Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Condition and Carbohydrate Metabolism Test of L. fermentum KUB-D18
2.2. Genomic DNA Extraction Towards Sequencing of L. fermentum KUB-D18
2.3. Integrative Genome Assembly and Functional Annotation of L. fermentum KUB-D18
2.4. Transportome Towards Metabolic Pathway Mapping of L. fermentum KUB-D18
3. Results and Discussion
3.1. Integrative Genomic Data Using NGS and TGS Towards Globally Annotated Results of L. fermentum KUB-D18
3.2. Exploring the Metabolic Genes Revealing Core and Strain-Specific Characteristics of Probiotic L. fermentum KUB-D18
3.3. Identification of Metabolic Transports of L. fermentum KUB-D18 Using Transportome Analysis
3.3.1. Sugar Transportome Analysis Towards Alternative Carbon Substrate Utilization of L. fermentum KUB-D18
3.3.2. Probing Carbon Utilization in L. fermentum KUB-D18
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siezen, R.J.; Kok, J.; Abee, T.; Schaafsma, G. Lactic Acid Bacteria: Genetics, Metabolism and Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 2002; Volume 82. [Google Scholar]
- Phujumpa, P.; Muangham, S.; Jatuponwiphat, T.; Koffas, M.; Nakphaichit, M.; Vongsangnak, W. Comparative genomics-based probiotic relevance of Limosilactobacillus fermentum KUB-D18. Gene 2022, 840, 146747. [Google Scholar] [CrossRef]
- Kim, B.; Meng, Z.; Xu, X.; Baek, S.; Pathiraja, D.; Choi, I.-G.; Oh, S. Complete genome sequence of Limosilactobacillus fermentum JNU532 as a probiotic candidate for the functional food and feed supplements. J. Anim. Sci. Technol. 2023, 65, 271. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-B.; Lew, L.-C.; Yeo, S.-K.; Nair Parvathy, S.; Liong, M.-T. Probiotics and the BSH-related cholesterol lowering mechanism: A Jekyll and Hyde scenario. Crit. Rev. Biotechnol. 2015, 35, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef]
- Saier, M.H., Jr.; Paulsen, I.T. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol. 2001, 12, 205–213. [Google Scholar] [CrossRef]
- Kang, X.; Xu, J.; Luo, X.; Schonhuth, A. Hybrid-hybrid correction of errors in long reads with HERO. Genome Biol. 2023, 24, 275. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Erickson, D.L.; Meng, J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genom. 2020, 21, 631. [Google Scholar] [CrossRef]
- Khezri, A.; Avershina, E.; Ahmad, R. Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021, 9, 2560. [Google Scholar] [CrossRef]
- Baptista, R.P.; Li, Y.; Sateriale, A.; Sanders, M.J.; Brooks, K.L.; Tracey, A.; Ansell, B.R.; Jex, A.R.; Cooper, G.W.; Smith, E.D. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res. 2022, 32, 203–213. [Google Scholar] [CrossRef]
- Pozdnyakov, I.R.; Potapenko, E.V.; Nassonova, E.S.; Babenko, V.V.; Boldyreva, D.I.; Tcvetkova, V.S.; Karpov, S.A. To the Origin of Fungi: Analysis of MFS Transporters of First Assembled Aphelidium Genome Highlights Dissimilarity of Osmotrophic Abilities between Aphelida and Fungi. J. Fungi 2023, 9, 1021. [Google Scholar] [CrossRef]
- Wongrattanapipat, S.; Chiracharoenchitta, A.; Choowongwitthaya, B.; Komsathorn, P.; La-Ongkham, O.; Nitisinprasert, S.; Tunsagool, P.; Nakphaichit, M. Selection of potential probiotics with cholesterol-lowering properties for probiotic yoghurt production. Food Sci. Technol. Int. 2022, 28, 353–365. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernandez-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, W.; Bilige, M.; Zhang, H. Complete genome sequence of the probiotic Lactobacillus fermentum F-6 isolated from raw milk. J. Biotechnol. 2015, 194, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Ozen, M.; Piloquet, H.; Schaubeck, M. Limosilactobacillus fermentum CECT5716: Clinical potential of a probiotic strain isolated from human Milk. Nutrients 2023, 15, 2207. [Google Scholar] [CrossRef]
- Abramov, V.M.; Kosarev, I.V.; Machulin, A.V.; Priputnevich, T.V.; Chikileva, I.O.; Deryusheva, E.I.; Abashina, T.N.; Donetskova, A.D.; Panin, A.N.; Melnikov, V.G.; et al. Limosilactobacillus fermentum Strain 3872: Antibacterial and Immunoregulatory Properties and Synergy with Prebiotics against Socially Significant Antibiotic-Resistant Infections of Animals and Humans. Antibiotics 2022, 11, 1437. [Google Scholar] [CrossRef]
- Cárdenas, N.; Laiño, J.E.; Delgado, S.; Jiménez, E.; Juárez del Valle, M.; Savoy de Giori, G.; Sesma, F.; Mayo, B.; Fernández, L.; LeBlanc, J.G. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl. Microbiol. Biotechnol. 2015, 99, 4343–4353. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr.; Reddy, V.S.; Moreno-Hagelsieb, G.; Hendargo, K.J.; Zhang, Y.; Iddamsetty, V.; Lam, K.J.K.; Tian, N.; Russum, S.; Wang, J. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res. 2021, 49, D461–D467. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Bork, P.; Das, U.; Daugherty, L.; Duquenne, L.; et al. InterPro: The integrative protein signature database. Nucleic Acids Res. 2009, 37, D211–D215. [Google Scholar] [CrossRef]
- Zaunmüller, T.; Unden, G. Transport of sugars and sugar alcohols by lactic acid bacteria. In Biology of Microorganisms on Grapes, in Must and in Wine; Springer: Berlin/Heidelberg, Germany, 2009; pp. 149–163. [Google Scholar]
- Katoh, K.; Standley, D.M. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016, 32, 1933–1942. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Moretti, S.; Tran, V.D.T.; Mehl, F.; Ibberson, M.; Pagni, M. MetaNetX/MNXref: Unified namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic Acids Res. 2021, 49, D570–D574. [Google Scholar] [CrossRef] [PubMed]
- Maresca, D.; Zotta, T.; Mauriello, G. Adaptation to aerobic environment of Lactobacillus johnsonii/gasseri strains. Front. Microbiol. 2018, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Kim, G.; Noh, M.-G.; Park, J.-H.; Jang, M.; Fang, S.; Park, H. Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity. Exp. Mol. Med. 2020, 52, 1574–1586. [Google Scholar] [CrossRef]
- Sun, Y.; Fukamachi, T.; Saito, H.; Kobayashi, H. ATP requirement for acidic resistance in Escherichia coli. J. Bacteriol. 2011, 193, 3072–3077. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Y.; Qu, X. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch. Microbiol. 2018, 200, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Kusada, H.; Morinaga, K.; Tamaki, H. Identification of Bile Salt Hydrolase and Bile Salt Resistance in a Probiotic Bacterium Lactobacillus gasseri JCM1131(T). Microorganisms 2021, 9, 1011. [Google Scholar] [CrossRef]
- Bustos, A.Y.; de Valdez, G.F.; Fadda, S.; Taranto, M.P. New insights into bacterial bile resistance mechanisms: The role of bile salt hydrolase and its impact on human health. Food Res. Int. 2018, 112, 250–262. [Google Scholar] [CrossRef]
- Linares, D.; Michaud, P.; Delort, A.-M.; Traikia, M.; Warrand, J. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J. Agric. Food Chem. 2011, 59, 4140–4147. [Google Scholar] [CrossRef]
- Bailey, L.B. Folate in Health and Disease; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Rezk, B.M.; Haenen, G.R.; van der Vijgh, W.J.; Bast, A. Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett. 2003, 555, 601–605. [Google Scholar] [CrossRef]
- Kong, M.; Wang, F.; Tian, L.; Tang, H.; Zhang, L. Functional identification of glutamate cysteine ligase and glutathione synthetase in the marine yeast Rhodosporidium diobovatum. Sci. Nat. 2018, 105, 4. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Sharma, D.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Intracellular oxidative damage due to antibiotics on gut bacteria reduced by glutathione oxidoreductase-derived antioxidant molecule GM15. Arch. Microbiol. 2020, 202, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- La Carbona, S.; Sauvageot, N.; Giard, J.C.; Benachour, A.; Posteraro, B.; Auffray, Y.; Sanguinetti, M.; Hartke, A. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol. Microbiol. 2007, 66, 1148–1163. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Zeller, T.; Klug, G. Thioredoxins in bacteria: Functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 2006, 93, 259–266. [Google Scholar] [CrossRef]
- Ryssel, H.; Kloeters, O.; Germann, G.; Schafer, T.; Wiedemann, G.; Oehlbauer, M. The antimicrobial effect of acetic acid—An alternative to common local antiseptics? Burns 2009, 35, 695–700. [Google Scholar] [CrossRef]
- Moynihan, P.J.; Clarke, A.J. Assay for peptidoglycan O-acetyltransferase: A potential new antibacterial target. Anal. Biochem. 2013, 439, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Mahdhi, A.; Leban, N.; Chakroun, I.; Chaouch, M.A.; Hafsa, J.; Fdhila, K.; Mahdouani, K.; Majdoub, H. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microb. Pathog. 2017, 109, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Major, A.; Rendon, D.; Lugo, M.; Jackson, V.; Shi, Z.; Mori-Akiyama, Y.; Versalovic, J. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri. mBio 2015, 6, e01358-15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Lu, X.; Yang, S.; Zou, Y.; Zeng, F.; Xiong, S.; Cao, Y.; Zhou, W. The anti-inflammatory activity of GABA-enriched Moringa oleifera leaves produced by fermentation with Lactobacillus plantarum LK-1. Front. Nutr. 2023, 10, 1093036. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.D.; Thongngam, M.; Kumrungsee, T. γ-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. NPJ Sci. Food 2024, 8, 16. [Google Scholar] [CrossRef]
- Leng, Y.; Jiang, C.; Xing, X.; Tsai, M.-S.; Snyder, M.; Zhai, A.; Yao, G. Prevention of severe intestinal barrier dysfunction through a single-species probiotics is associated with the activation of microbiome-mediated glutamate–glutamine biosynthesis. Shock 2021, 55, 128–137. [Google Scholar] [CrossRef]
- Peetermans, A.; Foulquié-Moreno, M.R.; Thevelein, J.M. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microb. Cell 2021, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Wongrattanapipat, S.; Nakphaichit, M. Selection and Potential Evaluation of Probiotic for Cholesterol Lowering Effect in Intestinal Cell Line. Ph.D. Thesis, Kasetsart University, Bangkok, Thailand, 2021. [Google Scholar]
- Kaye, A.D.; Jeha, G.M.; Pham, A.D.; Fuller, M.C.; Lerner, Z.I.; Sibley, G.T.; Cornett, E.M.; Urits, I.; Viswanath, O.; Kevil, C.G. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv. Ther. 2020, 37, 4149–4164. [Google Scholar] [CrossRef]
- Averill-Bates, D.A. The antioxidant glutathione. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2023; Volume 121, pp. 109–141. [Google Scholar]
- Deng, Z.; Luo, X.M.; Liu, J.; Wang, H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front. Cell Infect Microbiol. 2020, 10, 538077. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bai, Y.; Zha, L.; Ullah, N.; Ullah, H.; Shah, S.R.H.; Sun, H.; Zhang, C. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front. Cell. Infect. Microbiol. 2021, 11, 716299. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediat. Inflamm. 2018, 2018, 9524075. [Google Scholar] [CrossRef]
- Holeček, M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef]
- Mazzoli, R.; Pessione, E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front. Microbiol. 2016, 7, 1934. [Google Scholar] [CrossRef]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate Decarboxylase from Lactic Acid Bacteria-A Key Enzyme in GABA Synthesis. Microorganisms 2020, 8, 1923. [Google Scholar] [CrossRef]
- Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res. 2015, 93, 11–21. [Google Scholar] [CrossRef]
- Pusuntisumpun, N.; Tunsagool, P.; Nitisinprasert, S.; Nakphaichit, M. Impacts of combining Limosilactobacillus reuteri KUB-AC5 and Limosilactobacillus fermentum KUB-D18 on overweight gut microbiota using a simulated human colon model. Int. J. Food Sci. Tech. 2024, 59, 1898–1910. [Google Scholar] [CrossRef]
- Poolman, B. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Pao, S.S.; Paulsen, I.T.; Saier, M.H., Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 1998, 62, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Postma, P.W.; Lengeler, J.W.; Jacobson, G.R. Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993, 57, 543–594. [Google Scholar] [CrossRef]
- Higgins, C.F. ABC transporters: From microorganisms to man. Annu. Rev. Cell Biol. 1992, 8, 67–113. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1675–1683. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Frias, J.; Vidal-Valverde, C. α-galactosides: Antinutritional factors or functional ingredients? Crit. Rev. Food Sci. Nutr. 2008, 48, 301–316. [Google Scholar] [CrossRef]
- Deutscher, J.; Francke, C.; Postma, P.W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 939–1031. [Google Scholar] [CrossRef]
- Görke, B.; Stülke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008, 6, 613–624. [Google Scholar] [CrossRef]
- Ramsey, M.; Hartke, A.; Huycke, M. The physiology and metabolism of enterococci. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Judkins, T.C.; Archer, D.L.; Kramer, D.C.; Solch, R.J. Probiotics, Nutrition, and the Small Intestine. Curr. Gastroenterol. Rep. 2020, 22, 2. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H., Jr. Comparative Genomics of the Transport Proteins of Ten Lactobacillus Strains. Genes 2020, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
Genomic Characteristics | Phujumpa et al. [2] | This Study |
---|---|---|
Genome sequence (bps) | 2,016,883 | 2,122,415 |
GC content (%) | 51.70 | 51.36 |
No. of protein-encoding genes | 2158 | 2079 |
No. of RNA-encoding genes | 65 | 75 |
Scaffolds | 398 | 1 |
DB-based protein functional annotation | ||
KEGG | 961 | 1222 |
Pfam | - | 1787 |
EggNOG | - | 1849 |
COGs | - | 1848 |
Integrated databases | 1810 | 1876 |
Features | Properties | Symbol | Description | Abbreviated Gene ID | Strains | Refs. | |||
---|---|---|---|---|---|---|---|---|---|
KUB-D18 | 3872 | CECT5716 | F-6 | ||||||
Acid resistance, bile tolerance, metabolic capability | Acid tolerance | Atp | ATPase (3.6.1.3) | GH00510 | + | + | + | + | [36,37] |
GH00511 | + | + | + | + | |||||
GH00512 | + | + | + | + | |||||
GH00513 | + | + | + | + | |||||
GH00514 | + | + | + | + | |||||
GH00515 | + | + | + | + | |||||
GH00516 | + | + | + | + | |||||
GH00517 | + | + | + | + | |||||
Ldh | L-lactate dehydrogenase (1.1.1.27) | GH01127 | + | + | + | + | [37] | ||
GH01323 | + | + | + | + | |||||
GH01664 | + | + | + | + | |||||
GH00286 | + | + | + | + | |||||
GH00416 | + | + | + | + | |||||
GH00725 | + | + | + | + | |||||
Bile salt tolerance | Bsh | Choloylglycine hydrolase (3.5.1.24) | GH00033 | + | + | + | + | [38,39] | |
GH01152 | + | + | + | + | |||||
Metabolic capability | Ula | L-ascorbic acid metabolism (2.7.1.194 3.1.1.- 4.1.1.85 5.1.3.4 5.1.3.22) | GH01064 | + * | − | − | − | [2,40] | |
GH01065 | + * | − | − | − | |||||
GH01066 | + * | − | − | − | |||||
GH01067 | + * | − | − | − | |||||
GH02016 | + * | − | − | − | |||||
GH02017 | + * | − | − | − | |||||
GH02018 | + * | − | − | − | |||||
GH02019 | + * | − | − | − | |||||
GH02020 | + * | − | − | − | |||||
GH02029 | + * | − | − | − | |||||
GH02030 | + * | − | − | − | |||||
Antioxidant function | Metabolism of antioxidant molecules | Fol | Folate biosynthesis (6.3.2.12 6.3.2.17 1.5.1.3 1.5.1.5 3.5.4.9 2.5.1.15 3.5.4.16 2.7.6.3 4.1.2.25 5.1.99.8 1.13.11.81) | GH00605 | + | + | + | + | [41,42] |
GH01227 | + | + | + | + | |||||
GH01469 | + | + | + | + | |||||
GH01546 | + | + | + | + | |||||
GH01548 | + | + | + | + | |||||
GH01549 | + | + | + | + | |||||
GH01550 | + | + | + | + | |||||
GH01551 | + | + | + | + | |||||
gshA | Glutamate--cysteine ligase (6.3.2.2) | GH00749 | + | + | + | + | [43] | ||
GH01002 | + | + | + | + | |||||
GH01072 | + | + | + | + | |||||
Gor | Glutathione reductase (NADPH) (1.8.1.7) | GH01400 | + * | − | − | − | [43,44] | ||
GH01873 | + | + | + | + | |||||
GH02130 | + | + | + | + | |||||
ahpC | NADH-dependent peroxiredoxin subunit C (1.11.1.26) | GH00480 | + | + | + | + | [45] | ||
Repairing oxidized proteins | Trx | Thioredoxin; thioredoxin reductase (1.8.1.9) | GH00635 | + | + | + | + | [46,47] | |
GH01874 | + | + | + | + | |||||
GH01968 | + | + | + | + | |||||
GH02124 | + | + | + | + | |||||
GH00410 | + | + | + | + | |||||
GH00481 | + | + | + | + | |||||
GH02127 | + | + | + | + | |||||
Anti-microbial substances | Organic acid synthesis | adhE | Acetaldehyde dehydrogenase /alcohol dehydrogenase (1.2.1.10 1.1.1.1) | GH00336 | + | + | + | + | [48] |
Pta | Phosphate acetyltransferase (2.3.1.8) | GH00451 | + | + | + | + | [49] | ||
Extracellular polymers (EPS) | Eps | Protein-tyrosine kinase (2.7.10.3) | GH00095 | + | + | + | + | [50] | |
GH00096 | + | + | + | + | |||||
GH01646 | + | + | + | + | |||||
Anti-inflammatory substances | Anti-inflammatory regulatory factors | hisJ, hisF, hisH | Histidine metabolism (4.3.2.10 3.1.3.15) | GH00862 | + | − | + | + | [51] |
GH00861 | + | − | + | + | |||||
GH00869 | + | − | + | + | |||||
GH00859 | + | − | + | + | |||||
GH00867 | + | − | + | + | |||||
Gad | Glutamate:GABA antiporter; glutamate decarboxylase (4.1.1.15) | GH01059 | + | − | − | + | [52,53] | ||
GH01060 | + | − | − | + | |||||
Glu | Glutamine synthetase (6.3.1.2) | GH01482 | + | + | + | + | [54] |
Protein/Transporter DB | Metabolic Transporter Genes |
---|---|
TCDB | 155 |
Pfam | 127 |
eggNOG | 58 |
InterPro | 44 |
Integrated DB | 259 * |
Protein/Transporter DB | Sugar Transporter Genes |
---|---|
TCDB | 10 |
Pfam | 57 |
InterPro | 26 |
Integrated DB | 57 |
COG/Pfam | Description | Sugar Transporter Genes |
---|---|---|
Secondary Carriers | ||
COG0580 | Glycerol uptake facilitator and related permeases (Major Intrinsic Protein Family) | 1 |
COG0697 | Permeases of the drug/metabolite transporter (DMT) superfamily | 6 |
COG2814 | Arabinose efflux permease | 2 |
Pfam00083 | Sugar transporter (MFS) | 11 |
Pfam06800 | Sugar transport proteins | 2 |
Pfam07690 | Major Facilitator Superfamily (MFS_1) | 21 |
PTS Systems | ||
COG1762 | PTS mannitol/fructose-specific IIA domain | 2 |
COG2893 | PTS mannose/fructose-specific component IIA | 1 |
COG3715 | PTS mannose/fructose/n-acetylgalactosamine specific component IIC | 1 |
COG3716 | PTS mannose/fructose/n-acetylgalactosamine specific component IID | 1 |
COG3775 | PTS galactitol-specific IIC component | 1 |
Pfam00358 | PTS_EIIA_1 | 2 |
Pfam02302 | PTS_IIB: Lactose/Cellobiose specific | 2 |
Pfam02378 | PTS_EIIC | 1 |
ABC Carriers | ||
Pfam01061 | ABC2_membrane (transport of carbohydrates) | 1 |
Pfam01547 | SBP_bac_1 (bacterial extracellular solute-binding protein, e.g., maltose) | 1 |
Pfam02653 | BPD_transp_2 (branched chain amino acid transport system, permease component; family also contains a galactose and ribose transport system) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Mok, K.; Chumnanpuen, P.; Nakphaichit, M.; Vongsangnak, W. Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18. Genes 2025, 16, 348. https://doi.org/10.3390/genes16030348
He Y, Mok K, Chumnanpuen P, Nakphaichit M, Vongsangnak W. Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18. Genes. 2025; 16(3):348. https://doi.org/10.3390/genes16030348
Chicago/Turabian StyleHe, Yuke, Kevin Mok, Pramote Chumnanpuen, Massalin Nakphaichit, and Wanwipa Vongsangnak. 2025. "Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18" Genes 16, no. 3: 348. https://doi.org/10.3390/genes16030348
APA StyleHe, Y., Mok, K., Chumnanpuen, P., Nakphaichit, M., & Vongsangnak, W. (2025). Dissecting Metabolic Functions and Sugar Transporters Using Genome and Transportome of Probiotic Limosilactobacillus fermentum KUB-D18. Genes, 16(3), 348. https://doi.org/10.3390/genes16030348