Selection Signatures in Italian Goat Populations Sharing the “facciuto” Phenotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Genotypic Data
2.2. Detection of FST-Outlier Markers
2.3. Gene Content of Genomic Regions Identified as Under Selection
3. Results and Discussion
3.1. SNP Loci Under Differential Selection
3.2. Best Candidate Regions and Putatively Selected Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eizirik, E.; Trindade, F.J. Genetics and Evolution of Mammalian Coat Pigmentation. Annu. Rev. Anim. Biosci. 2021, 9, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.J. Variation Due to Change in the Individual Gene. Am. Nat. 1922, 56, 32–50. [Google Scholar]
- Norris, B.J.; Whan, V.A. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res. 2008, 18, 1282–1293. [Google Scholar]
- Acharya, R.M.; Gupta, U.D.; Sehgal, J.P.; Singh, M. Coat characteristics of goats in relation to heat tolerance in the hot tropics. Small Rumin. Res. 1995, 18, 245. [Google Scholar] [CrossRef]
- Cieslak, M.; Reissmann, M.; Hofreiter, M.; Ludwig, A. Colours of domestication. Biol. Rev. 2011, 86, 885–899. [Google Scholar]
- Costin, G.E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar]
- Deng, W.D.; Xi, D.M.; Gou, X.; Yang, S.L.; Shi, X.W.; Mao, H.M. Pigmentation in Black-boned sheep (Ovis aries): Association with polymorphism of the Tyrosinase gene. Mol. Biol. Rep. 2008, 35, 379–385. [Google Scholar]
- Yuxing, Z.; Hong, W.; Li, Y. Progress on coat color regulation mechanism and its association with the adaptive evolution in mammals. Yi Chuan Hered. 2021, 43, 118–133. [Google Scholar]
- Ito, S.; Wakamatsu, K. Human hair melanins: What we have learned and have not learned from mouse coat color pigmentation. Pigment. Cell Melanoma Res. 2011, 24, 63–74. [Google Scholar]
- Jordan, S.A.; Jackson, I.J. Melanocortin receptors and antagonists regulate pigmentation and body weight. Bioessays 1998, 20, 603–606. [Google Scholar]
- Henkel, J.; Dubacher, A.; Bangerter, E.; Herren, U.; Ammann, P.; Drögemüller, C.; Flury, C.; Leeb, T. Introgression of ASIP and TYRP1 Alleles Explains Coat Color Variation in Valais Goats. J. Hered. 2021, 112, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Terai, Y.; Widayati, K.A.; Itoigawa, A.; Purba, L.H.P.S.; Fahri, F.; Suryobroto, B.; Imai, H. Functional divergence of the pigmentation gene melanocortin-1 receptor (MC1R) in six endemic Macaca species on Sulawesi Island. Sci. Rep. 2022, 12, 7593. [Google Scholar] [CrossRef] [PubMed]
- Alshanbari, F.; Castaneda, C.; Juras, R.; Hillhouse, A.; Mendoza, M.N.; Gutiérrez, G.A.; Ponce de León, F.A.; Raudsepp, T. Comparative FISH-Mapping of MC1R, ASIP, and TYRP1 in New and Old World Camelids and Association Analysis With Coat Color Phenotypes in the Dromedary (Camelus dromedarius). Front. Genet. 2019, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Li, Y.; Zhao, B.; Chen, T.; Dong, Y.; Fan, R.; Li, J.; Wang, H.; He, X. TRP-2 mediates coat color pigmentation in sheep skin. Mol. Med. Rep. 2018, 17, 5869–5877. [Google Scholar] [CrossRef]
- Jakaria, J.; Kholijah, K.; Darwati, S.; Rahman, Q.; Daulay, W.L.; Suhendro, I.; Londra, I.M.; Ulum, M.F.; Noor, R.R. Open AccessLack of association between coat color abnormalities in Bali cattle (Bos javanicus) and the coding regions of the MC1R and KIT genes. Vet. World 2023, 16, 1312–1318. [Google Scholar]
- Gurao, A.; Vasisth, R.; Singh, R.; Dige, M.S.; Vohra, V.; Mukesh, M.; Kumar, S.; Kataria, R.S. Identification of differential methylome signatures of white pigmented skin patches in Nili Ravi buffalo of India. Environ. Mol. Mutagen. 2022, 63, 408–417. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Jackson, I.J. Homologous pigmentation mutations in human, mouse and other model organisms. Hum. Mol. Genet. 1997, 6, 1613–1624. [Google Scholar] [CrossRef]
- Nasti, T.H.; Timares, L. MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer. Photochem. Photobiol. 2015, 91, 188–200. [Google Scholar] [CrossRef]
- Dinulescu, D.M.; Cone, R.D. Agouti and Agouti-related Protein: Analogies and Contrasts. J. Biol. Chem. 2000, 275, 6695–6698. [Google Scholar] [CrossRef]
- Henkel, J.; Saif, R.; Jagannathan, V.; Schmocker, C.; Zeindler, F.; Bangerter, E.; Herren, U.; Posantzis, D.; Bulut, Z.; Ammann, P.; et al. Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes. PLoS Genet. 2019, 15, e1008536. [Google Scholar]
- Hu, S.; Chen, Y.; Zhao, B.; Yang, N.; Chen, S.; Shen, J.; Bao, G.; Wu, X. KIT is involved in melanocyte proliferation, apoptosis and melanogenesis in the Rex Rabbit. PeerJ 2020, 8, e9402. [Google Scholar] [PubMed]
- Kawakami, A.; Fisher, D.E. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab. Investig. 2017, 97, 649–656. [Google Scholar] [PubMed]
- Bannasch, D.L.; Kaelin, C.B.; Letko, A.; Loechel, R.; Hug, P.; Jagannathan, V.; Henkel, J.; Roosje, P.; Hytönen, M.K.; Lohi, H.; et al. Dog colour patterns explained by modular promoters of ancient canid origin. Nat. Ecol. Evol. 2021, 5, 1415–1423. [Google Scholar]
- Costin, G.E.; Valencia, J.C.; Wakamatsu, K.; Ito, S.; Solano, F.; Milac, A.L.; Vieira, W.D.; Yamaguchi, Y.; Rouzaud, F.; Petrescu, A.J.; et al. Mutations in dopachrome tautomerase (Dct) affect eumelanin/pheomelanin synthesis, but do not affect intracellular trafficking of the mutant protein. Biochem. J. 2005, 391 Pt 2, 249–259. [Google Scholar]
- Herraiz, C.; Garcia-Borron, J.C.; Jiménez-Cervantes, C.; Olivares, C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 2448–2461. [Google Scholar]
- Peng, Y.; Liu, X.; Geng, L.; Ma, R.; Li, L.; Li, J.; Zhang, C.; Liu, Z.; Gong, Y.; Li, X. Illumina-sequencing based transcriptome study of coat color phenotypes in domestic goats. Genes. Genom. 2017, 39, 817–830. [Google Scholar]
- Peng, Y.; Wang, Y.; Wang, R.; Geng, L.; Ma, R.; Zhang, C.; Liu, Z.; Gong, Y.; Li, J.; Li, X. Exploring differentially expressed genes associated with coat color in goat skin using RNA-seq. Can. J. Anim. Sci. 2019, 99, 357–366. [Google Scholar]
- Arenas-Báez, P.; Torres-Hernández, G.; Castillo-Hernández, G.; Hernández-Rodríguez, M.; Sánchez-Gutiérrez, R.A.; Vargas-López, S.; González-Maldonado, J.; Domínguez-Martínez, P.A.; Granados-Rivera, L.D.; Maldonado-Jáquez, J.A. Coat Color in Local Goats: Influence on Environmental Adaptation and Productivity, and Use as a Selection Criterion. Biology 2023, 12, 929. [Google Scholar] [CrossRef]
- Fontanesi, L.; Beretti, F.; Riggio, V.; Gómez González, E.; Dall’Olio, S.; Davoli, R.; Russo, V.; Portolano, B. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors. Cytogenet. Genome Res. 2009, 126, 333–347. [Google Scholar]
- Gao, J.; Lyu, Y.; Zhang, D.; Reddi, K.K.; Sun, F.; Yi, J.; Liu, C.; Li, H.; Yao, H.; Dai, J.; et al. Genomic Characteristics and Selection Signatures in Indigenous Chongming White Goat (Capra hircus). Front. Genet. 2020, 11, 901. [Google Scholar]
- Wan, X.; Jing, J.N.; Wang, D.F.; Lv, F.H. Whole-genome selective scans detect genes associated with important phenotypic traits in goat (Capra hircus). Front. Genet. 2023, 14, 1173017. [Google Scholar]
- Becker, D.; Otto, M.; Ammann, P.; Keller, I.; Drögemüller, C.; Leeb, T. The brown coat colour of Coppernecked goats is associated with a non-synonymous variant at the TYRP1 locus on chromosome 8. Anim. Genet. 2015, 46, 50–54. [Google Scholar]
- Nazari-Ghadikolaei, A.; Mehrabani-Yeganeh, H.; Miarei-Aashtiani, S.R.; Staiger, E.A.; Rashidi, A.; Huson, H.J. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat. Front. Genet. 2018, 9, 105. [Google Scholar]
- Menzi, F.; Keller, I.; Reber, I.; Beck, J.; Brenig, B.; Schütz, E.; Leeb, T.; Drögemüller, C. Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation. Sci. Rep. 2016, 6, 28438. [Google Scholar]
- Guo, J.; Sun, X.; Mao, A.; Liu, H.; Zhan, S.; Li, L.; Zhong, T.; Wang, L.; Cao, J.; Liu, G.E.; et al. A 13.42-kb tandem duplication at the ASIP locus is strongly associated with the depigmentation phenotype of non-classic Swiss markings in goats. BMC Genom. 2022, 23, 437. [Google Scholar]
- Signer-Hasler, H.; Henkel, J.; Bangerter, E.; Bulut, Z.; Drögemüller, C.; Leeb, T.; Flury, C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genet. Sel. Evol. 2022, 54, 6. [Google Scholar]
- Sponenberg, D.P.; Alexieva, S.; Adalsteinsson, S. Inheritance of color in Angora goats. Genet. Sel. Evol. 1998, 30, 385. [Google Scholar]
- Caffarelli, M.; Carusi, S.; Giacchè, L.; Panella, F.; Reali, I.; Sarti, F.M. Capra Facciuta Della Valnerina. In Capra Facciuta della Valnerina. Racconto di una Popolazione Caprina Dimenticata; 3A Parco Tec. Agroalimentare: Todi, Italy, 2019; Volume 7, pp. 41–75. Available online: https://research.unipg.it/handle/11391/1472300 (accessed on 12 February 2025).
- Ianni, A.; Bennato, F.; Martino, C.; Di Luca, A.; Martino, G. Qualitative attributes of meat from Teramana goat kids, an Italian native breed of the Abruzzo region. Anim. Biosci. 2022, 35, 1091–1099. [Google Scholar]
- Colonna, M.A.; Karatosidi, D.; Cosentino, C.; Freschi, P.; Carbonara, C.; Giannico, F.; Losacco, C.; Tufarelli, V.; Tarricone, S.; Selvaggi, M.; et al. Dietary Supplementation with Oregano and Linseed in Autochthonous “Facciuta Lucana” Goats: Effects on Meat Quality Traits in Suckling Kids. Animals 2023, 13, 3050. [Google Scholar] [CrossRef]
- Hauswirth, R.; Jude, R.; Haase, B.; Bellone, R.R.; Archer, S.; Holl, H.; Brooks, S.A.; Tozaki, T.; Penedo, M.C.T.; Rieder, S.; et al. Novel variants in the and 3 genes in horses with white-spotted coat colour phenotypes. Anim. Genet. 2013, 44, 763–765. [Google Scholar] [PubMed]
- Fontanesi, L.; Vargiolu, M.; Scotti, E.; Latorre, R.; Faussone Pellegrini, M.S.; Mazzoni, M.; Asti, M.; Chiocchetti, R.; Romeo, G.; Clavenzani, P.; et al. The KIT Gene Is Associated with the English Spotting Coat Color Locus and Congenital Megacolon in Checkered Giant Rabbits (Oryctolagus cuniculus). PLoS ONE 2014, 9, e93750. [Google Scholar]
- Pape, H. The inheritance of the piebald spotting pattern and its variation in Holstein-Friesian cattle and in Landseer-Newfoundland dogs. Genetica 1990, 80, 115–128. [Google Scholar]
- Laible, G.; Cole, S.A.; Brophy, B.; Wei, J.; Leath, S.; Jivanji, S.; Littlejohn, M.D.; Wells, D.N. Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genom. 2021, 22, 856. [Google Scholar]
- Bertolini, F.; Schiavo, G.; Tinarelli, S.; Santoro, L.; Utzeri, V.J.; Dall’Olio, S.; Nanni Costa, L.; Gallo, M.; Fontanesi, L. Exploiting phenotype diversity in a local animal genetic resource: Identification of a single nucleotide polymorphism associated with the tail shape phenotype in the autochthonous Casertana pig breed. Livest. Sci. 2018, 216, 148–152. [Google Scholar]
- Cortellari, M.; Barbato, M.; Talenti, A.; Bionda, A.; Carta, A.; Ciampolini, R.; Ciani, E.; Crisà, A.; Frattini, S.; Lasagna, E.; et al. The climatic and genetic heritage of Italian goat breeds with genomic SNP data. Sci. Rep. 2021, 11, 10986. [Google Scholar]
- Stella, A.; Nicolazzi, E.L.; Van Tassell, C.P.; Rothschild, M.F.; Colli, L.; Rosen, B.D.; Sonstegard, T.S.; Crepaldi, P.; Tosser-Klopp, G.; Joost, S.; et al. AdaptMap: Exploring goat diversity and adaptation. Genet. Sel. Evol. 2018, 50, 61. [Google Scholar]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar]
- Foll, M.; Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar]
- Senczuk, G.; Guerra, L.; Mastrangelo, S.; Campobasso, C.; Zoubeyda, K.; Imane, M.; Marletta, D.; Kusza, S.; Karsli, T.; Gaouar, S.B.S.; et al. Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color. Genes 2020, 11, 932. [Google Scholar] [CrossRef]
- Senczuk, G.; Landi, V.; Mastrangelo, S.; Persichilli, C.; Pilla, F.; Ciani, E. Seven Shades of Grey: A Follow-Up Study on the Molecular Basis of Coat Colour in Indicine Grey Cattle Using Genome-Wide SNP Data. Genes 2022, 13, 1601. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Rovelli, G.; Landi, V.; Sbarra, F.; Quaglia, A.; Pilla, F.; Lasagna, E.; Ciani, E. Validation of Selection Signatures for Coat Color in the Podolica Italiana Gray Cattle Breed. Front. Genet. 2024, 15, 1453295. Available online: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1453295/full (accessed on 12 February 2025). [CrossRef] [PubMed]
- Trigo, B.B.; Utsunomiya, A.T.H.; Fortunato, A.A.A.D.; Milanesi, M.; Torrecilha, R.B.P.; Lamb, H.; Nguyen, L.; Ross, E.M.; Hayes, B.; Padula, R.C.M.; et al. Variants at the ASIP locus contribute to coat color darkening in Nellore cattle. Genet. Sel. Evol. 2021, 53, 40. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, I.; Tada, A.; Ollmann, M.M.; Barsh, G.S.; Im, S.; Lamoreux, M.L.; Hearing, V.J.; Nordlund, J.J.; Abdel-Malek, Z.A. Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to α-melanotropin. J. Investig. Dermatol. 1997, 108, 838–842. [Google Scholar] [CrossRef]
- Kerns, J.A.; Newton, J.; Berryere, T.G.; Rubin, E.M.; Cheng, J.F.; Schmutz, S.M.; Barsh, G.S. Characterization of the dog Agouti gene and a nonagoutimutation in German Shepherd Dogs. Mamm. Genome 2004, 15, 798–808. [Google Scholar] [CrossRef]
- Rieder, S.; Taourit, S.; Mariat, D.; Langlois, B.; Guérin, G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 2001, 12, 450–455. [Google Scholar] [CrossRef]
- Fontanesi, L.; Forestier, L.; Allain, D.; Scotti, E.; Beretti, F.; Deretz-Picoulet, S.; Pecchioli, E.; Vernesi, C.; Robinson, T.J.; Malaney, J.L.; et al. Characterization of the rabbit agouti signaling protein (ASIP) gene: Transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour. Genomics 2010, 95, 166–175. [Google Scholar] [CrossRef]
- Berryere, T.G.; Kerns, J.A.; Barsh, G.S.; Schmutz, S.M. Association of an Agouti allele with fawn or sable coat color in domestic dogs. Mamm. Genome 2005, 16, 262–272. [Google Scholar] [CrossRef]
- Liang, D.; Zhao, P.; Si, J.; Fang, L.; Pairo-Castineira, E.; Hu, X.; Xu, Q.; Hou, Y.; Gong, Y.; Liang, Z.; et al. Genomic Analysis Revealed a Convergent Evolution of LINE-1 in Coat Color: A Case Study in Water Buffaloes (Bubalus bubalis). Mol. Biol. Evol. 2021, 38, 1122–1136. [Google Scholar]
- Chen, Z.; Li, Y.; Nie, S.; Wu, Z. TMT-Based Quantitative Proteomic and Physiological Analyses on Serums of Chinese Patients with Active Vitiligo. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1407–1417. [Google Scholar] [CrossRef]
- Brittain, H.K.; Feary, J.; Rosenthal, M.; Spoudeas, H.; Deciphering Developmental Disorders (DDD) Study; Wilson, L.C. Biallelic human ITCH variants causing a multisystem disease with dysmorphic features: A second report. Am. J. Med. Genet. A 2019, 179, 1346–1350. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, S.; Carter, A.P. Structure of dynein-dynactin on microtubules shows tandem adaptor binding. Nature 2022, 610, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Byers, H.R.; Yaar, M.; Eller, M.S.; Jalbert, N.L.; Gilchrest, B.A. Role of cytoplasmic dynein in melanosome transport in human melanocytes. J. Investig. Dermatol. 2000, 114, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Vancoillie, G.; Lambert, J.; Haeghen, Y.V.; Westbroek, W.; Mulder, A.; Koerten, H.K.; Mommaas, A.M.; Van Oostveldt, P.; Naeyaert, J.M. Colocalization of dynactin subunits P150Glued and P50 with melanosomes in normal human melanocytes. Pigment. Cell Res. 2000, 13, 449–457. [Google Scholar] [CrossRef]
- Bowman, S.L.; Bi-Karchin, J.; Le, L.; Marks, M.S. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2019, 20, 404–435. [Google Scholar] [CrossRef]
- Dennis, M.K.; Mantegazza, A.R.; Snir, O.L.; Tenza, D.; Acosta-Ruiz, A.; Delevoye, C.; Zorger, R.; Sitaram, A.; de Jesus-Rojas, W.; Ravichandran, K.; et al. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J. Cell Biol. 2015, 209, 563–577. [Google Scholar] [CrossRef]
- Cherra, S.J.; Kulich, S.M.; Uechi, G.; Balasubramani, M.; Mountzouris, J.; Day, B.W.; Chu, C.T. Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 2010, 190, 533–539. [Google Scholar] [CrossRef]
- Suzuki, H.; Tabata, K.; Morita, E.; Kawasaki, M.; Kato, R.; Dobson, R.C.J.; Yoshimori, T.; Wakatsuki, S. Structural basis of the autophagy-related LC3/Atg13 LIR complex: Recognition and interaction mechanism. Structure 2014, 22, 47–58. [Google Scholar] [CrossRef]
- Knaus, A.; Kortüm, F.; Kleefstra, T.; Stray-Pedersen, A.; Đukić, D.; Murakami, Y.; Gerstner, T.; van Bokhoven, H.; Iqbal, Z.; Horn, D.; et al. Mutations in PIGU Impair the Function of the GPI Transamidase Complex, Causing Severe Intellectual Disability, Epilepsy, and Brain Anomalies. Am. J. Hum. Genet. 2019, 105, 395–402. [Google Scholar] [CrossRef]
- Nguyen, T.T.M.; Murakami, Y.; Mobilio, S.; Niceta, M.; Zampino, G.; Philippe, C.; Moutton, S.; Zaki, M.S.; James, K.N.; Musaev, D.; et al. Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with Hypotonia, Cerebellar Atrophy, and Epilepsy. Am. J. Hum. Genet. 2020, 106, 484–495. [Google Scholar] [CrossRef]
- Sprong, H.; Degroote, S.; Claessens, T.; van Drunen, J.; Oorschot, V.; Westerink, B.H.C.; Hirabayashi, Y.; Klumperman, J.; van der Sluijs, P.; van Meer, G. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol. 2001, 155, 369–380. [Google Scholar] [PubMed]
- Wilson-Zbinden, C.; dos Santos, A.X.D.S.; Stoffel-Studer, I.; van der Vaart, A.; Hofmann, K.; Reggiori, F.; Riezman, H.; Kraft, C.; Peter, M. Autophagy Competes for a Common Phosphatidylethanolamine Pool with Major Cellular PE-Consuming Pathways in Saccharomyces cerevisiae. Genetics 2015, 199, 475–485. [Google Scholar] [PubMed]
- Davari, D.R.; Orlow, I.; Kanetsky, P.A.; Luo, L.; Busam, K.J.; Sharma, A.; Kricker, A.; Cust, A.E.; Anton-Culver, H.; Gruber, S.B.; et al. Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Curr. Oncol. 2021, 28, 4756–4771. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Amos, C.I.; Lee, J.E.; Lian, C.G.; Fang, S.; Liu, H.; MacGregor, S.; Iles, M.M.; Law, M.H.; Lindeman, N.I.; et al. Identification of a melanoma susceptibility locus and somatic mutation in TET2. Carcinogenesis 2014, 35, 2097–2101. [Google Scholar]
- Morgan, M.D.; Pairo-Castineira, E.; Rawlik, K.; Canela-Xandri, O.; Rees, J.; Sims, D.; Tenesa, A.; Jackson, I.J. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nat. Commun. 2018, 9, 5271. [Google Scholar]
- Le Gal, F.A.; Avril, M.F.; Bosq, J.; Lefebvre, P.; Deschemin, J.C.; Andrieu, M.; Dore, M.X.; Guillet, J.G. Direct evidence to support the role of antigen-specific CD8+ T cells in melanoma-associated vitiligo. J. Investig. Dermatol. 2001, 117, 1464–1470. [Google Scholar]
- Mandelcorn-Monson, R.L.; Shear, N.H.; Yau, E.; Sambhara, S.; Barber, B.H.; Spaner, D.; DeBenedette, M.A. Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J. Investig. Dermatol. 2003, 121, 550–556. [Google Scholar]
- Palermo, B.; Campanelli, R.; Garbelli, S.; Mantovani, S.; Lantelme, E.; Brazzelli, V.; Ardigó, M.; Borroni, G.; Martinetti, M.; Badulli, C.; et al. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: The role of cellular immunity in the etiopathogenesis of vitiligo. J. Investig. Dermatol. 2001, 117, 326–332. [Google Scholar]
- Viret, C.; Faure, M. Regulation of Syntaxin 17 during Autophagosome Maturation. Trends Cell Biol. 2019, 29, 1–3. [Google Scholar] [CrossRef]
- Rubin, C.J.; Hodge, M.; Naboulsi, R.; Beckman, M.; Bellone, R.R.; Kallenberg, A.; J’Usrey, S.; Ohmura, H.; Seki, K.; Furukawa, R.; et al. An intronic copy number variation in Syntaxin 17 determines speed of greying and melanoma incidence in Grey horses. Nat. Commun. 2024, 15, 7510. [Google Scholar]
- Raposo, G.; Marks, M.S. Melanosomes–dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 2007, 8, 786–797. [Google Scholar]
Pairwise Tests | “facciuto” Breeds | Breed Code | No. * | “non-facciuto” Breeds | Breed Code | No. * |
---|---|---|---|---|---|---|
1 | Capestrina | CAP | 22 | Saanen | SAA | 43 |
2 | Capestrina | CAP | 22 | Rossa Mediterranea | RME | 46 |
3 | Capestrina | CAP | 22 | Malagueña | MAL | 42 |
4 | Facciuta Lucana | LUC | 16 | Saanen | SAA | 43 |
5 | Facciuta Lucana | LUC | 16 | Rossa Mediterranea | RME | 46 |
6 | Facciuta Lucana | LUC | 16 | Malagueña | MAL | 42 |
7 | Facciuta della Valnerina | VAL | 24 | Saanen | SAA | 43 |
8 | Facciuta della Valnerina | VAL | 24 | Rossa Mediterranea | RME | 46 |
9 | Facciuta della Valnerina | VAL | 24 | Malagueña | MAL | 42 |
10 | Roccaverano | ROC | 23 | Saanen | SAA | 43 |
11 | Roccaverano | ROC | 23 | Rossa Mediterranea | RME | 46 |
12 | Roccaverano | ROC | 23 | Malagueña | MAL | 42 |
13 | Teramana | TER | 20 | Saanen | SAA | 43 |
14 | Teramana | TER | 20 | Rossa Mediterranea | RME | 46 |
15 | Teramana | TER | 20 | Malagueña | MAL | 42 |
16 | Valfortorina | VLF | 27 | Saanen | SAA | 43 |
17 | Valfortorina | VLF | 27 | Rossa Mediterranea | RME | 46 |
18 | Valfortorina | VLF | 27 | Malagueña | MAL | 42 |
Chromosome | SNP ID | Position (bp) | Genes in the ±200 kb Range |
---|---|---|---|
13 | rs268286785 | 63,340,917 | LOC102190531; ASIP; AHCY; ITCH; DYNLRB1; MAP1LC3A; PIGU |
15 | rs268264603 | 942,715 | TRNAR-UCU, TRNAV-UAC, LOC102169614, LOC102169319, LOC102175784, LOC102175501, LOC102175229, LOC102174956, LOC102174680, LOC102174413, LOC102169036, LOC102174141, LOC102168753, LOC102168475, LOC102173289, LOC102168904, LOC102177738, LOC102191259, LOC102190979, LOC108637643, LOC102177263, DTX4, LOC108637644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarricone, S.; Schlosserová, N.; Bruno, S.; Sardina, M.T.; Landi, V.; Giannico, F.; Colonna, M.A.; Sarti, F.M.; Lasagna, E.; Ceccobelli, S.; et al. Selection Signatures in Italian Goat Populations Sharing the “facciuto” Phenotype. Genes 2025, 16, 390. https://doi.org/10.3390/genes16040390
Tarricone S, Schlosserová N, Bruno S, Sardina MT, Landi V, Giannico F, Colonna MA, Sarti FM, Lasagna E, Ceccobelli S, et al. Selection Signatures in Italian Goat Populations Sharing the “facciuto” Phenotype. Genes. 2025; 16(4):390. https://doi.org/10.3390/genes16040390
Chicago/Turabian StyleTarricone, Simona, Nikola Schlosserová, Silvia Bruno, Maria Teresa Sardina, Vincenzo Landi, Francesco Giannico, Maria Antonietta Colonna, Francesca Maria Sarti, Emiliano Lasagna, Simone Ceccobelli, and et al. 2025. "Selection Signatures in Italian Goat Populations Sharing the “facciuto” Phenotype" Genes 16, no. 4: 390. https://doi.org/10.3390/genes16040390
APA StyleTarricone, S., Schlosserová, N., Bruno, S., Sardina, M. T., Landi, V., Giannico, F., Colonna, M. A., Sarti, F. M., Lasagna, E., Ceccobelli, S., Mastrangelo, S., Crepaldi, P., Pilla, F., Ciani, E., & Ragni, M. (2025). Selection Signatures in Italian Goat Populations Sharing the “facciuto” Phenotype. Genes, 16(4), 390. https://doi.org/10.3390/genes16040390