Isolation, Enrichment and Analysis of Aerobic, Anaerobic, Pathogen-Free and Non-Resistant Cellulose-Degrading Microbial Populations from Methanogenic Bioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methanogenic Bioreactor
2.2. Isolation and Enrichment of Microbial Consortia
2.3. Determining the Degree of Filter Paper Degradation
2.4. Antimicrobial Test
2.5. Long-Term Storage by Lyophilisation
2.6. Isolation of rRNA
2.7. Conventional PCR
2.8. Metagenomic Sequencing
2.8.1. Amplicon Sequencing of the Bacterial 16S rRNA Gene and the Fungal ITS2 Region
2.8.2. Library Preparation for 16S Metagenomic Sequencing
2.8.3. Data Preprocessing and ASV Generation
2.8.4. Taxonomic Assignment
2.8.5. Community Composition Visualization
2.9. Statistical Analysis
3. Results
3.1. Cellulose Biodegradation
3.2. Antimicrobial Resistance
3.3. Detection of Cellulose-Specific Genes and Genes for Antimicrobial Resistance
3.4. Metagenome Analysis
4. Discussion
4.1. Cellulose Biodegradation
4.2. Long-Term Storage
4.3. Antimicrobial Resistance and Genes for Antibiotic Resistance
4.4. Genes for Cellulolytic Activity and Stress Proteins
4.5. Cellulose-Degrading Bacterial Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Zhang, A.; Li, W.; Sun, R. Dissolution of cellulose in novel green solvent ionic liquids and its application. Prog. Chem. 2009, 21, 1800–1806. [Google Scholar]
- Gil, A. Current insights into lignocellulose related waste valorization. Chem. Eng. J. Adv. 2021, 8, 100186. [Google Scholar] [CrossRef]
- Das, S.; Rudra, S.; Khatun, I.; Sinha, N.; Sen, M.; Ghosh, D. Concise review on lignocellulolytic microbial consortia for lignocellulosic waste biomass utilization: A way forward? Microbiology 2023, 92, 301–317. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, N.R.; Singh, J.; Kanwar, R.S. Biological methods for textile dye removal from wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1836–1876. [Google Scholar] [CrossRef]
- European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; European Union: Brussels, Belgium, 2008. [Google Scholar]
- Directorate-General for Environment. Proposal for a Targeted Revision of the Waste Framework Directive; European Commision: Brussels, Belgium, 2023. [Google Scholar]
- King, M.W.; Gupta, B.S.; Guidoin, R. Biotextiles as Medical Implants; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as sustainable resources for production of bioplastics—A review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Jeihanipour, A. Waste Textiles Bioprocessing to Ethanol and Biogas. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2011. [Google Scholar]
- Jarvis, M.C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170045. [Google Scholar] [CrossRef]
- Šuchová, K.; Fehér, C.; Ravn, J.L.; Bedő, S.; Biely, P.; Geijer, C. Cellulose-and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol. Adv. 2022, 59, 107981. [Google Scholar] [CrossRef]
- Fu, Z.-H.; Liu, J.; Zhong, L.-B.; Huang, H.; Zhu, P.; Wang, C.-X.; Bai, X.-P. Screening of cellulose-degrading yeast and evaluation of its potential for degradation of coconut oil cake. Front. Microbiol. 2022, 13, 996930. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; De la Rubia, T.; Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Leschine, S.B. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 1995, 49, 399–426. [Google Scholar] [CrossRef]
- Singh, S.; Jaiswal, D.K.; Sivakumar, N.; Verma, J.P. Developing efficient thermophilic cellulose degrading consortium for glucose production from different agro-residues. Front. Energy Res. 2019, 7, 61. [Google Scholar] [CrossRef]
- Ji, J.; Escobar, M.; Cui, S.; Zhang, W.; Bao, C.; Su, X.; Wang, G.; Zhang, S.; Chen, H.; Chen, G. Isolation and Characterization of a Low-Temperature, Cellulose-Degrading Microbial Consortium from Northeastern China. Microorganisms 2024, 12, 1059. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.; Ayakar, S.; Adivarekar, R. Formulation and characterization of bacterial consortium for efficient lignocellulosic waste degradation. J. Environ. Chem. Eng. 2024, 12, 112619. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yang, R.; Yang, P.; Fu, H.; Yang, Y.; Liu, C. Construction of Microbial Consortium to Enhance Cellulose Degradation in Corn Straw during Composting. Agronomy 2024, 14, 2107. [Google Scholar] [CrossRef]
- Gupta, P.; Samant, K.; Sahu, A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 2012, 578925. [Google Scholar] [CrossRef]
- Sheng, P.; Huang, J.; Zhang, Z.; Wang, D.; Tian, X.; Ding, J. Construction and characterization of a cellulolytic consortium enriched from the hindgut of Holotrichia parallela larvae. Int. J. Mol. Sci. 2016, 17, 1646. [Google Scholar] [CrossRef]
- Roy, D.; Gunri, S.K.; Pal, K.K. Isolation, screening and characterization of efficient cellulose-degrading fungal and bacterial strains and preparation of their consortium under in vitro studies. 3 Biotech 2024, 14, 131. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.; Bobusheva, S. Screening of wild-type fungal isolates for cellulolytic activity. Microbiol. Insights 2011, 4, MBI-S6418. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Bhat, S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 1997, 15, 583–620. [Google Scholar] [CrossRef] [PubMed]
- Henrissat, B.; Driguez, H.; Viet, C.; Schülein, M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technol. 1985, 3, 722–726. [Google Scholar] [CrossRef]
- Wood, T.M.; McCrae, S.I. The cellulase of Trichoderma koningii. Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. Biochem. J. 1978, 171, 61–72. [Google Scholar] [CrossRef]
- Konan, D.; Ndao, A.; Koffi, E.; Elkoun, S.; Robert, M.; Rodrigue, D.; Adjallé, K. Biodecomposition with Phanerochaete chrysosporium: A review. AIMS Microbiol. 2024, 10, 1068. [Google Scholar] [CrossRef]
- Gupta, M.N.; Bisaria, V.S. Stable cellulolytic enzymes and their application in hydrolysis of lignocellulosic biomass. Biotechnol. J. 2018, 13, 1700633. [Google Scholar]
- Wojtczak, G.; Breuil, C.; Yamada, J.; Saddler, J. A comparison of the thermostability of cellulases from various thermophilic fungi. Appl. Microbiol. Biotechnol. 1987, 27, 82–87. [Google Scholar] [CrossRef]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Cipolatti, E.P.; Pinto, M.C.C.; Henriques, R.O.; da Silva Pinto, J.C.C.; de Castro, A.M.; Freire, D.M.G.; Manoel, E.A. Enzymes in green chemistry: The state of the art in chemical transformations. In Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 137–151. [Google Scholar]
- de Souza, T.S.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Mokale Kognou, A.L.; Chio, C.; Khatiwada, J.R.; Shrestha, S.; Chen, X.; Han, S.; Li, H.; Jiang, Z.-H.; Xu, C.C.; Qin, W. Characterization of cellulose-degrading bacteria isolated from soil and the optimization of their culture conditions for cellulase production. Appl. Biochem. Biotechnol. 2022, 194, 5060–5082. [Google Scholar] [CrossRef]
- Nunes, P.S.; Lacerda-Junior, G.V.; Mascarin, G.M.; Guimarães, R.A.; Medeiros, F.H.; Arthurs, S.; Bettiol, W. Microbial consortia of biological products: Do they have a future? Biol. Control 2024, 188, 105439. [Google Scholar] [CrossRef]
- Dimitrova, L.; Kussovski, V.; Hubenov, V.; Kabaivanova, L.; Angelov, P.; Najdenski, H. Microbial degradation of cellulose containing waste in Earth’s conditions and in a life support system for manned spaceflights. Part I: Types of cellulose containing substrates and approaches for their biodegradation in Earth’s conditions and long-term manned spaceflights. Ecol. Eng. Environ. Prot. 2020, 4, 5–13. [Google Scholar]
- Updegraff, D.M. Semimicro determination of cellulose inbiological materials. Anal. Biochem. 1969, 32, 420–424. [Google Scholar] [CrossRef]
- Watts, J.L.; CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibilty Tests for Bacteria Isolated from Animals: Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 15.0; European Committee on Antimicrobial Susceptibility Testing: Basel, Switzerland, 2025. [Google Scholar]
- Power, D.; McCuen, P. Manual of BBL Products and Laboratory Procedures, 6th ed.; BBL Publishing: Chicago, IL, USA, 1998. [Google Scholar]
- Han, S.O.; Yukawa, H.; Inui, M.; Doi, R.H. Transcription of Clostridium cellulovorans cellulosomal cellulase and hemicellulase genes. J. Bacteriol. 2003, 185, 2520–2527. [Google Scholar] [CrossRef]
- Han, S.O.; Yukawa, H.; Inui, M.; Doi, R.H. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J. Bacteriol. 2003, 185, 6067–6075. [Google Scholar] [CrossRef]
- Shoseyov, O.; Goldstein, M.; Foong, F.; Hamamoto, T.; Doi, R.H. GenBank: M73817.1. Clostridium cellulovorans Cellulose Binding Protein Gene (cbp A), Complete cds. 1992. Available online: https://www.ncbi.nlm.nih.gov/nuccore/144748 (accessed on 10 April 2025).
- Liu, C.C.; Doi, R.H. GenBank: U34793.3. Clostridium cellulovorans Exoglucanase S (exgS) and Endoglucanase H (engH) Genes, Complete cds. 1998. Available online: https://www.ncbi.nlm.nih.gov/nuccore/5705873 (accessed on 10 April 2025).
- Tamaru, Y.; Doi, R.H. GenBank: AF132735.2. Clostridium cellulovorans endoglucanase K (engK), Hydrophobic Protein A (hbpA), Endoglucanase L (engL), Mannanase A (manA), Endoglucanase M (engM), Endoglucanase N (engN), and Transposase (trp) Genes, Complete cds; and Malate Permease (mln) Gene, Partial cds. 2000. Available online: https://www.ncbi.nlm.nih.gov/nuccore/7363462 (accessed on 10 April 2025).
- Tamaru, Y.; Doi, R.H. GenBank: AF105331.1. Clostridium cellulovorans Phosphomethylpyrimidine Kinase (pmk) Gene, Partial cds; and Endoglucanase EngE Gene, Complete cds. 1999. Available online: https://www.ncbi.nlm.nih.gov/nuccore/5106517 (accessed on 10 April 2025).
- Nye, T.; Schroeder, J.; Kearns, D.; Simmons, L. GenBank: CP020102.1. Bacillus subtilis Strain NCIB 3610 Chromosome, Complete Genome. 2017. Available online: https://www.ncbi.nlm.nih.gov/nuccore/CP020102.1 (accessed on 10 April 2025).
- Muto, A.; Fujihara, A.; Ito, K.i.; Matsuno, J.; Ushida, C.; Himeno, H. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells 2000, 5, 627–635. [Google Scholar] [CrossRef]
- Lucas, S.; Copeland, A.; Lapidus, A.; Cheng, J.-F.; Bruce, D.; Goodwin, L.; Pitluck, S.; Chertkov, O.; Detter, J.C.; Han, C.; et al. NCBI Reference Sequence: NC_014393.1. Clostridium cellulovorans 743B, Complete Sequence. 2010. Available online: https://www.ncbi.nlm.nih.gov/nuccore/302872922 (accessed on 10 April 2025).
- Kosugi, A.; Murashima, K.; Doi, R.H. GenBank: AF435978.1. Clostridium cellulovorans Hypothetical Protein Gene, Complete cds; dxylA Pseudogene, Complete Sequence; and Xylanase (xynA) Gene, Complete cds. 2002. Available online: https://www.ncbi.nlm.nih.gov/nuccore/23451701 (accessed on 10 April 2025).
- Si, H.; Hu, J.; Liu, Z.; Zeng, Z.-L. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 2008, 53, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Annisha, O.D.R.; Li, Z.; Zhou, X.; Stenay Junior, N.M.D.; Donde, O.O. Efficacy of integrated ultraviolet ultrasonic technologies in the removal of erythromycin-and quinolone-resistant Escherichia coli from domestic wastewater through a laboratory-based experiment. J. Water Sanit. Hyg. Dev. 2019, 9, 571–580. [Google Scholar] [CrossRef]
- Pourhossein, Z.; Asadpour, L.; Habibollahi, H.; Shafighi, S.T. Antimicrobial resistance in fecal Escherichia coli isolated from poultry chicks in northern Iran. Gene Rep. 2020, 21, 100926. [Google Scholar] [CrossRef]
- Saga, T.; Sabtcheva, S.; Mitsutake, K.; Ishii, Y.; Tateda, K.; Yamaguchi, K.; Kaku, M. Characterization of qnrB-like Genes in Citrobacter Species of the American Type Culture Collection. NCBI Reference Sequence: NG_050524.1.Citrobacter freundii ATCC 6879 qnrB Gene for Quinolone Resistance Pentapeptide Repeat Protein QnrB60, Complete CDS. 2013. Available online: https://www.ncbi.nlm.nih.gov/nuccore/1035504588 (accessed on 10 April 2025).
- Ranjbar, R.; Safarpoor Dehkordi, F.; Sakhaei Shahreza, M.H.; Rahimi, E. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob. Resist. Infect. Control 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Jafari, E.; Mostaan, S.; Bouzari, S. Characterization of antimicrobial susceptibility, extended-spectrum β-lactamase genes and phylogenetic groups of enteropathogenic Escherichia coli isolated from patients with diarrhea. Osong Public Health Res. Perspect. 2020, 11, 327. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Kuan, N.-L.; Yeh, K.-S. Characteristics of extended-spectrum β-lactamase–producing Escherichia coli from dogs and cats admitted to a veterinary teaching hospital in Taipei, Taiwan from 2014 to 2017. Front. Vet. Sci. 2020, 7, 395. [Google Scholar] [CrossRef] [PubMed]
- Mandakini, R.; Roychoudhury, P.; Subudhi, P.; Kylla, H.; Samanta, I.; Bandyopadhayay, S.; Dutta, T. Higher prevalence of multidrug-resistant extended-spectrum β-lactamases producing Escherichia coli in unorganized pig farms compared to organized pig farms in Mizoram, India. Vet. World 2020, 13, 2752. [Google Scholar] [CrossRef] [PubMed]
- Khoirani, K.; Indrawati, A.; Setiyaningsih, S. Detection of ampicillin resistance encoding gene of Escherichia coli from chickens in Bandung and Purwakarta. J. Ris. Vet. Indones. (J. Indones. Vet. Res.) 2019, 3, 42–46. [Google Scholar] [CrossRef]
- Böckelmann, U.; Dörries, H.-H.; Ayuso-Gabella, M.N.; Salgot de Marçay, M.; Tandoi, V.; Levantesi, C.; Masciopinto, C.; Van Houtte, E.; Szewzyk, U.; Wintgens, T. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl. Environ. Microbiol. 2009, 75, 154–163. [Google Scholar] [CrossRef]
- Nguyen, M.C.P.; Woerther, P.-L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Yurkov, A.P.; Kryukov, A.A.; Gorbunova, A.O.; Kudriashova, T.R.; Kovalchuk, A.I.; Gorenkova, A.I.; Bogdanova, E.M.; Laktionov, Y.V.; Zhurbenko, P.M.; Mikhaylova, Y.V. Diversity of arbuscular mycorrhizal fungi in distinct ecosystems of the North Caucasus, a temperate biodiversity hotspot. J. Fungi 2023, 10, 11. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.; McMurdie, P.; Rosen, M.; Han, A.; Johnson, A.; Dada, S.H. High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yu, Y.; Wang, X.; Qu, Y.; Li, D.; He, W.; Kim, B.H. Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour. Technol. 2011, 102, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Tyler, H.L.; Triplett, E.W. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 2008, 46, 53–73. [Google Scholar] [CrossRef]
- Papich, M.G. Saunders handbook of veterinary drugs. North Carol. 2016, 12, 162–171. [Google Scholar]
- Cycoń, M.; Orlewska, K.; Markowicz, A.; Żmijowska, A.; Smoleń-Dzirba, J.; Bratosiewicz-Wąsik, J.; Wąsik, T.J.; Piotrowska-Seget, Z. Vancomycin and/or multidrug-resistant Citrobacter freundii altered the metabolic pattern of soil microbial community. Front. Microbiol. 2018, 9, 1047. [Google Scholar] [CrossRef]
- Hidayatullah, A.R.; Effendi, M.H.; Plumeriastuti, H.; Wibisono, F.M.; Hartadi, E.B.; Sofiana, E.D. A Review of the opportunistic pathogen Citrobacter freundii in piglets post weaning: Public Health Importance. Syst. Rev. Pharm. 2020, 11, 763–773. [Google Scholar]
- Farzan, A.; Friendship, R.; Cook, A.; Pollari, F. Occurrence of Salmonella, Campylobacter, Yersinia enterocolitica, Escherichia coli O157 and Listeria monocytogenes in swine. Zoonoses Public Health 2010, 57, 388–396. [Google Scholar] [CrossRef]
- Bari, M.L.; Hossain, M.A.; Isshiki, K.; Ukuku, D. Behavior of Yersinia enterocolitica in Foods. J. Pathog. 2011, 2011, 420732. [Google Scholar] [CrossRef]
- Britova, S. Survival of Morganella morganii on various types of object. 1985. [Google Scholar]
- Prado, J. Virulence and Resistance Factors Associated with the Specie of Proteus vulgaris. Int. J. Pathog. Res. 2023, 13, 32–36. [Google Scholar] [CrossRef]
- Stańczyk-Mazanek, E.; Kępa, U.; Stępniak, L. Drug-resistant bacteria in soils fertilized with sewage sludge. Rocz. Ochr. Sr. 2015, 17, 125–142. [Google Scholar]
- Youenou, B.; Brothier, E.; Nazaret, S. Diversity among strains of Pseudomonas aeruginosa from manure and soil, evaluated by multiple locus variable number tandem repeat analysis and antibiotic resistance profiles. Res. Microbiol. 2014, 165, 2–13. [Google Scholar] [CrossRef]
- Pulami, D.; Kämpfer, P.; Glaeser, S.P. High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. Sci. Total Environ. 2023, 859, 160182. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. EUCAST Expert Rules: Intrinsic Resistance and Exceptional Phenotypes v3.1; European Committee on Antimicrobial Susceptibility Testing: Basel, Switzerland, 2016. [Google Scholar]
- Bagewadi, Z.K.; Garg, S.D.; Deshnur, P.B.; Shetti, N.S.; Banne, A.A. Production dynamics of extracellular alkaline protease from Neisseria sps isolated from soil. Biotechnol. Bioinf. Bioeng. 2011, 1, 483–493. [Google Scholar]
- Frey, S.K.; Topp, E.; Khan, I.U.; Ball, B.R.; Edwards, M.; Gottschall, N.; Sunohara, M.; Lapen, D.R. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control. Sci. Total Environ. 2015, 532, 138–153. [Google Scholar] [CrossRef]
- Atapoor, S.; Dehkordi, F.S.; Rahimi, E. Detection of Helicobacter pylori in various types of vegetables and salads. Jundishapur J. Microbiol. 2014, 7, e10013. [Google Scholar] [CrossRef]
- Irkitova, A.; Grebenshchikova, A.; Dudnik, D. Antibiotic susceptibilty of bacteria from the Bacillus subtilis group. Ukr. J. Ecol. 2019, 9, 363–366. [Google Scholar] [CrossRef]
- Bressler, A.M.; Williams, T.; Culler, E.E.; Zhu, W.; Lonsway, D.; Patel, J.B.; Nolte, F.S. Correlation of penicillin binding protein 2a detection with oxacillin resistance in Staphylococcus aureus and discovery of a novel penicillin binding protein 2a mutation. J. Clin. Microbiol. 2005, 43, 4541–4544. [Google Scholar] [CrossRef]
- Arbeloa, A.; Segal, H.; Hugonnet, J.-E.; Josseaume, N.; Dubost, L.; Brouard, J.-P.; Gutmann, L.; Mengin-Lecreulx, D.; Arthur, M. Role of class A penicillin-binding proteins in PBP5-mediated β-lactam resistance in Enterococcus faecalis. J. Bacteriol. 2004, 186, 1221–1228. [Google Scholar] [CrossRef]
- Bush, K. Recent developments in β-lactamase research and their implications for the future. Clin. Infect. Dis. 1988, 10, 681–690. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef]
- Uğraklı, S.; Doğan, M. Overview of β-Lactamases and Current Techniques for Detecting Beta-Lactamase Mediated Resistance. Ann. Clin. Med. Microbiol. 2018, 3, 1016. [Google Scholar]
- Akpaka, P.E.; Vaillant, A.; Wilson, C.; Jayaratne, P. Extended Spectrum Beta-Lactamase (ESBL) Produced by Gram-Negative Bacteria in Trinidad and Tobago. Int. J. Microbiol. 2021, 2021, 5582755. [Google Scholar] [CrossRef]
- Hryniewicz, M.M.; Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)—A more common problem than expected? J. Med. Microbiol. 2017, 66, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Nomura, R.; Nakaminami, H.; Takasao, K.; Muramatsu, S.; Kato, Y.; Wajima, T.; Noguchi, N. A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J. Glob. Antimicrob. Resist. 2020, 22, 244–247. [Google Scholar] [CrossRef]
- Gad, W.; Hauck, R.; Krüger, M.; Hafez, H. Determination of antibiotic sensitivities of Clostridium perfringens isolates from commercial turkeys in Germany in vitro. Arch. Für Geflügelkunde 2011, 75, 80–83. [Google Scholar] [CrossRef]
- Kumari, K.S.; Gaur, M.; Dixit, S.; Dash, P.; Subudh, E. Nutritional Types and Drug Resistance Profiling of Microbiota Harboring Dental Root Canal of Patients with Apical Periodontitis. J. Res. Dent. Maxillofac. Sci. 2024, 9, 287–296. [Google Scholar] [CrossRef]
- Christopoulou, N.; Granneman, S. The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. FEBS J. 2022, 289, 1746–1764. [Google Scholar] [CrossRef]
- Shin, J.-H.; Price, C.W. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J. Bacteriol. 2007, 189, 3729–3737. [Google Scholar] [CrossRef]
- Yutin, N.; Galperin, M.Y. A genomic update on clostridial phylogeny: G ram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 2013, 15, 2631–2641. [Google Scholar] [CrossRef]
- FitzGerald, J.A. The Microbial Ecology of anaerobic Digestion: Characterising Novel Biogas Configurations Through Molecular and Statistical Methods. Ph.D. Thesis, University College Cork, Cork, Ireland, 2018. [Google Scholar]
- Rettenmaier, R.; Schneider, M.; Munk, B.; Lebuhn, M.; Jünemann, S.; Sczyrba, A.; Maus, I.; Zverlov, V.; Liebl, W. Importance of Defluviitalea raffinosedens for hydrolytic biomass degradation in co-culture with Hungateiclostridium thermocellum. Microorganisms 2020, 8, 915. [Google Scholar] [CrossRef]
- Bassil, N.M.; Lloyd, J.R. Anaerobacillus isosaccharinicus sp. nov., an alkaliphilic bacterium which degrades isosaccharinic acid. Int. J. Syst. Evol. Microbiol. 2019, 69, 3666–3671. [Google Scholar] [CrossRef] [PubMed]
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Khan, A.; Murray, W. Influence of Clostridium saccharolyticum on cellulose degradation by Acetivibrio cellulolyticus. J. Appl. Bacteriol. 1982, 53, 379–383. [Google Scholar] [CrossRef]
- Lee, C.S.; Jung, Y.-T.; Park, S.; Oh, T.-K.; Yoon, J.-H. Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int. J. Syst. Evol. Microbiol. 2010, 60, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Yin, T.; Lu, Z.; Boboua, S.Y.B.; Li, J.; Zhou, W. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresour. Technol. 2020, 304, 123064. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Zhang, H.; Huang, T.; Tian, W.; Wang, Z.; Qian, J. Synergy between bacteria and fungi contributes to biodegradation and methane production of lignocellulosic anaerobic co-digestion exposing to surfactants. J. Environ. Manag. 2025, 373, 123579. [Google Scholar] [CrossRef]
- Varongchayakul, S.; Songkasiri, W.; Chaiprasert, P. High potential lignocellulose-degrading microbial seed exploration from various biogas plants for methane production. Renew. Energy 2024, 231, 120900. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, J.; Nan, T.; Ge, Y.; Yang, G.; Li, Y.; Shen, Y.; Wang, Z.; Chen, M.; Huang, L. Indigenous lignocellulose-degrading consortium efficiently degrade Traditional Chinese medicine residues. Ind. Crops Prod. 2025, 226, 120641. [Google Scholar] [CrossRef]
- Fang, H.; Oberoi, A.S.; He, Z.; Khanal, S.K.; Lu, H. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism. Water Res. 2021, 191, 116808. [Google Scholar] [CrossRef]
- Sun, L.; Toyonaga, M.; Ohashi, A.; Tourlousse, D.M.; Matsuura, N.; Meng, X.-Y.; Tamaki, H.; Hanada, S.; Cruz, R.; Yamaguchi, T. Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 2635–2642. [Google Scholar] [CrossRef] [PubMed]
Gene | Enzyme Encoded | Sequences | Tm | Reference |
---|---|---|---|---|
CbpA F | Cellulose-binding protein | ATGCAAAAAAAGAAATCGCTG | 62.9 °C | [42,43,44] |
CbpA R | GGTTGATGTTGGGCTTGCTGTTTC | 52.3 °C | ||
EngH F | Endoglucanase H | GTGTTT AACATATCTAAGAAAAAA | 53.1 °C | [45] |
EngH R | CTACTGTGATAAAAGTAGTTTC | 49.3 °C | ||
EngM F | Endoglucanase M | ATGAATAGAAAAAAAATAACAGC | 55.1 °C | [46] |
EngM R | TTATGCAAGCAGTTGTTTCTTTA | 60.4 °C | ||
EngE F | Endoglucanase E | ATGAAGAAGAGAAACAGAATA | 52.2 °C | [47] |
EngE R | TTATATTGCTTTTTTTAAGAATGC | 57.4 °C | ||
ExgS F | Exoglucanase S | ATGAGAAAAAGATTAAATAAG | 49.0 °C | [45] |
ExgS R | TTAAGCAAGAAGTGCTTTCT | 56.1 °C | ||
SsrA BS F | Transfer-messenger RNA gene in B. subtilis | GGGGACGTTACGGATTCGACA | 70.0 °C | [48,49] |
SsrA BS R | GTATGGAGACGGTGGGAGTCGAA | 70.2 °C | ||
SsrA F | Transfer-messenger RNA gene in C. cellulovorans | GGGGGTGTACTTGGTTTCGA | 65.9 °C | [50] |
SsrA R | TGGTGGAGGTGAGGGGTG | 67.5 °C | ||
XynA F | Xylanase | ATGAAACAAAAAATGAGGATAGTT | 58.6 °C | [51] |
XynA R | TTAGAATGCACCATTTAACAT | 56.2 °C | ||
ESBLs-TEM F | Extended-spectrum plasmid-mediated β-lactamases | GGGGATGAGTATTCAACATTTCC | [52] | |
ESBLs-TEM R | GGGCAGTTACCAATGCTTAATCA | |||
QnrA F | Plasmid-mediated quinolone resistance protein | GGGTATGGATATTATTGATAAAG | 55.0 °C | [53] |
QnrA R | CTAATCCGGCAGCACTATTTA | 60.7 °C | ||
QnrB F | GATCGTGAAAGCCAGAAAGG | 63.6 °C | [54] | |
QnrB R | ACGATGCCTGGTAGTTGTCC | 63.9 °C | ||
QnrB60 F | ATGGCTCTGGCATTAATTGGCG | 62.1 °C | [55] | |
QnrB60 R | TTAGCCAATGACAGCGATGCC | 61.2 °C | ||
Aac(3)-IV F | Plasmid-encoded aminoglycoside acetyltransferase | CTTCAGGATGGCAAGTTGGT | 64.0 °C | [56] |
Aac(3)-IV R | TCATCTCGTTCTCCGCTCAT | 64.9 °C | ||
BlaSHV F | β-lactamase encoded on the plasmid | TCGCCTGTGTATTATCTCCC | 61.5 °C | [57] |
BlaSHV R | CGCAGATAAATCACCACAATG | 62.9 °C | ||
BlaTEM F | TCGGGGAAATGTGCGCG | 71.9 °C | [58] | |
BlaTEM R | TGCTTAATCAGTGAGGCACC | 62.8 °C | ||
BlaCMY F | class C β-lactamase encoded on the plasmid | TTTCTCCTGAACGTGGCTGGC | 70.1 °C | [59] |
BlaCMY R | TGGCCAGAACTGACAGGCAAA | 70.7 °C | ||
AmpC F | Cephalosporinases encoded on the chromosomes | AATGGGTTTTCTACGGTCTG | 60.4 °C | [60] |
AmpC R | GGGCAGCAAATGTGGAGCAA | 70.5 °C | ||
AmpC F | GTGACCAGATACTGGCCACA | 60.5 °C | [61] | |
AmpC R | TTACTGTAGCGCCTCGAGGA | 60.5 °C | ||
ErmB F | Plasmid-encoded erythromycin-resistant methylase | GAAAAAGTACTCAACCAAATA | 52.7 °C | [62] |
ErmB R | AATTTAAGTACCGTTAC | 43.0 °C | ||
ErmB F | GCATTTAACGACGAAACTGGC | 60.1 °C | [61] | |
ErmB R | GACAATACTTGCTCATAAGTAATGGT | 61.7 °C |
Drug Class | Antibiotic | Aerobic Consortium | Anaerobic Consortium | ||
---|---|---|---|---|---|
PCS | BHA | PCS | BHA | ||
Penicillins | Amoxicillin | S | S | S | S |
Amoxicillin/-clavulanic acid | S | S | S | S | |
Ampicillin | S | S | S | S | |
Carbenicillin | S | S | S | S | |
Oxacillin | R | R | R | R | |
Penicillin G | S | S | S | S | |
Piperacillin | S | S | S | S | |
Piperacillin/-tazobactam | S | S | S | S | |
Ticarcillin | S | S | S | S | |
Ticarcillin/clavulanic acid | S | S | S | S | |
Tetracyclines | Doxycycline | S | S | S | S |
Doxycycline HCl | S | S | S | S | |
Tetracycline | S | I | S | S | |
Cephalosporins | Cefamandole | S | S | S | S |
Ceftazidime | S | R | R | S | |
Ceftazidime-avibactam | R | R | S | S | |
Ceftolozane/tazobactam | S | R | R | R | |
Cefepime | R | R | I | R | |
Carbapenems | Doripenem | R | R | R | R |
Imipenem | S | S | S | S | |
Meropenem | S | S | S | S | |
Monobactams | Aztreonam | S | R | R | R |
Fluoroquinolones | Ciprofloxacin | S | S | I | S |
Pefloxacin | S | S | R | R | |
Levofloxacin | S | S | R | R | |
Nalidixic acid | R | R | R | S | |
Aminoglycosides | Amikacin | S | S | S | I |
Gentamycin | S | S | S | S | |
Kanamycin | I | S | S | R | |
Streptomycin | R | R | R | S | |
Tobramycin | I | S | S | S | |
Glycopeptides and lipoglycopeptides | Vancomycin | S | S | S | S |
Macrolides | Erythromycin | S | I | S | S |
Clarithromycin | S | S | S | S | |
Rifampin | S | S | S | R | |
Other agents | Chloramphenicol | S | S | S | S |
Bacitracin | R | R | R | R | |
Colistin (methanesulfonate) | R | R | R | R | |
Lincomycin | R | R | R | R | |
Novobiocin | S | S | R | R | |
Trimethoprim/sulfamethoxazole | S | S | R | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrova, L.; Ilieva, Y.; Gouliamova, D.; Kussovski, V.; Hubenov, V.; Georgiev, Y.; Bratanova, T.; Kaleva, M.; Zaharieva, M.M.; Najdenski, H. Isolation, Enrichment and Analysis of Aerobic, Anaerobic, Pathogen-Free and Non-Resistant Cellulose-Degrading Microbial Populations from Methanogenic Bioreactor. Genes 2025, 16, 551. https://doi.org/10.3390/genes16050551
Dimitrova L, Ilieva Y, Gouliamova D, Kussovski V, Hubenov V, Georgiev Y, Bratanova T, Kaleva M, Zaharieva MM, Najdenski H. Isolation, Enrichment and Analysis of Aerobic, Anaerobic, Pathogen-Free and Non-Resistant Cellulose-Degrading Microbial Populations from Methanogenic Bioreactor. Genes. 2025; 16(5):551. https://doi.org/10.3390/genes16050551
Chicago/Turabian StyleDimitrova, Lyudmila, Yana Ilieva, Dilnora Gouliamova, Vesselin Kussovski, Venelin Hubenov, Yordan Georgiev, Tsveta Bratanova, Mila Kaleva, Maya M. Zaharieva, and Hristo Najdenski. 2025. "Isolation, Enrichment and Analysis of Aerobic, Anaerobic, Pathogen-Free and Non-Resistant Cellulose-Degrading Microbial Populations from Methanogenic Bioreactor" Genes 16, no. 5: 551. https://doi.org/10.3390/genes16050551
APA StyleDimitrova, L., Ilieva, Y., Gouliamova, D., Kussovski, V., Hubenov, V., Georgiev, Y., Bratanova, T., Kaleva, M., Zaharieva, M. M., & Najdenski, H. (2025). Isolation, Enrichment and Analysis of Aerobic, Anaerobic, Pathogen-Free and Non-Resistant Cellulose-Degrading Microbial Populations from Methanogenic Bioreactor. Genes, 16(5), 551. https://doi.org/10.3390/genes16050551