Effect of Light Intensity on Anthocyanin Synthesis Assessed Using Leaves of Aglaonema commutatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Test Site
2.2. Test Materials
2.3. Experimental Design
2.4. Sample Collection
2.5. Measurement of Leaf Patch Area
2.6. Determination of Anthocyanin Content Index
2.7. Quantitative RT-qPCR
2.8. Data Processing
3. Results
3.1. Effect of Light Intensity on Leaf Patch Area from A. commutatum
3.2. Effect of Light Intensity on Anthocyanin Content from A. commutatum Leaves
3.3. Effect of Light Intensity on the Expression of PHYB, CRY, and UVR8 Photosensitive Genes from A. commutatum Leaf
3.4. Effect of Light Intensity on Expression of PAL, DFR, and ANS of Leaf Anthocyanin Structural Genes from A. commutatum
3.5. Effect of Light Intensity on the Expression of MYB, bHLH, and WDR from Leaf Anthocyanin Regulatory Genes of A. commutatum
3.6. Correlation Between Anthocyanin Content from A. commutatum Leaves and Photoreceptor Genes, Anthocyanin Structural Genes, and Anthocyanin Regulatory Genes
4. Discussion
4.1. Effect of Light Intensity on Anthocyanin Content in Plants
4.2. Effects of Photoreceptors on Plants
4.3. Expression of Genes Related to Anthocyanin Synthesis in Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Wu, K.; Li, L.; Ma, G.; Fang, L.; Zeng, S. Transcriptomic Analysis Reveals Biosynthesis Genes and Transcription Factors Related to Leaf Anthocyanin Biosynthesis in Aglaonema commutatum. BMC Genom. 2023, 24, 28. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, Y.; Zhang, F.; Zhang, G.; Jiang, X.; Yu, H.; Hou, B. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, Contribute to Cold, Salt and Drought Stress Tolerance via Modulating Anthocyanin Accumulation. Plant J. 2017, 89, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Sivankalyani, V.; Feygenberg, O.; Diskin, S.; Wright, B.; Alkan, N. Increased Anthocyanin and Flavonoids in Mango Fruit Peel Are Associated with Cold and Pathogen Resistance. Postharvest Biol. Technol. 2016, 111, 132–139. [Google Scholar] [CrossRef]
- Martin, C.; Butelli, E.; Petroni, K.; Tonelli, C. How Can Research on Plants Contribute to Promoting Human Health? Plant Cell 2011, 23, 1685–1699. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, G.; Hu, Z.; Gao, Q.; Cui, B.; Tian, S.; Wang, B.; Chen, G. Genetically Engineered Anthocyanin Pathway for High Health-Promoting Pigment Production in Eggplant. Mol. Breed. 2016, 36, 54. [Google Scholar] [CrossRef]
- Zorenc, Z.; Veberic, R.; Koron, D.; Miosic, S.; Hutabarat, O.S.; Halbwirth, H.; Mikulic-Petkovsek, M. Polyphenol Metabolism in Differently Colored Cultivars of Red Currant (Ribes rubrum L.) through Fruit Ripening. Planta 2017, 246, 217–226. [Google Scholar] [CrossRef]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent Advances in the Transcriptional Regulation of the Flavonoid Biosynthetic Pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef]
- Ma, Z.-H.; Li, W.-F.; Mao, J.; Li, W.; Zuo, C.-W.; Zhao, X.; Dawuda, M.M.; Shi, X.-Y.; Chen, B.-H. Synthesis of Light-Inducible and Light-Independent Anthocyanins Regulated by Specific Genes in Grape ‘Marselan’ (V. vinifera L.). PeerJ 2019, 7, e6521. [Google Scholar] [CrossRef]
- Azuma, A. Genetic and Environmental Impacts on the Biosynthesis of Anthocyanins in Grapes. Hortic. J. 2018, 87, 1–17. [Google Scholar] [CrossRef]
- Guo, X.; Shakeel, M.; Wang, D.; Qu, C.; Yang, S.; Ahmad, S.; Song, Z. Metabolome and Transcriptome Profiling Unveil the Mechanisms of Light-Induced Anthocyanin Synthesis in Rabbiteye Blueberry (Vaccinium ashei: Reade). BMC Plant Biol. 2022, 22, 223. [Google Scholar] [CrossRef]
- Shen, Y.; Mao, L.; Zhou, Y.; Sun, Y.; Liu, Z.; Liang, C. Integrated Transcriptome and Metabolome Analysis Revealed the Molecular Mechanism of Anthocyanin Synthesis in Purple Leaf Pepper (Capsicum annuum L.) under Different Light Intensities. Horticulturae 2023, 9, 814. [Google Scholar] [CrossRef]
- Li, J.; Wu, K.; Li, L.; Ma, G.; Fang, L.; Zeng, S. AcMYB1 Interacts with AcbHLH1 to Regulate Anthocyanin Biosynthesis in Aglaonema commutatum. Front. Plant Sci. 2022, 13, 886313. [Google Scholar] [CrossRef]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Effects of Abiotic Factors on Phenolic Compounds in the Grape Berry—A Review. S. Afr. J. Enol. Vitic. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Gao, Q.; Hu, S.; Wang, X.; Han, F.; Luo, H.; Liu, Z.; Kang, C. The Red/Far-Red Light Photoreceptor FvePhyB Regulates Tissue Elongation and Anthocyanin Accumulation in Woodland Strawberry. Hortic. Res. 2023, 10, uhad232. [Google Scholar] [CrossRef]
- Smith, H. Phytochrome Transgenics: Functional, Ecological and Biotechnological Applications. Semin. Cell Biol. 1994, 5, 315–325. [Google Scholar] [CrossRef]
- Lin, C.; Shalitin, D. Cryptochrome Structure and Signal Transduction. Annu. Rev. Plant Biol. 2003, 54, 469–496. [Google Scholar] [CrossRef]
- Gyula, P.; Schäfer, E.; Nagy, F. Light Perception and Signalling in Higher Plants. Curr. Opin. Plant Biol. 2003, 6, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Tossi, V.E.; Regalado, J.J.; Iannicelli, J.; Laino, L.E.; Burrieza, H.P.; Escandón, A.S.; Pitta-Álvarez, S.I. Beyond Arabidopsis: Differential UV-B Response Mediated by UVR8 in Diverse Species. Front. Plant Sci. 2019, 10, 780. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, J.-S.; Kim, S.; Soh, H.Y.; Shin, H.; Jang, H.; Ryu, J.H.; Kim, A.; Yun, K.-Y.; Kim, S.; et al. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.). PLoS ONE 2015, 10, e0124497. [Google Scholar] [CrossRef]
- Shi, Q.; Li, X.; Du, J.; Li, X. Anthocyanin Synthesis and the Expression Patterns of bHLH Transcription Factor Family during Development of the Chinese Jujube Fruit (Ziziphus jujuba Mill.). Forests 2019, 10, 346. [Google Scholar] [CrossRef]
- Takos, A.M.; Jaffé, F.W.; Jacob, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef]
- Palapol, Y.; Ketsa, S.; Lin-Wang, K.; Ferguson, I.B.; Allan, A.C. A MYB Transcription Factor Regulates Anthocyanin Biosynthesis in Mangosteen (Garcinia mangostana L.) Fruit during Ripening. Planta 2009, 229, 1323–1334. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, X.; Li, X.; Yin, X.; Grierson, D.; Li, F.; Chen, K. A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLoS ONE 2015, 10, e0143892. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, X.; Gao, J.; Guo, Y.; Huang, Z.; Du, Y. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures. PLoS ONE 2016, 11, e0151067. [Google Scholar] [CrossRef]
- Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the Anthocyanin Biosynthetic Pathway by the TTG1/bHLH/Myb Transcriptional Complex in Arabidopsis Seedlings. Plant J. 2008, 53, 814–827. [Google Scholar] [CrossRef]
Primer Names | Upstream Primer Sequence | Downstream Primer Sequence |
---|---|---|
Actin | AGAGCTATGAGCTGCCTGAC | CATCCCGATGAGAGACGGTT |
PHYB | AATGTGACAGACAGTTCAGTAGGAA | GTGGTGAGGTACAATACATCAGAGA |
CRY | TCAACTTACGTCAGGGTGATGTT | GGAGGATATCATAGGTGCCAAC |
UVR8 | AGCCGACCATATCAGGAACC | CAAGGAGACATCGGCATCCA |
PAL | AACATCCTGGCGGTACTGG | GCCTCTTGGCCATCTTTACG |
DFR | TCGTGGGAGGAGCAGATGTATC | CCGCACTACTCCATCCTGAAC |
ANS | CTATTACGAGGGCCAGTGGG | CTCTTGTACAGCCCGTTGCT |
bHLH | TGCCTTAAAGCTGGTGGTTCA | TTGGGTGCTTCAGAGGGTTG |
WDR | CCCTCGACAACACCCTGAAA | TGATCCTCAGAACCACTGACA |
MYB | ACTACTGGAACTCCCACCTCA | GGTCCATGATTACGCGAGCA |
Time/d | A. commutatum | Treatment | Green Color Block Area Proportion/% | White/Red Color Block Area Proportion/% |
---|---|---|---|---|
0 | ‘Emerald’ | CK | 45.00 ± 2.00 a | 55.00 ± 2.00 a |
T1 | 44.00 ± 1.00 a | 56.00 ± 1.00 a | ||
T2 | 48.00 ± 5.00 a | 52.00 ± 5.00 a | ||
0 | ‘Red Ruyi’ | CK | 44.00 ± 7.00 a | 56.00 ± 7.00 a |
T1 | 44.00 ± 1.00 a | 56.00 ± 1.00 a | ||
T2 | 46.00 ± 8.00 a | 54.00 ± 8.00 a | ||
0 | ‘Angel’ | CK | 45.00 ± 5.00 a | 55.00 ± 5.00 a |
T1 | 40.00 ± 3.00 a | 60.00 ± 3.00 a | ||
T2 | 42.00 ± 4.00 a | 58.00 ± 4.00 a | ||
0 | ‘Gilly Red’ | CK | 10.00 ± 2.00 a | 90.00 ± 2.00 a |
T1 | 12.00 ± 3.00 a | 88.00 ± 3.00 a | ||
T2 | 8.00 ± 1.00 a | 92.00 ± 1.00 a | ||
75 | ‘Emerald’ | CK | 52.00 ± 4.00 a | 48.00 ± 4.00 a |
T1 | 50.00 ± 1.00 a | 50.00 ± 1.00 a | ||
T2 | 50.00 ± 2.00 a | 50.00 ± 2.00 a | ||
75 | ‘Red Ruyi’ | CK | 49.00 ± 6.00 a | 51.00 ± 6.00 a |
T1 | 42.00 ± 8.00 a | 58.00 ± 8.00 a | ||
T2 | 50.00 ± 4.00 a | 50.00 ± 4.00 a | ||
75 | ‘Angel’ | CK | 43.00 ± 3.00 a | 57.00 ± 3.00 a |
T1 | 41.00 ± 4.00 a | 59.00 ± 4.00 a | ||
T2 | 51.00 ± 3.00 a | 49.00 ± 3.00 a | ||
75 | ‘Gilly Red’ | CK | 17.00 ± 1.00 a | 83.00 ± 1.00 a |
T1 | 16.00 ± 5.00 a | 84.00 ± 5.00 a | ||
T2 | 15.00 ± 3.00 a | 85.00 ± 3.00 a |
A. commutatum | Treatment | Time/d | |||||
---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | ||
‘Emerald’ | CK | 1.15 ± 0.13 a | 1.06 ± 0.07 a | 1.35 ± 0.02 a | 1.74 ± 0.02 a | 2.05 ± 0.12 a | 1.80 ± 0.05 a |
T1 | 1.11 ± 0.08 a | 1.33 ± 0.06 a | 1.03 ± 0.26 a | 1.62 ± 0.12 a | 2.04 ± 0.21 a | 1.63 ± 0.08 a | |
T2 | 1.54 ± 0.10 a | 1.02 ± 0.14 a | 1.47 ± 0.09 a | 1.88 ± 0.11 a | 1.68 ± 0.01 a | 1.64 ± 0.05 a | |
‘Red Ruyi’ | CK | 3.03 ± 0.71 a | 4.18 ± 0.12 a | 2.67 ± 0.33 b | 2.97 ± 0.15 b | 3.14 ± 0.13 b | 5.25 ± 0.16 a |
T1 | 3.28 ± 0.27 a | 2.77 ± 0.19 b | 3.51 ± 0.13 a | 4.99 ± 0.25 a | 5.15 ± 0.35 a | 6.04 ± 0.44 a | |
T2 | 3.08 ± 0.90 a | 2.60 ± 0.13 b | 4.01 ± 0.12 a | 2.93 ± 0.19 b | 3.22 ± 0.29 b | 3.68 ± 0.37 b | |
‘Angel’ | CK | 11.84 ± 3.10 a | 9.52 ± 0.28 a | 3.67 ± 0.33 b | 4.33 ± 0.20 ab | 5.66 ± 0.28 a | 7.41 ± 0.44 a |
T1 | 7.68 ± 0.76 a | 7.31 ± 0.73 b | 7.38 ± 0.81 a | 6.22 ± 1.27 a | 6.06 ± 0.41 a | 6.49 ± 0.40 a | |
T2 | 9.54 ± 2.19 a | 10.32 ± 0.56 a | 5.08 ± 0.65 b | 3.10 ± 0.27 b | 4.17 ± 0.33 b | 2.75 ± 0.09 b | |
‘Gilly Red’ | CK | 4.24 ± 1.13 a | 3.37 ± 0.18 a | 6.08 ± 0.84 a | 4.80 ± 0.05 b | 5.11 ± 0.14 b | 4.37 ± 0.24 b |
T1 | 5.50 ± 0.14 a | 4.30 ± 0.34 a | 5.64 ± 0.44 a | 7.43 ± 0.34 a | 7.59 ± 0.28 a | 6.13 ± 0.26 a | |
T2 | 4.65 ± 0.34 a | 3.61 ± 0.38 a | 2.97 ± 0.14 b | 2.67 ± 0.16 c | 3.66 ± 0.39 c | 1.65 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Wu, C.; Hui, J. Effect of Light Intensity on Anthocyanin Synthesis Assessed Using Leaves of Aglaonema commutatum. Genes 2025, 16, 375. https://doi.org/10.3390/genes16040375
Zhu X, Wu C, Hui J. Effect of Light Intensity on Anthocyanin Synthesis Assessed Using Leaves of Aglaonema commutatum. Genes. 2025; 16(4):375. https://doi.org/10.3390/genes16040375
Chicago/Turabian StyleZhu, Xingxing, Canhang Wu, and Junai Hui. 2025. "Effect of Light Intensity on Anthocyanin Synthesis Assessed Using Leaves of Aglaonema commutatum" Genes 16, no. 4: 375. https://doi.org/10.3390/genes16040375
APA StyleZhu, X., Wu, C., & Hui, J. (2025). Effect of Light Intensity on Anthocyanin Synthesis Assessed Using Leaves of Aglaonema commutatum. Genes, 16(4), 375. https://doi.org/10.3390/genes16040375