Genetic Aspects of Tooth Agenesis
Abstract
:1. Introduction
2. Material and Methods
3. Classification
- Anodontia, which can be either total anodontia, meaning the complete absence of teeth, or complete anodontia, referring to the absence of teeth in only one dentition. The latter is further divided into agenodontia, defined as the absence of primary dentition, and ablastodontia, indicating the absence of permanent dentition;
- Oligodontia, referring to the absence of at least half of the expected number of teeth. This condition is subclassified as oligogenodontia, characterized by the presence of 10 or fewer primary teeth, and oligoblastodontia, defined by the presence of 16 or fewer permanent teeth;
- Hypodontia, the absence of fewer than half of the normal dental complement. This includes atelegenodontia (more than 10 but fewer than 20 primary teeth) and ateleblastodontia (more than 16 but fewer than 32 permanent teeth).
4. Epidemiological Data
5. Patterns of Agenesis
6. Etiopathogenesis
7. Clinical Aspects
8. Therapy
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ED | Ectodermal dysplasia |
NMT | Number of missing teeth |
TMD | Temporomandibular disorders |
AD | Congenital dental agenesis |
PP | Ponticulus Posticus |
AOL | Atlantooccipital Ligament |
References
- Tucker, A.; Sharpe, P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet. 2004, 5, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Chu, E.Y.; Tamasas, B.; Fong, H.; Foster, B.L.; LaCourse, M.R.; Tran, A.B.; Martin, J.F.; Schutte, B.C.; Somerman, M.J.; Cox, T.C. Full Spectrum of Postnatal Tooth Phenotypes in a Novel Irf6 Cleft Lip Model. J. Dent. Res. 2016, 95, 1265–1273. [Google Scholar] [CrossRef]
- Rios, H.; Koushik, S.V.; Wang, H.; Wang, J.; Zhou, H.M.; Lindsley, A.; Rogers, R.; Chen, Z.; Maeda, M.; Kruzynska-Frejtag, A.; et al. periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol. Cell. Biol. 2005, 25, 11131–11144. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ren, J.; Meng, L.; Hou, Y.; Liu, C.; Zhang, G.; Shen, W. Characterization of novel MSX1 variants causally associated with non-syndromic oligodontia in Chinese families. Mol. Genet. Genom. Med. 2024, 12, e2334. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Gan, S.; Zheng, S.; Li, M.; An, Y.; Yuan, S.; Gu, X.; Zhang, L.; Hou, Y.; Du, Q.; et al. Genotype-phenotype pattern analysis of pathogenic. Front. Genet. 2023, 14, 1142776. [Google Scholar] [CrossRef]
- Luo, W.; Yue, H.; Song, G.; Cheng, J.; He, M. Identification and Functional Analysis of Novel Mutations in AXIN2 and LRP6 Linked with Non-Syndromic Tooth Agenesis. Mol. Genet. Genom. Med. 2025, 13, e70101. [Google Scholar] [CrossRef]
- Massink, M.P.; Créton, M.A.; Spanevello, F.; Fennis, W.M.; Cune, M.S.; Savelberg, S.M.; Nijman, I.J.; Maurice, M.M.; van den Boogaard, M.J.; van Haaften, G. Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia. Am. J. Hum. Genet. 2015, 97, 621–626. [Google Scholar] [CrossRef]
- Scribante, A.; Sfondrini, M.F.; Cassani, M.; Fraticelli, D.; Beccari, S.; Gandini, P. Sella turcica bridging and dental anomalies: Is there an association? Int. J. Paediatr. Dent. 2017, 27, 568–573. [Google Scholar] [CrossRef]
- Putrino, A.; Leonardi, R.M.; Barbato, E.; Galluccio, G. The Association Between Ponticulus Posticus and Dental Agenesis: A Retrospective Study. Open Dent. J. 2018, 12, 510–519. [Google Scholar] [CrossRef]
- Jurado, C.A.; Villalobos-Tinoco, J.; Alshabib, A.; Afrashtehfar, K.I. Advanced restorative management of focal microdontia: A brief review and case report. Dent. Med. Probl. 2024, 61, 457–464. [Google Scholar] [CrossRef]
- Gutmann, J.L. The Origin of the Maryland Bridge. J. Hist. Dent. 2019, 67, 110. [Google Scholar] [PubMed]
- Fawaz, P.; Husseini, B.; Chebel, F.B.; Kmeid, R.; Vannet, B.V. A multidisciplinary approach to treatment of multiple-tooth agenesis, retention, and impaction. J. Clin. Orthod. 2023, 57, 1000. [Google Scholar]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Farronato, G.; Nanda, R. Orthodontics; Edi. Ermes: Milan, Italy, 2018; p. 878. [Google Scholar]
- Gill, D.S.; Barker, C.S. The multidisciplinary management of hypodontia: A team approach. Br. Dent. J. 2015, 218, 143–149. [Google Scholar] [CrossRef]
- Nunn, J.H.; Carter, N.E.; Gillgrass, T.J.; Hobson, R.S.; Jepson, N.J.; Meechan, J.G.; Nohl, F.S. The interdisciplinary management of hypodontia: Background and role of paediatric dentistry. Br. Dent. J. 2003, 194, 245–251. [Google Scholar] [CrossRef] [PubMed]
- AlShahrani, I.; Togoo, R.A.; AlQarni, M.A. A Review of Hypodontia: Classification, Prevalence, Etiology, Associated Anomalies, Clinical Implications and Treatment Options. World J. Dent. 2013, 4, 117–125. [Google Scholar]
- Yin, W.; Bian, Z. The Gene Network Underlying Hypodontia. J. Dent. Res. 2015, 94, 878–885. [Google Scholar] [CrossRef]
- Modafferi, C.; Tabolacci, E.; Grippaudo, C.; Chiurazzi, P. Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview. Genes 2025, 16, 147. [Google Scholar] [CrossRef]
- Al-Ani, A.H.; Antoun, J.S.; Thomson, W.M.; Merriman, T.R.; Farella, M. Hypodontia: An Update on Its Etiology, Classification, and Clinical Management. Biomed. Res. Int. 2017, 2017, 9378325. [Google Scholar] [CrossRef]
- De Coster, P.J.; Marks, L.A.; Martens, L.C.; Huysseune, A. Dental agenesis: Genetic and clinical perspectives. J. Oral Pathol. Med. 2009, 38, 1–17. [Google Scholar] [CrossRef]
- Khalaf, K.; Miskelly, J.; Voge, E.; Macfarlane, T.V. Prevalence of hypodontia and associated factors: A systematic review and meta-analysis. J. Orthod. 2014, 41, 299–316. [Google Scholar] [CrossRef]
- Dhamo, B.; Kuijpers, M.A.R.; Balk-Leurs, I.; Boxum, C.; Wolvius, E.B.; Ongkosuwito, E.M. Disturbances of dental development distinguish patients with oligodontia-ectodermal dysplasia from isolated oligodontia. Orthod. Craniofacial Res. 2018, 21, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Matalova, E.; Fleischmannova, J.; Sharpe, P.T.; Tucker, A.S. Tooth agenesis: From molecular genetics to molecular dentistry. J. Dent. Res. 2008, 87, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Arai, K. Mesiodistal angulation and developmental stages of unerupted mandibular second premolars in nonsyndromic oligodontia. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 805–812. [Google Scholar] [CrossRef]
- Satokata, I.; Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet. 1994, 6, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Rakhshan, V.; Rakhshan, H. Meta-analysis and systematic review of the number of non-syndromic congenitally missing permanent teeth per affected individual and its influencing factors. Eur. J. Orthod. 2016, 38, 170–177. [Google Scholar] [CrossRef]
- Gupta, S.P.; Dahal, S.; Goel, K.; Bhochhibhoya, A.; Rauniyar, S. Association Between Hypodontia and Angle’s Malocclusions among Orthodontic Patients in Kathmandu, Nepal. Int. J. Dent. 2022, 2022, 9595920. [Google Scholar] [CrossRef]
- Alamoudi, R.; Kanavakis, G.; Oeschger, E.S.; Halazonetis, D.; Gkantidis, N. Occlusal characteristics in modern humans with tooth agenesis. Sci. Rep. 2024, 14, 5840. [Google Scholar] [CrossRef]
- Wang, M.Q.; Xue, F.; He, J.J.; Chen, J.H.; Chen, C.S.; Raustia, A. Missing posterior teeth and risk of temporomandibular disorders. J. Dent. Res. 2009, 88, 942–945. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, T.; He, M.; Fang, C.; Peng, S. Association of congenitally missing teeth with adult temporomandibular disorders in the urban health checkup population. BMC Oral Health 2023, 23, 188. [Google Scholar] [CrossRef]
- De Santis, D.; Pancera, P.; Sinigaglia, S.; Faccioni, P.; Albanese, M.; Bertossi, D.; Luciano, U.; Zotti, F.; Matarese, M.; Lucchese, A.; et al. Tooth agenesis: Part 1. Incidence and diagnosis in orthodontics. J. Biol. Regul. Homeost. Agents 2019, 33 (Suppl. S1), 19–22. [Google Scholar] [PubMed]
- Carter, K.; Worthington, S. Morphologic and Demographic Predictors of Third Molar Agenesis: A Systematic Review and Meta-analysis. J. Dent. Res. 2015, 94, 886–894. [Google Scholar] [CrossRef]
- Scheiwiller, M.; Oeschger, E.S.; Gkantidis, N. Third molar agenesis in modern humans with and without agenesis of other teeth. PeerJ 2020, 8, e10367. [Google Scholar] [CrossRef] [PubMed]
- Katanaki, N.; Makrygiannakis, M.A.; Kaklamanos, E.G. The Prevalence of Congenitally Missing Permanent Teeth in a Sample of Orthodontic and Non-Orthodontic Caucasian Patients. Healthcare 2024, 12, 541. [Google Scholar] [CrossRef]
- Cobourne, M.T. Familial human hypodontia—Is it all in the genes? Br. Dent. J. 2007, 203, 203–208. [Google Scholar] [CrossRef]
- Polder, B.J.; Van’t Hof, M.A.; Van der Linden, F.P.; Kuijpers-Jagtman, A.M. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent. Oral Epidemiol. 2004, 32, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Rakhshan, V. Meta-analysis and systematic review of factors biasing the observed prevalence of congenitally missing teeth in permanent dentition excluding third molars. Prog. Orthod. 2013, 14, 33. [Google Scholar] [CrossRef]
- De Stefani, A.; Bruno, G.; Conte, E.; Frezza, A.; Balasso, P.; Gracco, A. Prevalence and patterns of tooth agenesis in Angle class II division 2 malocclusion in Italy: A case-control study. Int. Orthod. 2019, 17, 538–543. [Google Scholar] [CrossRef]
- Ota, K.; Arai, K. Prevalence and patterns of tooth agenesis in Angle Class II Division 2 malocclusion in Japan. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 123–129. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Camhi, H.; Seymen, F.; Koruyucu, M.; Kasimoglu, Y.; Kim, J.W.; Kim-Berman, H.; Yuson, N.M.R.; Benke, P.J.; et al. Analyses of oligodontia phenotypes and genetic etiologies. Int. J. Oral Sci. 2021, 13, 32. [Google Scholar] [CrossRef]
- Kere, J.; Srivastava, A.K.; Montonen, O.; Zonana, J.; Thomas, N.; Ferguson, B.; Munoz, F.; Morgan, D.; Clarke, A.; Baybayan, P.; et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 1996, 13, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.X.; Liang, J.L.; Sui, W.G.; Lin, H.; Xue, W.; Chen, J.J.; Zhang, Y.; Gong, W.W.; Dai, Y.; Ou, M.L. EDA mutation as a cause of hypohidrotic ectodermal dysplasia: A case report and review of the literature. Genet. Mol. Res. 2015, 14, 10344–10351. [Google Scholar] [CrossRef] [PubMed]
- Paradowska-Stolarz, A. MSX1 gene in the etiology orofacial deformities. Postep. Hig. Med. Dosw. (Online) 2015, 69, 1499–1504. [Google Scholar]
- Fournier, B.P.; Bruneau, M.H.; Toupenay, S.; Kerner, S.; Berdal, A.; Cormier-Daire, V.; Hadj-Rabia, S.; Coudert, A.E.; de La Dure-Molla, M. Patterns of Dental Agenesis Highlight the Nature of the Causative Mutated Genes. J. Dent. Res. 2018, 97, 1306–1316. [Google Scholar] [CrossRef]
- Ye, X.; Attaie, A.B. Genetic Basis of Nonsyndromic and Syndromic Tooth Agenesis. J. Pediatr. Genet. 2016, 5, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, S.K.; Choi, M.; Reid, B.M.; Hu, Y.; Lee, Y.L.; Herzog, C.R.; Kim-Berman, H.; Lee, M.; Benke, P.J.; et al. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol. Genet. Genom. Med. 2015, 3, 40–58. [Google Scholar] [CrossRef]
- Bohring, A.; Stamm, T.; Spaich, C.; Haase, C.; Spree, K.; Hehr, U.; Hoffmann, M.; Ledig, S.; Sel, S.; Wieacker, P.; et al. WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am. J. Hum. Genet. 2009, 85, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Hai, M.; Elcock, C.; Leal, S.M.; Brown, D.T.; Brook, A.H.; Patel, P.I. Novel missense mutations and a 288-bp exonic insertion in PAX9 in families with autosomal dominant hypodontia. Am. J. Med. Genet. A 2003, 118A, 35–42. [Google Scholar] [CrossRef]
- Peters, H.; Neubüser, A.; Kratochwil, K.; Balling, R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998, 12, 2735–2747. [Google Scholar] [CrossRef]
- Issa, Y.A.; Kamal, L.; Rayyan, A.A.; Dweik, D.; Pierce, S.; Lee, M.K.; King, M.C.; Walsh, T.; Kanaan, M. Mutation of KREMEN1, a modulator of Wnt signaling, is responsible for ectodermal dysplasia including oligodontia in Palestinian families. Eur. J. Hum. Genet. 2016, 24, 1430–1435. [Google Scholar] [CrossRef]
- Espinoza, H.M.; Cox, C.J.; Semina, E.V.; Amendt, B.A. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum. Mol. Genet. 2002, 11, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, S.; Fong, F.; Plagnol, V.; Wong, F.S.; Fearne, J.; Kelsell, D.P. Recessive oligodontia linked to a homozygous loss-of-function mutation in the SMOC2 gene. Arch. Oral Biol. 2013, 58, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Brancolini, V.; ul Faiyaz, M.F.; Lam, H.; ul Haque, S.; Haider, M.; Maimon, A.; Aita, V.M.; Owen, J.; Brown, D.; et al. A locus for autosomal recessive hypodontia with associated dental anomalies maps to chromosome 16q12.1. Am. J. Hum. Genet. 1998, 62, 987–991. [Google Scholar] [CrossRef]
- Berry, S.A.; Pierpont, M.E.; Gorlin, R.J. Single central incisor in familial holoprosencephaly. J. Pediatr. 1984, 104, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Bakrania, P.; Efthymiou, M.; Klein, J.C.; Salt, A.; Bunyan, D.J.; Wyatt, A.; Ponting, C.P.; Martin, A.; Williams, S.; Lindley, V.; et al. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: Overlap between the BMP4 and hedgehog signaling pathways. Am. J. Hum. Genet. 2008, 82, 304–319. [Google Scholar] [CrossRef]
- Kantaputra, P.N.; Kaewgahya, M.; Hatsadaloi, A.; Vogel, P.; Kawasaki, K.; Ohazama, A.; Ketudat Cairns, J.R. GREMLIN 2 Mutations and Dental Anomalies. J. Dent. Res. 2015, 94, 1646–1652. [Google Scholar] [CrossRef]
- Song, J.S.; Bae, M.; Kim, J.W. Novel TSPEAR mutations in non-syndromic oligodontia. Oral Dis. 2020, 26, 847–849. [Google Scholar] [CrossRef]
- Bowles, B.; Ferrer, A.; Nishimura, C.J.; Pinto e Vairo, F.; Rey, T.; Leheup, B.; Sullivan, J.; Schoch, K.; Stong, N.; Agolini, E.; et al. TSPEAR variants are primarily associated with ectodermal dysplasia and tooth agenesis but not hearing loss: A novel cohort study. Am. J. Med. Genet. A 2021, 185, 2417–2433. [Google Scholar] [CrossRef]
- Schalk-van der Weide, Y.; Beemer, F.A.; Faber, J.A.; Bosman, F. Symptomatology of patients with oligodontia. J. Oral Rehabil. 1994, 21, 247–261. [Google Scholar] [CrossRef]
- Brézulier, D.; Raimbault, P.; Jeanne, S.; Davit-Béal, T.; Cathelineau, G. Association between dental agenesis and facial morphology. A cross-sectional study in France. PLoS ONE 2024, 19, e0314404. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kaida, C.; Saitoh, I.; Fujiwara, T.; Nonaka, K. Craniofacial growth and functional change in oligodontia with ectodermal dysplasia: A case report. J. Oral Rehabil. 2007, 34, 228–235. [Google Scholar] [CrossRef]
- Schroeder, D.K.; Schroeder, M.A.; Vasconcelos, V. Agenesis of maxillary lateral incisors: Diagnosis and treatment options. Dent. Press J. Orthod. 2022, 27, e22spe21. [Google Scholar] [CrossRef]
- Andrade, D.C.; Loureiro, C.A.; Araújo, V.E.; Riera, R.; Atallah, A.N. Treatment for agenesis of maxillary lateral incisors: A systematic review. Orthod. Craniofacial Res. 2013, 16, 129–136. [Google Scholar] [CrossRef]
- Kirzioğlu, Z.; Köseler Sentut, T.; Ozay Ertürk, M.S.; Karayilmaz, H. Clinical features of hypodontia and associated dental anomalies: A retrospective study. Oral Dis. 2005, 11, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Celli, D.; Manente, A.; Grippaudo, C.; Cordaro, M. Interceptive treatment in ectodermal dysplasia using an innovative orthodontic/prosthetic modular appliance. A case report with 10-year follow-up. Eur. J. Paediatr. Dent. 2018, 19, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Cerezo-Cayuelas, M.; Pérez-Silva, A.; Serna-Muñoz, C.; Vicente, A.; Martínez-Beneyto, Y.; Cabello-Malagón, I.; Ortiz-Ruiz, A.J. Orthodontic and dentofacial orthopedic treatments in patients with ectodermal dysplasia: A systematic review. Orphanet J. Rare Dis. 2022, 17, 376. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, R.; Rajamani, T.; Feroz, T.M.; Abraham, S. Agenesis of multiple primary and permanent teeth unilaterally and its possible management. J. Int. Oral Health 2015, 7, 68–70. [Google Scholar]
- Dhanrajani, P.J.; al Abdulkarim, S. Management of severe hypodontia. Implant. Dent. 2002, 11, 338–342. [Google Scholar] [CrossRef]
- Migliorati, M.; Zuffanti, A.; Capuano, M.; Canullo, L.; Caponio, V.C.A.; Menini, M. Periodontal, occlusal, and aesthetic outcomes of missing maxillary lateral incisor replacement: A systematic review and network meta-analysis. Int. Orthod. 2025, 23, 100957. [Google Scholar] [CrossRef]
Gene | Function | Dental Involvement (Non-Syndromic Forms) | Extra-Dental Involvement (Syndromic Forms) |
---|---|---|---|
EDA | Ectodysplasin A | Tooth agenesis, selective, X-linked | X-linked hypohidrotic ectodermal dysplasia (XLHED) |
MSX1 | MSH Homeobox 1 | Tooth agenesis, selective 1, with or without orofacial cleft (AD) | Ectodermal dysplasia A (AD), Witkop type (AD), orofacial cleft (AD) |
WNT10A | Wingless type MMTV integration site family, member 10A | Tooth agenesis, selective (AD and AR) | Ectodermal dysplasia 16 (odontoonychodermal dysplasia) (AR); Schopf–Schulz–Passarge syndrome (AR) |
PAX9 | Paired box gene 9 | Tooth agenesis, selective, 3 (AD) | Not reported |
LRP6 | Low-density lipoprotein receptor-related protein 6 | Tooth agenesis, selective (AD) | Coronary artery disease, autosomal dominant (AD) |
KREMEN1 | Kringle domain-containing transmembrane protein 1 | Ectodermal dysplasia 13, hair/tooth type (AR) | Ectodermal dysplasia 13, hair/tooth type (AR) |
PITX2 | Paired-like homeodomain transcription factor 2 | Variation in tooth dimensions | Anterior segment dysgenesis (AD); Axenfeld–Rieger syndrome, type 1 (AD); ring dermoid of cornea (AD) |
SMOC2 | Sparc-related modular calcium-binding protein 2 | Dentin dysplasia, type I, with microdontia and misshapen teeth (AR) | Not reported |
SHH | Sonic Hedgehog signaling molecule | Not reported | Holoprosencephaly; microphthalmia/coloboma 5; single median maxillary central incisor (all AD) |
GREM2 | Gremlin 2, DAN family BMP antagonist | Tooth agenesis, selective, 9 (AD) | Not reported |
TSPEAR | Tooth agenesis, selective, 10 | Non-syndromic oligodontia | Ectodertamal dysplasia and tooth agenesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modafferi, C.; Tucci, I.; Bogliardi, F.M.; Gimondo, E.; Chiurazzi, P.; Tabolacci, E.; Grippaudo, C. Genetic Aspects of Tooth Agenesis. Genes 2025, 16, 582. https://doi.org/10.3390/genes16050582
Modafferi C, Tucci I, Bogliardi FM, Gimondo E, Chiurazzi P, Tabolacci E, Grippaudo C. Genetic Aspects of Tooth Agenesis. Genes. 2025; 16(5):582. https://doi.org/10.3390/genes16050582
Chicago/Turabian StyleModafferi, Clarissa, Ilaria Tucci, Francesco Maria Bogliardi, Elena Gimondo, Pietro Chiurazzi, Elisabetta Tabolacci, and Cristina Grippaudo. 2025. "Genetic Aspects of Tooth Agenesis" Genes 16, no. 5: 582. https://doi.org/10.3390/genes16050582
APA StyleModafferi, C., Tucci, I., Bogliardi, F. M., Gimondo, E., Chiurazzi, P., Tabolacci, E., & Grippaudo, C. (2025). Genetic Aspects of Tooth Agenesis. Genes, 16(5), 582. https://doi.org/10.3390/genes16050582