Analysis of Multi-Target Synergistic Mechanism of Coix Seed Therapy for Herpes Zoster Based on Machine Learning and Network Pharmacology
Abstract
:1. Introduction
2. Machine Learning Screening Core Targets
2.1. Data Preprocessing and Model Training
2.2. Data Reading and Integration
2.3. Sample Type Annotation
2.4. Data Set Partitioning
2.5. Model Training
3. Network Pharmacological Analysis
3.1. Target Screening
3.2. Acquisition of Disease Target and Intersection Target
3.3. Construction of “Chinese Medicine Ingredients-Target” Network
3.4. Protein Interaction (PPI) Network Construction and Topological Analysis
3.5. Functional Enrichment Analysis of Gene Ontology (GO) and Pathway Enrichment Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG)
3.6. Molecular Docking Verification
3.7. Molecular Dynamics Simulation
4. Result
4.1. Machine Learning Method
4.2. The Component Target of Coix Seed
4.3. Drug Component Targets
4.4. The Target of Disease Action and Intersection Target Were Obtained
4.5. PPI Network and Key Target Analysis
4.6. GO Enrichment Analysis
4.7. KEGG Enrichment Analysis
4.8. Pathway–Target–Active Ingredient Diagram
4.9. Molecular Docking Verification Results
4.10. Molecular Dynamics Simulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawai, K.; Gebremeskel, B.G.; Acosta, C.J. Systematic review of incidence and complications of herpes zoster: Towards a global perspective. BMJ Open 2014, 4, e004833. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Arai, H.; Chen, L.-Y.; Chou, M.-Y.; Djauzi, S.; Dong, B.; Kojima, T.; Kwon, K.T.; Leong, H.N.; Leung, E.M.F.; et al. Looking back to move forward: A twenty-year audit of herpes zoster in Asia-Pacific. BMC Infect. Dis. 2017, 17, 213. [Google Scholar]
- Kawai, K.; Yawn, B.P.; Wollan, P.; Harpaz, R. Increasing incidence of herpes zoster over a 60-year period from a population-based study. Clin. Infect. Dis. 2016, 63, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, A. Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 723–734. [Google Scholar] [CrossRef]
- Marra, Y.; Lalji, F. Prevention of herpes zoster: A focus on the effectiveness and safety of herpes zoster vaccines. Viruses 2022, 14, 2667. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.I. Clinical practice: Herpes zoster. N. Engl. J. Med. 2013, 369, 255–263. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Gnann, J.W., Jr.; Oaklander, A.L.; Raja, S.N.; Schmader, K.E.; Whitley, R.J. Diagnosis and assessment of pain associated with herpes zoster and postherpetic neuralgia. J. Pain 2008, 9, 37–44. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Johnson, R.W.; Breuer, J.; Gnann, J.W.; Levin, M.J.; Backonja, M.; Betts, R.F.; Gershon, A.A.; Haanpaa, M.L.; McKendrick, M.W.; et al. Recommendations for the management of herpes zoster. Clin. Infect. Dis. 2007, 44 (Suppl. 1), S1–S26. [Google Scholar] [CrossRef]
- Huda, M.N.; Li, X.; Jahan, T.; He, Y.; Guan, C.; Zhang, K.; Gao, A.; Georgiev, M.I.; Zhou, M. Acceleration of the genetic gain for nutraceutical improvement of adlay (Coix L.) through genomic approaches: Current status and future prospects. Food Rev. Int. 2023, 39, 5377–5401. [Google Scholar] [CrossRef]
- Zhu, F. Coix: Chemical composition and health effects. Trends Food Sci. Technol. 2017, 61, 160–175. [Google Scholar] [CrossRef]
- Zheng, Q.; Mu, X.; Pan, S.; Luan, R.; Zhao, P. Ephedrae herba: A comprehensive review of its traditional uses, phytochemistry, pharmacology, and toxicology. J. Ethnopharmacol. 2023, 307, 116153. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Gunawan, W.; Hardinsyah, H.; Mayulu, N.; Wijayanti, M. Health benefits of Coix seed (Coix lacryma-jobi): A study review. Curr. Dev. Nutr. 2022, 6, 524. [Google Scholar] [CrossRef]
- Meng, F.D.; Yuan, L.; Lu, D.D.; Yang, Y.T.; Xu, D.J.; Che, M.Y.; Nan, Y. Anti-tumor effect of coix seed based on the theory of medicinal and food homology. World J. Clin. Oncol. 2023, 14, 593. [Google Scholar] [CrossRef]
- Hao, X.T.; Peng, R.; Guan, M.; Zhang, H.J.; Guo, Y.; Shalapy, N.M.; Liu, X.Q.; Ma, C.Y. The food and medicinal homological resources benefiting patients with hyperlipidemia: Categories, functional components, and mechanisms. Food Med. Homol. 2024, 1, 9420003. [Google Scholar] [CrossRef]
- Lu, Q.; Li, R.; Yang, Y.; Zhang, Y.; Zhao, Q.; Li, J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem. 2022, 368, 130610. [Google Scholar] [CrossRef]
- Yu, F.; Gao, J.; Zeng, Y.; Liu, C.X. Inhibition of Coix seed extract on fatty acid synthase, a novel target for anticancer activity. J. Ethnopharmacol. 2008, 119, 252–258. [Google Scholar] [CrossRef]
- Igbokwe, C.J.; Wei, M.; Feng, Y.; Duan, Y.; Ma, H.; Zhang, H. Coix seed: A review of its physicochemical composition, bioactivity, processing, application, functionality, and safety aspects. Food Rev. Int. 2022, 38 (Suppl. 1), 921–939. [Google Scholar] [CrossRef]
- Yang, Z.; Wen, A.; Qin, L.; Zhu, Y. Effect of coix seed extracts on growth and metabolism of Limosilactobacillus reuteri. Foods 2022, 11, 187. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, R.; Liu, T.; Li, Y.; Zhong, J.; Zhang, T.; Liu, Z.; Hu, Y. Coix seed diet ameliorates immune function disorders in experimental colitis mice. Nutrients 2021, 14, 123. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X.; Liu, H.; Sun, B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem. 2025, 463 Pt 1, 141111. [Google Scholar] [CrossRef]
- Zhang, T.T.; Cai, Q.L.; Gu, Z.Y.; Song, T.Y. Novel ACE-inhibiting peptides from soybean protein hydrolysates by peptidomics combined with in silico analysis and their inhibitory effects on proliferation and migration of Ang II-induced VSMCs. Food Med. Homol. 2024, 1, 9420023. [Google Scholar] [CrossRef]
- Yao, R. An in-silico assessment suggests the potential effects of goji (fruit of Lycium barbarum L.) against aging-related diseases. Food Med. Homol. 2025, 2, 9420036. [Google Scholar] [CrossRef]
- Chen, H.; He, Y. Machine learning approaches in traditional Chinese medicine: A systematic review. Am. J. Chin. Med. 2022, 50, 91–131. [Google Scholar] [CrossRef]
- Pan, D.; Guo, Y.; Fan, Y.; Wan, H. Development and Application of Traditional Chinese Medicine Using AI Machine Learning and Deep Learning Strategies. Am. J. Chin. Med. 2024, 52, 605–623. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O.; Iwaloye, O.; Josiah, S.S.; Lawal, A.O.; Akinjiyan, M.O.; Ariyo, E.O. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol. Divers. 2021, 25, 1761–1773. [Google Scholar] [CrossRef]
- Kass, E.H.; Aycock, R.R.; Finland, M. Clinical evaluation of aureomycin and chloramphenicol in herpes zoster. N. Eng. J. Med. 1952, 246, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Catacutan, D.B.; Alexander, J.; Arnold, A.; Stokes, J.M. Machine learning in preclinical drug discovery. Nat. Chem. Biol. 2024, 20, 960–973. [Google Scholar] [CrossRef]
- Xu, C.M.; Jackson, S.A. Machine learning and complex biological data. Genome Biol. 2019, 20, 76. [Google Scholar] [CrossRef]
- Picard, M.; Scott-Boyer, M.-P.; Bodein, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef]
- Yang, S.H.; Liu, M.L.; Tien, C.F.; Chou, S.J.; Chang, R.Y. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3’ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J. Biomed. Sci. 2009, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Dilawari, R.; Chaubey, G.K.; Modanwal, R.; Dhiman, A.; Talukdar, S.; Kumar, A.; Raje, C.I.; Raje, M. Glyceraldehyde-3-Phosphate Dehydrogenase Binds with Spike Protein and Inhibits the Entry of SARS-CoV-2 into Host Cells. J. Innate Immun. 2024, 16, 133–142. [Google Scholar] [CrossRef]
- Pinci, F.; Gaidt, M.M.; Jung, C.; Kuut, G.; Jackson, M.A.; Bauernfried, S.; Hornung, V. C-tag TNF: A reporter system to study TNF shedding. J. Biol. Chem. 2020, 295, 18065–18075. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Maverakis, E.; Alexanian, C.; Wang, J.Z.; Raychaudhuri, S.P. Incidence, clinical features, management, and prevention of herpes zoster in patients receiving antitumor necrosis factor therapy: A clinical review. J. Cutan. Med. Surg. 2020, 24, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Nakano, T.; Kamiya, T.; Kitamura, K.; Ihara, T.; Kamiya, H.; Sakurai, M. Effects of tumor necrosis factor alpha on replication of varicella-zoster virus. Antivir. Res. 1991, 15, 183–192. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Zhu, S.; Xia, B. Herpes zoster in Crohn’s disease during treatment with infliximab. Eur. J. Gastroenterol. Hepatol. 2014, 26, 237–239. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Sun, Y. Skin rash caused by EGFR-TKI could be treated successfully by Pien Tze Huang Unguentum Compositum: A case report. J. Biomed. Res. 2022, 36, 440. [Google Scholar] [CrossRef]
- Sen, N.; Che, X.; Rajamani, J.; Zerboni, L.; Sung, P.; Ptacek, J.; Arvin, A.M. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 600–605. [Google Scholar] [CrossRef]
Code | Corresponding Name |
---|---|
CS1 | (2r)-2,3-Dihydroxypropyl (9z)-Octadec-9-Enoate |
CS2 | (3R,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol |
CS3 | (6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene |
CS4 | 2-Monoolein |
CS5 | 6′-O-feruloylsucrose |
CS6 | adenosine |
CS7 | alpha1-Sitosterol |
CS8 | caprolactam |
CS9 | cholesterol |
CS10 | coixenolide |
CS11 | dibutyl phthalate |
CS12 | ethyl Linoleate |
CS13 | inosine |
CS14 | rossicasin A |
CS15 | sibiricose A3 |
CS16 | stigmasterol |
CS17 | sucrose |
CS18 | uridine |
CS19 | zarzissine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Yang, L.; He, J.; Li, Y.; Yang, N.; Yang, M.; Wu, M. Analysis of Multi-Target Synergistic Mechanism of Coix Seed Therapy for Herpes Zoster Based on Machine Learning and Network Pharmacology. Genes 2025, 16, 580. https://doi.org/10.3390/genes16050580
Song Z, Yang L, He J, Li Y, Yang N, Yang M, Wu M. Analysis of Multi-Target Synergistic Mechanism of Coix Seed Therapy for Herpes Zoster Based on Machine Learning and Network Pharmacology. Genes. 2025; 16(5):580. https://doi.org/10.3390/genes16050580
Chicago/Turabian StyleSong, Zhiqin, Lin Yang, Jing He, Yuchao Li, Ningxian Yang, Min Yang, and Mingkai Wu. 2025. "Analysis of Multi-Target Synergistic Mechanism of Coix Seed Therapy for Herpes Zoster Based on Machine Learning and Network Pharmacology" Genes 16, no. 5: 580. https://doi.org/10.3390/genes16050580
APA StyleSong, Z., Yang, L., He, J., Li, Y., Yang, N., Yang, M., & Wu, M. (2025). Analysis of Multi-Target Synergistic Mechanism of Coix Seed Therapy for Herpes Zoster Based on Machine Learning and Network Pharmacology. Genes, 16(5), 580. https://doi.org/10.3390/genes16050580