar Disord. 2017, 19, 214–224. [Google Scholar] [CrossRef]
- Sugiura, L.; Toyota, T.; Matsuba-Kurita, H.; Iwayama, Y.; Mazuka, R.; Yoshikawa, T.; Hagiwara, H. Age-dependent effects of catechol-O-methyltransferase (COMT) gene Val158Met polymorphism on language function in developing children. Cereb. Cortex 2017, 27, 104–116. [Google Scholar] [CrossRef]
- Dumontheil, I.; Kilford, E.J.; Blakemore, S.J. Development of dopaminergic genetic associations with visuospatial, verbal and social working memory. Dev. Sci. 2020, 23, e12889. [Google Scholar] [CrossRef]
- Vogler, C.; Spalek, K.; Aerni, A.; Demougin, P.; Müller, A.; Huynh, K.D.; Papassotiropoulos, A.; de Quervain, D.J. CPEB3 is associated with human episodic memory. Front. Behav. Neurosci. 2009, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Papassotiropoulos, A.; Henke, K.; Stefanova, E.; Aerni, A.; Müller, A.; Demougin, P.; Vogler, C.; Sigmund, J.C.; Gschwind, L.; Huynh, K.D.; et al. A Genome-Wide Survey of Human Short-Term Memory. Mol. Psychiatry 2011, 16, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, B.; Fang, D.; Zeng, H.; Chen, X.; Peng, G.; Cheng, Q.; Liang, G. The impact of SNAP25 on brain functional connectivity density and working memory in ADHD. Biol. Psychol. 2018, 138, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Milnik, A.; Heck, A.; Vogler, C.; Heinze, H.J.; de Quervain, D.J.; Papassotiropoulos, A. Association of KIBRA with episodic and working memory: A meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159, 58–69. [Google Scholar] [CrossRef]
- Stickel, A.; Kawa, K.; Walther, K.; Glisky, E.; Richholt, R.; Huentelman, M.; Ryan, L. Age-modulated associations between KIBRA, brain volume, and verbal memory among healthy older adults. Front. Aging Neurosci. 2018, 10, 431. [Google Scholar] [CrossRef]
- Zlomuzica, A.; Preusser, F.; Roberts, S.; Woud, M.L.; Lester, K.J.; Dere, E.; Eley, T.C.; Margraf, J. The role of KIBRA in reconstructive episodic memory. Mol. Med. 2018, 24, 7. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Valeeva, E.V.; Yerdenova, M.B.; Datkhabayeva, G.K.; Bouzid, A.; Bhamidimarri, P.M.; Sharafetdinova, L.M.; Egorova, E.S.; Semenova, E.A.; Gabdrakhmanova, L.J.; et al. KIBRA gene variant is associated with ability in chess and science. Genes 2023, 14, 204. [Google Scholar] [CrossRef]
- Gouda, H.R.; Talaat, I.M.; Bouzid, A.; El-Assi, H.; Nabil, A.; Venkatachalam, T.; Manasa Bhamidimarri, P.; Wohlers, I.; Mahdami, A.; El-Gendi, S.; et al. Genetic analysis of CFH and MCP in Egyptian patients with immune-complex proliferative glomerulonephritis. Front. Immunol. 2022, 13, 960068. [Google Scholar] [CrossRef]
- Jalaleddine, N.; Bouzid, A.; Hachim, M.; Sharif-Askari, N.S.; Mahboub, B.; Senok, A.; Halwani, R.; Hamoudi, R.A.; Al Heialy, S. ACE2 polymorphisms impact COVID-19 severity in obese patients. Sci. Rep. 2022, 12, 21491. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Boulygina, E.A.; Borisov, O.V.; Valeeva, E.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Nabiullina, R.M.; Mavliev, F.A.; Akhatov, A.M.; et al. Whole genome sequencing of elite athletes. Biol. Sport 2020, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- The Ensembl Project Portal. Available online: http://www.ensembl.org/Homo_sapiens/Info/Index (accessed on 1 May 2025).
Gene | Polymorphism | Alleles | Favorable Allele | References |
---|---|---|---|---|
CAMTA1 | rs4908449 | T/C | T | [33] |
CLSTN2 | rs6439886 | A/G | G | [34,35,36] |
COMT | rs4680 | G/A | A | [37,38,39,40] |
CPEB3 | rs11186856 | A/G | A | [41] |
SCN1A | rs10930201 | A/C | A | [42] |
SNAP25 | rs3746544 | G/T | G | [43] |
WWC1 | rs17070145 | C/T | T | [34,35,36,44,45,46] |
Polymorphism | Genotype 1 | Genotype 2 | Genotype 3 | Hardy–Weinberg Equilibrium | Memory-Increasing Allele Frequency, % | |
---|---|---|---|---|---|---|
χ2 | p | |||||
Children | ||||||
CAMTA1 rs4908449 | TT (20) | TC (49) | CC (60) | 3.28 | 0.070 | T (34.5) |
CLSTN2 rs6439886 | GG (0) | AG (19) | AA (110) | 0.82 | 0.366 | G (7.4) |
COMT rs4680 | AA (18) | GA (19) | GG (92) | 40.59 | <0.0001 | A (21.3) |
CPEB3 rs11186856 | AA (107) | AG (19) | GG (3) | 3.24 | 0.072 | A (90.3) |
SCN1A rs10930201 | AA (39) | AC (1) | CC (89) | 124.33 | <0.0001 | A (30.6) |
SNAP25 rs3746544 | GG (11) | GT (67) | TT (51) | 2.87 | 0.090 | G (34.5) |
WWC1 rs17070145 | TT (42) | CT (67) | CC (20) | 0.63 | 0.427 | T (58.5) |
Adults | ||||||
CAMTA1 rs4908449 | TT (25) | TC (46) | CC (57) | 6.97 | 0.008 | T (37.5) |
CLSTN2 rs6439886 | GG (2) | AG (30) | AA (96) | 0.04 | 0.843 | G (13.3) |
COMT rs4680 | AA (32) | GA (70) | GG (26) | 1.18 | 0.277 | A (52.3) |
CPEB3 rs11186856 | AA (69) | AG (49) | GG (10) | 0.10 | 0.753 | A (73.0) |
SCN1A rs10930201 | AA (56) | AC (62) | CC (10) | 1.62 | 0.203 | A (68.0) |
SNAP25 rs3746544 | GG (17) | GT (57) | TT (54) | 0.10 | 0.750 | G (35.5) |
WWC1 rs17070145 | TT (20) | CT (59) | CC (49) | 0.10 | 0.749 | T (38.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yerdenova, M.B.; Datkhabayeva, G.K.; Zholdassova, M.K.; Kamzanova, A.T.; Sadvakassova, Z.M.; Bouzid, A.; Bhamidimarri, P.M.; Hamoudi, R.; Semenova, E.A.; Larin, A.K.; et al. Association Between Genetically Predicted Memory and Self-Reported Foreign Language Proficiency. Genes 2025, 16, 589. https://doi.org/10.3390/genes16050589
Yerdenova MB, Datkhabayeva GK, Zholdassova MK, Kamzanova AT, Sadvakassova ZM, Bouzid A, Bhamidimarri PM, Hamoudi R, Semenova EA, Larin AK, et al. Association Between Genetically Predicted Memory and Self-Reported Foreign Language Proficiency. Genes. 2025; 16(5):589. https://doi.org/10.3390/genes16050589
Chicago/Turabian StyleYerdenova, Meruert B., Gaukhar K. Datkhabayeva, Manzura K. Zholdassova, Altyngul T. Kamzanova, Zukhra M. Sadvakassova, Amal Bouzid, Poorna Manasa Bhamidimarri, Rifat Hamoudi, Ekaterina A. Semenova, Andrey K. Larin, and et al. 2025. "Association Between Genetically Predicted Memory and Self-Reported Foreign Language Proficiency" Genes 16, no. 5: 589. https://doi.org/10.3390/genes16050589
APA StyleYerdenova, M. B., Datkhabayeva, G. K., Zholdassova, M. K., Kamzanova, A. T., Sadvakassova, Z. M., Bouzid, A., Bhamidimarri, P. M., Hamoudi, R., Semenova, E. A., Larin, A. K., Kulemin, N. A., Generozov, E. V., Rees, T., Kustubayeva, A. M., & Ahmetov, I. I. (2025). Association Between Genetically Predicted Memory and Self-Reported Foreign Language Proficiency. Genes, 16(5), 589. https://doi.org/10.3390/genes16050589