Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review
Abstract
:1. Introduction
2. Ophthalmic Diseases Caused by mtDNA Pathogenic Variants
2.1. Leber’s Hereditary Optic Neuropathy—LHON
2.2. LHON-Plus
2.3. Leigh Syndrome/Leigh Syndrome and Spectrum
2.4. Maternally Inherited Leigh Syndrome—MILS
2.5. Neuropathy, Ataxia, and Retinitis Pigmentosa—NARP
2.6. Chronic Progressive External Ophthalmoplegia (CPEO) and CPEO Plus
2.7. Kearns-Sayre Syndrome—KSS
2.8. Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes—MELAS
2.9. Myoclonic Epilepsy with Ragged Red Fibers—MERRF
2.10. Non-Arteritic Anterior Ischemic Optic Neuropathy—NAION
2.11. Primary Open-Angle Glaucoma—POAG
2.12. Age-Related Macular Degeneration—AMD
Locus | Allele | Amino Acid Change | Plasmy Status | Disease | Pathogenicity Classification | Study Reference No. |
---|---|---|---|---|---|---|
ND2 | m.4917A>G | N150D | Homoplasmy | ARMD, NAION, LHON | [P] | [89,97] |
ND4 | m.11812A>G | L351L | ARMD | [98] | ||
ND6 | m.14233A>G | D147D | ||||
ND1 | m.3688G>A | A128T | Heteroplasmy | Leigh Disease | [LP] | [21] |
m.3890G>A | R195Q | |||||
ATP6 | m.8851T>C | W109R | Homoplasmy | [VUS] | ||
m.9176T>C | L217P | [P] | ||||
m.9176T>G | L217R | [LP] | ||||
m.9191T>C | L222P | Heteroplasmy | ||||
COIII | m.9537_9538insC | Frameshift | ||||
ND3 | m.10158T>C | S34P | Homoplasmy | Leigh Disease, MELAS | [P] | |
m.10191T>C | S45P | Heteroplasmy | Leigh Disease | |||
m.10197G>A | A47T | Homoplasmy | ||||
m.10254G>A | D66N | Heteroplasmy | [LP] | |||
ND4 | m.11777C>A | R340S | ||||
ND5 | m.12706T>C | F124L | ||||
m.13514A>G | D393G | Leigh Disease, MELAS | ||||
ND6 | m.14459G>A | A72V | Homoplasmy | Leigh Disease | [P] | |
m.14487T>C | M63V | Heteroplasmy | ||||
ND1 | m.3635G>A | S110N | LHON | [P] | ||
m.3700G>A | A132T | [VUS] | ||||
m.3733G>A | E143K | Homoplasmy | ||||
ND5 | m.13051G>A | G239S | Heteroplasmy | |||
ND6 | m.14482C>A | M64I | Homoplasmy | [LP] | ||
m.14482C>G | M64I | |||||
m.14484T>C | M64V | [P] | ||||
m.14495A>G | L60S | Heteroplasmy | [LP] | |||
m.14568C>T | G36S | |||||
m.14597A>G | I26T | |||||
ND1 | m.3460G>A | A52T | Homoplasmy | LHON, LHON-like disease | [P] | |
m.4171C>A | L289M | LHON, LHON-like disease, Leigh-like phenotype | [VUS] | |||
COI | m.6261G>A | A120T | LHON-like disease | [P] | [99] | |
COII | m.7623C>T | T13I | ||||
ATP6 | m.8836A>G | M104V | ||||
COIII | m.9660A>C | M152L | ||||
ND4L | m.10543A>G | H25R | Heteroplasmy | |||
m.10591T>G | F41C | |||||
m.10663T>C | V65A | LHON, LHON-like disease | [LP] | [21] | ||
ND4 | m.11778G>A | R340H | Homoplasmy | [P] | ||
m.11874C>A | T372N | LHON-like disease | [P] | [99] | ||
ND5 | m.12782T>G | I149S | Heteroplasmy | |||
m.13379A>G | H348R | LHON, LHON-like disease | [VUS] | [21] | ||
ND1 | m.3376G>A | E24K | Homoplasmy | LHON /MELAS overlap | ||
ND5 | m.13094T>C | V253A | LHON, MELAS | [P] | ||
m.13513G>A | D393N | Heteroplasmy | LHON/MELAS Overlap Syndrome, MELAS, Leigh Disease | |||
ND1 | m.3481G>A | E59K | MELAS | [LP] | ||
m.3946G>A | E214K | Homoplasmy | ||||
CYB | m.14787_14790del | Frameshift | Heteroplasmy | |||
ND6 | m.14453G>A | A74V | Heteroplasmy | MELAS, Leigh Disease | ||
ND1 | m.3697G>A | G131S | Homoplasmy | |||
tRNA Lysine | m.8344A>G | N/A | Heteroplasmy | MERRF | [P] | [21,59] |
m.8356T>C | N/A | |||||
m.3243A>G | N/A | MERRF, MELAS, Leigh Disease | [21,59,100] | |||
m.3255G>A | N/A | MERRF | [21,59] | |||
m.3291T>C | N/A | MERRF, MELAS | ||||
m.8363G>A | N/A | MERRF, Leigh Disease | ||||
ND2 | m.4762T>C | I98T | Homoplasmy | NAION | [97] | |
m.5308C>A | Thr>Asn | Heteroplasmy | ||||
COI | m.6335C>A | Asp>Glu | Homoplasmy | |||
m.7308A>G | I469V | |||||
COIII | m.9957T>C | F251L | ||||
m.9961T>G | Leu>Arg | Heteroplasmy | ||||
ND4 | m.11337A>G | N193S | Homoplasmy | |||
ND5 | m.12340A>C | Thr>Pro | ||||
m.13834A>G | T500A | |||||
ND6 | m.14480A>G | V>A | ||||
CYTB | m.14870A>G | I42V | ||||
ND1 | m.4216T>C | Y304H | NAION, LHON | |||
ND5 | m.13708G>A | A458T | ||||
CYTB | m.15257G>A | D171N | ||||
m.15674T>C | S310P | NAION, LHON-like disease, POAG | [74,97,99] | |||
ATP6 | m.8618_8619insT | Frameshift | Heteroplasmy | NARP | [LP] | [21] |
m.8993T>C | L156P | NARP, Leigh Disease, MILS | [P] | |||
m.8993T>G | L156R | Homoplasmy | [21,101] | |||
m.9185T>C | L220P | NARP-like disease, Leigh Disease | [21] | |||
COII_ND5 | m.7983_13983del | Frameshift | Heteroplasmy | Pearson-Ptosis | [P] | [102] |
ND1 | m.3574C>A | P90T | Homoplasmy | POAG | [74] | |
m.3715G>C | A137P | |||||
m.3903C>A | D199E | |||||
ND2 | m.4936C>A | T156N | Heteroplasmy | |||
COI | m.6186C>A | P95T | Homoplasmy | |||
m.6219C>A | P106T | |||||
m.6391A>T | N163I | |||||
m.6459T>C | W186R | |||||
m.6877C>A | A325D | |||||
COII | m.7827T>C | L81P | ||||
ATP 8 | m.8516T>A | W51X | Heteroplasmy | |||
ATP 6 | m.9030C>A | H168Q | Homoplasmy | |||
COIII | m.9244C>A | P13H | ||||
m.9277C>A | A24D | |||||
tRNA glycine | m.10053A>C | N/A | Heteroplasmy | |||
ND3 | m.10135A>G | Q26R | ||||
ND4 | m.10791T>A | L11X | ||||
m.10920C>G | P54R | Homoplasmy | ||||
m.11768A>C | T337P | |||||
m.11867C>A | P370T | |||||
ND5 | m.12359C>A | T8N |
3. Clinical Relevance and Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARMD | Age-Related Macular Degeneration |
CPEO | Chronic Progressive External Ophthalmoplegia |
CPEO+ | Chronic Progressive External Ophthalmoplegia with additional features |
KSS | Kearns-Sayre Syndrome |
LHON | Leber’s Hereditary Optic Neuropathy |
LHON+ | Leber’s Hereditary Optic Neuropathy with additional features |
MELAS | Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes |
MERRF | Myoclonic Epilepsy with Ragged-Red Fibers |
MILS | Maternally Inherited Leigh Syndrome |
NAION | Non-Arteritic Anterior Ischemic Optic Neuropathy |
NARP | Neuropathy, Ataxia, and Retinitis Pigmentosa |
PEO | Progressive External Ophthalmoplegia |
PEO+ | Progressive External Ophthalmoplegia with additional features |
POAG | Primary Open-Angle Glaucoma |
References
- Chandel, N.S. Mitochondria as Signaling Organelles. BMC Biol. 2014, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.J.; Jackson, T.D.; Stroud, D.A.; Stojanovski, D. Mitochondria—Hubs for Regulating Cellular Biochemistry: Emerging Concepts and Networks. Open Biol. 2019, 9, 190126. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C.; Fan, W.; Procaccio, V. Mitochondrial Energetics and Therapeutics. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 297–348. [Google Scholar] [CrossRef] [PubMed]
- Herbers, E.; Kekäläinen, N.J.; Hangas, A.; Pohjoismäki, J.L.; Goffart, S. Tissue Specific Differences in Mitochondrial DNA Maintenance and Expression. Mitochondrion 2019, 44, 85–92. [Google Scholar] [CrossRef]
- Stańczyk, M.; Szubart, N.; Maslanka, R.; Zadrag-Tecza, R. Mitochondrial Dysfunctions: Genetic and Cellular Implications Revealed by Various Model Organisms. Genes 2024, 15, 1153. [Google Scholar] [CrossRef]
- Habbane, M.; Montoya, J.; Rhouda, T.; Sbaoui, Y.; Radallah, D.; Emperador, S. Human Mitochondrial DNA: Particularities and Diseases. Biomedicines 2021, 9, 1364. [Google Scholar] [CrossRef]
- Bayir, H.; Kagan, V.E. Bench-to-Bedside Review: Mitochondrial Injury, Oxidative Stress and Apoptosis—There Is Nothing More Practical than a Good Theory. Crit Care 2008, 12, 206. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Q.; Zhao, D.; Lian, F.; Li, X.; Qi, W. The Impact of Oxidative Stress-Induced Mitochondrial Dysfunction on Diabetic Microvascular Complications. Front. Endocrinol. 2023, 14, 1112363. [Google Scholar] [CrossRef]
- Lee, S.R.; Han, J. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. Oxidative Med. Cell. Longev. 2017, 2017, 8060949. [Google Scholar] [CrossRef]
- Chen, B.S.; Harvey, J.P.; Gilhooley, M.J.; Jurkute, N.; Yu-Wai-Man, P. Mitochondria and the Eye—Manifestations of Mitochondrial Diseases and Their Management. Eye 2023, 37, 2416–2425. [Google Scholar] [CrossRef]
- Esmaeil, A.; Ali, A.; Behbehani, R. Leber’s Hereditary Optic Neuropathy: Update on Current Diagnosis and Treatment. Front. Ophthalmol. 2023, 2, 1077395. [Google Scholar] [CrossRef]
- Poincenot, L.; Pearson, A.L.; Karanjia, R. Demographics of a Large International Population of Patients Affected by Leber’s Hereditary Optic Neuropathy. Ophthalmology 2020, 127, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, F.K.; Leo-Kottler, B.; Mittelviefhaus, K.; Zrenner, E.; Meyer, J.; Pusch, C.M.; Wissinger, B. Segregation Patterns and Heteroplasmy Prevalence in Leber’s Hereditary Optic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1208–1214. [Google Scholar]
- Achilli, A.; Iommarini, L.; Olivieri, A.; Pala, M.; Hooshiar Kashani, B.; Reynier, P.; La Morgia, C.; Valentino, M.L.; Liguori, R.; Pizza, F.; et al. Rare Primary Mitochondrial DNA Pathogenic variants and Probable Synergistic Variants in Leber’s Hereditary Optic Neuropathy. PLoS ONE 2012, 7, e42242. [Google Scholar] [CrossRef]
- Brown, M.D.; Sun, F.; Wallace, D.C. Clustering of Caucasian Leber Hereditary Optic Neuropathy Patients Containing the 11778 or 14484 Pathogenic variants on an mtDNA Lineage. Am. J. Hum. Genet. 1997, 60, 381–387. [Google Scholar] [PubMed]
- Kirches, E. LHON: Mitochondrial Pathogenic variants and More. Curr. Genom. 2011, 12, 44–54. [Google Scholar] [CrossRef]
- Man, P.Y.W. Leber Hereditary Optic Neuropathy. J. Med. Genet. 2002, 39, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Gene–Environment Interactions in Leber Hereditary Optic Neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef]
- Giordano, L.; Deceglie, S.; d’Adamo, P.; Valentino, M.L.; La Morgia, C.; Fracasso, F.; Roberti, M.; Cappellari, M.; Petrosillo, G.; Ciaravolo, S.; et al. Cigarette Toxicity Triggers Leber’s Hereditary Optic Neuropathy by Affecting mtDNA Copy Number, Oxidative Phosphorylation and ROS Detoxification Pathways. Cell Death Dis. 2015, 6, e2021. [Google Scholar] [CrossRef]
- Carelli, V.; Carbonelli, M.; De Coo, I.F.; Kawasaki, A.; Klopstock, T.; Lagrèze, W.A.; La Morgia, C.; Newman, N.J.; Orssaud, C.; Pott, J.W.R.; et al. International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy. J. Neuro-Ophthalmol. 2017, 37, 371–381. [Google Scholar] [CrossRef]
- Lott, M.T.; Leipzig, J.N.; Derbeneva, O.; Xie, H.M.; Chalkia, D.; Sarmady, M.; Procaccio, V.; Wallace, D.C. mtDNA Variation and Analysis Using Mitomap and Mitomaster. CP Bioinform. 2013, 44, 1.23.1–1.23.26. [Google Scholar] [CrossRef]
- Abu-Amero, K.K. Complex I Respiratory Defect in LHON plus Dystonia with No Mitochondrial DNA Mutation. Br. J. Ophthalmol. 2005, 89, 1380–1381. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.; Thorburn, D.R.; Rahman, S. Mitochondrial DNA-Associated Leigh Syndrome Spectrum. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Schubert Baldo, M.; Vilarinho, L. Molecular Basis of Leigh Syndrome: A Current Look. Orphanet J. Rare Dis. 2020, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Ganetzky, R.D.; Stendel, C.; McCormick, E.M.; Zolkipli-Cunningham, Z.; Goldstein, A.C.; Klopstock, T.; Falk, M.J. MT-ATP6 Mitochondrial Disease Variants: Phenotypic and Biochemical Features Analysis in 218 Published Cases and Cohort of 14 New Cases. Hum. Mutat. 2019, 40, 499–515. [Google Scholar] [CrossRef]
- Na, J.; Lee, Y. Genotype-phenotype Analysis of MT-ATP6-associated Leigh Syndrome. Acta Neuro Scand. 2022, 145, 414–422. [Google Scholar] [CrossRef]
- Carelli, V.; Sadun, A.A. Optic Neuropathy in Lhon and Leigh Syndrome. Ophthalmology 2001, 108, 1172–1173. [Google Scholar] [CrossRef] [PubMed]
- Uittenbogaard, M.; Brantner, C.A.; Fang, Z.; Wong, L.-J.C.; Gropman, A.; Chiaramello, A. Novel Insights into the Functional Metabolic Impact of an Apparent de Novo m.8993T>G Variant in the MT-ATP6 Gene Associated with Maternally Inherited Form of Leigh Syndrome. Mol. Genet. Metab. 2018, 124, 71–81. [Google Scholar] [CrossRef]
- Martins, S.; Santos, M.J.; Simões, M.; Jacinto, S.; Martins Halpern, C.; Dupont, J.; Diogo, L.; Grazina, M. Diversities in Leigh Syndrome Associated with MT-ATP6 Gene Variants. Endocr. Metab. Immune Disord. Drug Targets 2023, 23. [Google Scholar] [CrossRef]
- Blanco-Grau, A.; Bonaventura-Ibars, I.; Coll-Cantí, J.; Melià, M.J.; Martinez, R.; Martínez-Gallo, M.; Andreu, A.L.; Pinós, T.; García-Arumí, E. Identification and Biochemical Characterization of the Novel Mutation m. 8839G>C in the MitochondrialATP6Gene Associated with NARP Syndrome. Genes Brain Behav. 2013, 12, 812–820. [Google Scholar] [CrossRef]
- Lopez-Gallardo, E.; Solano, A.; Herrero-Martin, M.D.; Martinez-Romero, I.; Castano-Perez, M.D.; Andreu, A.L.; Herrera, A.; Lopez-Perez, M.J.; Ruiz-Pesini, E.; Montoya, J. NARP Syndrome in a Patient Harbouring an Insertion in the MT-ATP6 Gene That Results in a Truncated Protein. J. Med. Genet. 2008, 46, 64–67. [Google Scholar] [CrossRef]
- Hippen, M.; Zsurka, G.; Peeva, V.; Machts, J.; Schwiecker, K.; Debska-Vielhaber, G.; Wiesner, R.J.; Vielhaber, S.; Kunz, W.S. Novel Pathogenic Sequence Variation m.5789T>C Causes NARP Syndrome and Promotes Formation of Deletions of the Mitochondrial Genome. Neurol. Genet. 2022, 8, e660. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, T.; Koto, S.; Ishihara, H.; Goto, Y.; Nishino, I.; Kanda, F.; Toda, T. A Case of Neurologic Muscle Weakness, Ataxia, and Retinitis Pigmentosa (NARP) Syndrome with a Novel Mitochondrial Mutation m.8729G>A. Rinsho Shinkeigaku 2015, 55, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Brum, M.; Semedo, C.; Guerreiro, R.; Pinto Marques, J. Motor Neuron Syndrome as a New Phenotypic Manifestation of Mutation 9185T>C in Gene MTATP6. Case Rep. Neurol. Med. 2014, 2014, 701761. [Google Scholar] [CrossRef]
- Sgarbi, G.; Casalena, G.A.; Baracca, A.; Lenaz, G.; DiMauro, S.; Solaini, G. Human NARP Mitochondrial Mutation Metabolism Corrected With α-Ketoglutarate/Aspartate: A Potential New Therapy. Arch. Neurol. 2009, 66, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Pitceathly, R.D.S. Progressive External Ophthalmoplegia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2023; Volume 194, pp. 9–21. ISBN 9780128217511. [Google Scholar]
- Goto, Y.; Koga, Y.; Horai, S.; Nonaka, I. Chronic Progressive External Ophthalmoplegia: A Correlative Study of Mitochondrial DNA Deletions and Their Phenotypic Expression in Muscle Biopsies. J. Neurol. Sci. 1990, 100, 63–69. [Google Scholar] [CrossRef]
- Caballero, P.E.J.; Candela, M.S.; Álvarez, C.I.C.; Tejerina, A.Á. Chronic Progressive External Ophthalmoplegia: A Report of 6 Cases and a Review of the Literature. Neurologist 2007, 13, 33–36. [Google Scholar] [CrossRef]
- Holt, I.J.; Harding, A.E.; Morgan-Hughes, J.A. Deletions of Muscle Mitochondrial DNA in Patients with Mitochondrial Myopathies. Nature 1988, 331, 717–719. [Google Scholar] [CrossRef]
- Shoffner, J.M.; Lott, M.T.; Lezza, A.M.S.; Seibel, P.; Ballinger, S.W.; Wallace, D.C. Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF) Is Associated with a Mitochondrial DNA tRNALys Mutation. Cell 1990, 61, 931–937. [Google Scholar] [CrossRef]
- Moraes, C.T.; Ciacci, F.; Bonilla, E.; Jansen, C.; Hirano, M.; Rao, N.; Lovelace, R.E.; Rowland, L.P.; Schon, E.A.; DiMauro, S. Two Novel Pathogenic Mitochondrial DNA Pathogenic variants Affecting Organelle Number and Protein Synthesis. Is the tRNA(Leu(UUR)) Gene an Etiologic Hot Spot? J. Clin. Investig. 1993, 92, 2906–2915. [Google Scholar] [CrossRef]
- Cardaioli, E.; Da Pozzo, P.; Malfatti, E.; Gallus, G.N.; Rubegni, A.; Malandrini, A.; Gaudiano, C.; Guidi, L.; Serni, G.; Berti, G.; et al. Chronic Progressive External Ophthalmoplegia: A New Heteroplasmic tRNALeu(CUN) Mutation of Mitochondrial DNA. J. Neurol. Sci. 2008, 272, 106–109. [Google Scholar] [CrossRef]
- Spagnolo, M.; Tomelleri, G.; Vattemi, G.; Filosto, M.; Rizzuto, N.; Tonin, P. A New Mutation in the Mitochondrial tRNAAla Gene in a Patient with Ophthalmoplegia and Dysphagia. Neuromuscul. Disord. 2001, 11, 481–484. [Google Scholar] [CrossRef]
- Schlapakow, E.; Peeva, V.; Zsurka, G.; Jeub, M.; Wabbels, B.; Kornblum, C.; Kunz, W.S. Distinct Segregation of the Pathogenic m.5667G>A Mitochondrial tRNAAsn Mutation in Extraocular and Skeletal Muscle in Chronic Progressive External Ophthalmoplegia. Neuromuscul. Disord. 2019, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Neuwirth, C.; Hahn, D.; Nuoffer, J.-M.; Frank, S.; Gallati, S.; Schaller, A. Novel Mitochondrial tRNAIle m.4282A>G Gene Mutation Leads to Chronic Progressive External Ophthalmoplegia plus Phenotype. Br. J. Ophthalmol. 2014, 98, 1453–1459. [Google Scholar] [CrossRef]
- Bacalhau, M.; Simões, M.; Rocha, M.C.; Hardy, S.A.; Vincent, A.E.; Durães, J.; Macário, M.C.; Santos, M.J.; Rebelo, O.; Lopes, C.; et al. Disclosing the Functional Changes of Two Genetic Alterations in a Patient with Chronic Progressive External Ophthalmoplegia: Report of the Novel mtDNA m.7486G>A Variant. Neuromuscul. Disord. 2018, 28, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Berardo, A.; DiMauro, S.; Hirano, M. A Diagnostic Algorithm for Metabolic Myopathies. Curr. Neurol. Neurosci. Rep. 2010, 10, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Wittich, C.; Khambatta, S.; Nguyen, D.; Beckman, T. Kearns–Sayre Syndrome: A Case Series of 35 Adults and Children. Int. J. Gen. Med. 2014, 7, 325–332. [Google Scholar] [CrossRef]
- Adam, M.P.; Feldman, J.; Mirzaa, G.M.; Pagon, R.A.; Wallace, S.E.; Amemiya, A. (Eds.) GeneReviews® [Internet]; University of Washington, Seattle: Seattle, WA, USA, 1993–2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1116/ (accessed on 2 January 2025).
- Saldaña-Martínez, A.; Muñoz, M.D.L.; Pérez-Ramírez, G.; Montiel-Sosa, J.F.; Montoya, J.; Emperador, S.; Ruiz-Pesini, E.; Cuevas-Covarrubias, S.; López-Valdez, J.; Ramírez, R.G. Whole Sequence of the Mitochondrial DNA Genome of Kearns Sayre Syndrome Patients: Identification of Deletions and Variants. Gene 2019, 688, 171–181. [Google Scholar] [CrossRef]
- Grigalionienė, K.; Burnytė, B.; Balkelienė, D.; Ambrozaitytė, L.; Utkus, A. Kearns-Sayre Syndrome Case. Novel 5,9 Kb mtDNA Deletion. Mol. Genet. Genom. Med. 2023, 11, e2059. [Google Scholar] [CrossRef]
- Kisilevsky, E.; Freund, P.; Margolin, E. Mitochondrial Disorders and the Eye. Surv. Ophthalmol. 2020, 65, 294–311. [Google Scholar] [CrossRef]
- Leal, M.; Dhoble, C.; Lee, J.; Lopez, D.; Menéndez, L.S. A Rare Case of Kearns–Sayre Syndrome in a 17-Year-Old Venezuelan Male with Bilateral Ptosis as the Initial Presentation. Oxf. Med. Case Rep. 2016, 2016, 34–36. [Google Scholar] [CrossRef]
- Manwaring, N.; Jones, M.M.; Wang, J.J.; Rochtchina, E.; Howard, C.; Mitchell, P.; Sue, C.M. Population Prevalence of the MELAS A3243G Mutation. Mitochondrion 2007, 7, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Seed, L.M.; Dean, A.; Krishnakumar, D.; Phyu, P.; Horvath, R.; Harijan, P.D. Molecular and Neurological Features of MELAS Syndrome in Paediatric Patients: A Case Series and Review of the Literature. Mol. Genet. Genom. Med. 2022, 10, e1955. [Google Scholar] [CrossRef]
- Fan, H.-C.; Lee, H.-F.; Yue, C.-T.; Chi, C.-S. Clinical Characteristics of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Life 2021, 11, 1111. [Google Scholar] [CrossRef]
- Lee, H.; Na, J.; Lee, Y. Mitochondrial tRNAHis Mutation (m.12158A>G) Associated with MELAS Syndrome. Clin. Genet. 2022, 101, 474–475. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Y.; Yang, Y.; Qian, M. MELAS/LS Overlap Syndrome Associated With Mitochondrial DNA Pathogenic variants: Clinical, Genetic, and Radiological Studies. Front. Neurol. 2021, 12, 648740. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Tadi, P. Myoclonic Epilepsy and Ragged Red Fibers. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial Diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]
- Ripolone, M.; Zanotti, S.; Napoli, L.; Ronchi, D.; Ciscato, P.; Comi, G.P.; Moggio, M.; Sciacco, M. MERRF Mutation A8344G in a Four-Generation Family without Central Nervous System Involvement: Clinical and Molecular Characterization. J. Pers. Med. 2023, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, G.; Moraes, C.T.; Shanske, S.; Oh, S.J.; DiMauro, S. A New mtDNA Mutation in the tRNA(Lys) Gene Associated with Myoclonic Epilepsy and Ragged-Red Fibers (MERRF). Am. J. Hum. Genet. 1992, 51, 1213–1217. [Google Scholar]
- Mancuso, M.; Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Minetti, C.; Moggio, M.; Mongini, T.; Servidei, S.; et al. Phenotypic Heterogeneity of the 8344A>G mtDNA “MERRF” Mutation. Neurology 2013, 80, 2049–2054. [Google Scholar] [CrossRef]
- Štufková, H.; Kolářová, H.; Lokvencová, K.; Honzík, T.; Zeman, J.; Hansíková, H.; Tesařová, M. A Novel MTTK Gene Variant m.8315A>C as a Cause of MERRF Syndrome. Genes 2022, 13, 1245. [Google Scholar] [CrossRef]
- Salvetat, M.L.; Pellegrini, F.; Spadea, L.; Salati, C.; Zeppieri, M. Non-Arteritic Anterior Ischemic Optic Neuropathy (NA-AION): A Comprehensive Overview. Vision 2023, 7, 72. [Google Scholar] [CrossRef]
- Hattenhauer, M.G.; Leavitt, J.A.; Hodge, D.O.; Grill, R.; Gray, D.T. Incidence of Nonarteritic Anteripr Ischemic Optic Neuropathy. Am. J. Ophthalmol. 1997, 123, 103–107. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Fingert, J.H.; Stone, E.; Jacobson, D.M. Familial Non-Arteritic Anterior Ischemic Optic Neuropathy. Graefe's Arch. Clin. Exp. Ophthalmol. 2008, 246, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Fingert, J.H.; Grassi, M.A.; Janutka, J.C.; East, J.S.; Howard, J.G.; Sheffield, V.C.; Jacobson, D.M.; Hayreh, S.S.; Stone, E.M. Mitochondrial Variant G4132A Is Associated with Familial Non-Arteritic Anterior Ischemic Optic Neuropathy in One Large Pedigree. Ophthalmic Genet. 2007, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Bosley, T.M.; Bohlega, S.; Hansen, E. Mitochondrial T9957C Mutation in Association with NAION and Seizures but Not MELAS. Ophthalmic Genet. 2005, 26, 31–36. [Google Scholar] [CrossRef]
- Bosley, T.M.; Abu-Amero, K.K.; Ozand, P.T. Mitochondrial DNA Nucleotide Changes in Non-Arteritic Ischemic Optic Neuropathy. Neurology 2004, 63, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K. Prothrombotic and Atherosclerotic Risk Factors Lack Significance in NAION Patients Harbouring Mitochondrial DNA Pathogenic variants. Br. J. Ophthalmol. 2006, 90, 119–120. [Google Scholar] [CrossRef]
- Abu-Amero, K.K.; Larruga, J.M.; González, A.M.; Bosley, T.M. The Role of Mitochondrial Haplogroups in Non-Arteritic Anterior Ischemic Optic Neuropathy. Ophthalmic Genet. 2008, 29, 111–116. [Google Scholar] [CrossRef]
- Abu-Amero, K.; Kondkar, A.; Chalam, K. An Updated Review on the Genetics of Primary Open Angle Glaucoma. Int. J. Mol. Sci. 2015, 16, 28886–28911. [Google Scholar] [CrossRef]
- Abu-Amero, K.K.; Morales, J.; Bosley, T.M. Mitochondrial Abnormalities in Patients with Primary Open-Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2533. [Google Scholar] [CrossRef]
- Chrysostomou, V.; Rezania, F.; Trounce, I.A.; Crowston, J.G. Oxidative Stress and Mitochondrial Dysfunction in Glaucoma. Curr. Opin. Pharmacol. 2013, 13, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Bosley, T.M.; Morales, J. Analysis of Nuclear and Mitochondrial Genes in Patients with Pseudoexfoliation Glaucoma. Mol. Vis. 2008, 14, 29–36. [Google Scholar]
- Banerjee, D.; Banerjee, A.; Mookherjee, S.; Vishal, M.; Mukhopadhyay, A.; Sen, A.; Basu, A.; Ray, K. Mitochondrial Genome Analysis of Primary Open Angle Glaucoma Patients. PLoS ONE 2013, 8, e70760. [Google Scholar] [CrossRef]
- Tanwar, M.; Dada, T.; Sihota, R.; Dada, R. Mitochondrial DNA Analysis in Primary Congenital Glaucoma. Mol. Vis. 2010, 16, 518–533. [Google Scholar] [PubMed]
- Kumar, M.; Tanwar, M.; Faiq, M.A.; Pani, J.; Shamsi, M.B.; Dada, T.; Dada, R. Mitochondrial DNA Nucleotide Changes in Primary Congenital Glaucoma Patients. Mol. Vis. 2013, 19, 220–230. [Google Scholar]
- Jeoung, J.W.; Seong, M.-W.; Park, S.S.; Kim, D.M.; Kim, S.H.; Park, K.H. Mitochondrial DNA Variant Discovery in Normal-Tension Glaucoma Patients by Next-Generation Sequencing. Investig. Ophthalmol. Vis. Sci. 2014, 55, 986. [Google Scholar] [CrossRef] [PubMed]
- Naini, A.B.; Lu, J.; Kaufmann, P.; Bernstein, R.A.; Mancuso, M.; Bonilla, E.; Hirano, M.; DiMauro, S. Novel Mitochondrial DNA ND5 Mutation in a Patient with Clinical Features of MELAS and MERRF. Arch. Neurol. 2005, 62, 473. [Google Scholar] [CrossRef]
- Collins, D.W.; Gudiseva, H.V.; Trachtman, B.; Bowman, A.S.; Sagaser, A.; Sankar, P.; Miller-Ellis, E.; Lehman, A.; Addis, V.; O’Brien, J.M. Association of Primary Open-Angle Glaucoma with Mitochondrial Variants and Haplogroups Common in African Americans. Mol. Vis. 2016, 22, 454–471. [Google Scholar]
- Abu-Amero, K.K.; González, A.M.; Osman, E.A.; Larruga, J.M.; Cabrera, V.M.; Al-Obeidan, S.A. Mitochondrial DNA Lineages of African Origin Confer Susceptibility to Primary Open-Angle Glaucoma in Saudi Patients. Mol. Vis. 2011, 17, 1468–1472. [Google Scholar]
- Dada, T.; Dada, R.; Mishra, S.; Mohanty, K. Mitochondrial Genome Alterations, Cytochrome C Oxidase Activity, and Oxidative Stress: Implications in Primary Open-Angle Glaucoma. J. Curr. Glaucoma Pract. 2023, 16, 158–165. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Vyawahare, H.; Shinde, P. Age-Related Macular Degeneration: Epidemiology, Pathophysiology, Diagnosis, and Treatment. Cureus 2022, 14, e29583. [Google Scholar] [CrossRef] [PubMed]
- Kaarniranta, K.; Pawlowska, E.; Szczepanska, J.; Jablkowska, A.; Blasiak, J. Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int. J. Mol. Sci. 2019, 20, 2374. [Google Scholar] [CrossRef]
- Liu, M.M.; Chan, C.-C.; Tuo, J. Genetic Mechanisms and Age-Related Macular Degeneration: Common Variants, Rare Variants, Copy Number Variations, Epigenetics, and Mitochondrial Genetics. Hum. Genom. 2012, 6, 13. [Google Scholar] [CrossRef]
- Canter, J.A.; Olson, L.M.; Spencer, K.; Schnetz-Boutaud, N.; Anderson, B.; Hauser, M.A.; Schmidt, S.; Postel, E.A.; Agarwal, A.; Pericak-Vance, M.A.; et al. Mitochondrial DNA Polymorphism A4917G Is Independently Associated with Age-Related Macular Degeneration. PLoS ONE 2008, 3, e2091. [Google Scholar] [CrossRef]
- SanGiovanni, J.P.; Arking, D.E.; Iyengar, S.K.; Elashoff, M.; Clemons, T.E.; Reed, G.F.; Henning, A.K.; Sivakumaran, T.A.; Xu, X.; DeWan, A.; et al. Mitochondrial DNA Variants of Respiratory Complex I That Uniquely Characterize Haplogroup T2 Are Associated with Increased Risk of Age-Related Macular Degeneration. PLoS ONE 2009, 4, e5508. [Google Scholar] [CrossRef]
- Atilano, S.R.; Udar, N.; Satalich, T.A.; Udar, V.; Chwa, M.; Kenney, M.C. Low Frequency Mitochondrial DNA Heteroplasmy SNPs in Blood, Retina, and [RPE+choroid] of Age-Related Macular Degeneration Subjects. PLoS ONE 2021, 16, e0246114. [Google Scholar] [CrossRef]
- Jones, M.M. Mitochondrial DNA Haplogroups and Age-Related Maculopathy. Arch. Ophthalmol. 2007, 125, 1235. [Google Scholar] [CrossRef] [PubMed]
- Udar, N.; Atilano, S.R.; Memarzadeh, M.; Boyer, D.S.; Chwa, M.; Lu, S.; Maguen, B.; Langberg, J.; Coskun, P.; Wallace, D.C.; et al. Mitochondrial DNA Haplogroups Associated with Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2966. [Google Scholar] [CrossRef]
- Mueller, E.E.; Schaier, E.; Brunner, S.M.; Eder, W.; Mayr, J.A.; Egger, S.F.; Nischler, C.; Oberkofler, H.; Reitsamer, H.A.; Patsch, W.; et al. Mitochondrial Haplogroups and Control Region Polymorphisms in Age-Related Macular Degeneration: A Case-Control Study. PLoS ONE 2012, 7, e30874. [Google Scholar] [CrossRef]
- Primiano, G.; Abed, E.; Corbo, G.; Minnella, A.M.; Servidei, S.; Vollono, C.; Savastano, M.C.; Falsini, B. Macular Impairment in Mitochondrial Diseases: A Potential Biomarker of Disease Severity. Sci. Rep. 2020, 10, 8554. [Google Scholar] [CrossRef]
- Riazi-Esfahani, M.; Kuppermann, B.; Kenney, M. The Role of Mitochondria in AMD: Current Knowledge and Future Applications. J. Ophthalmic Vis. Res. 2017, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Bosley, T.M. Mitochondrial DNA Abnormalities in NAION. Br. J. Ophthalmol. 2007, 91, 1561. [Google Scholar] [CrossRef]
- Kenney, M.C.; Hertzog, D.; Chak, G.; Atilano, S.R.; Khatibi, N.; Soe, K.; Nobe, A.; Yang, E.; Chwa, M.; Zhu, F.; et al. Mitochondrial DNA Haplogroups Confer Differences in Risk for Age-Related Macular Degeneration: A Case Control Study. BMC Med. Genet. 2013, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Bosley, T.M. Mitochondrial Abnormalities in Patients with LHON-like Optic Neuropathies. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4211. [Google Scholar] [CrossRef] [PubMed]
- Heighton, J.N.; Brady, L.I.; Sadikovic, B.; Bulman, D.E.; Tarnopolsky, M.A. Genotypes of Chronic Progressive External Ophthalmoplegia in a Large Adult-Onset Cohort. Mitochondrion 2019, 49, 227–231. [Google Scholar] [CrossRef]
- Zeviani, M.; Carelli, V. Mitochondrial Retinopathies. Int. J. Mol. Sci. 2021, 23, 210. [Google Scholar] [CrossRef]
- Broomfield, A.; Sweeney, M.G.; Woodward, C.E.; Fratter, C.; Morris, A.M.; Leonard, J.V.; Abulhoul, L.; Grunewald, S.; Clayton, P.T.; Hanna, M.G.; et al. Paediatric Single Mitochondrial DNA Deletion Disorders: An Overlapping Spectrum of Disease. J. Inherit. Metab. Dis. 2015, 38, 445–457. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Amero, K.K.; Almadani, B.; Abualkhair, S.; Hameed, S.; Kondkar, A.A.; Sollazzo, A.; Yu, A.C.; Busin, M.; Zauli, G. Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review. Genes 2025, 16, 347. https://doi.org/10.3390/genes16030347
Abu-Amero KK, Almadani B, Abualkhair S, Hameed S, Kondkar AA, Sollazzo A, Yu AC, Busin M, Zauli G. Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review. Genes. 2025; 16(3):347. https://doi.org/10.3390/genes16030347
Chicago/Turabian StyleAbu-Amero, Khaled K., Bashaer Almadani, Shereen Abualkhair, Syed Hameed, Altaf A Kondkar, Andrea Sollazzo, Angeli Christy Yu, Massimo Busin, and Giorgio Zauli. 2025. "Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review" Genes 16, no. 3: 347. https://doi.org/10.3390/genes16030347
APA StyleAbu-Amero, K. K., Almadani, B., Abualkhair, S., Hameed, S., Kondkar, A. A., Sollazzo, A., Yu, A. C., Busin, M., & Zauli, G. (2025). Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review. Genes, 16(3), 347. https://doi.org/10.3390/genes16030347