The Relationship of the Pathogenic Variant rs721048 in the Intron of the EHBP1 Gene with the Development of Prostate Cancer and Colorectal Cancer in the Kazakh Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Patient and Control Groups
3.2. rs721048 Variant Analysis
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, N.D.; Tannock, I.; N’Dow, J.; Feng, F.; Gillessen, S.; Ali, S.A.; Trujillo, B.; Al-Lazikani, B.; Attard, G.; Bray, F.; et al. The Lancet Commission on Prostate Cancer: Planning for the Surge in Cases. Lancet Lond. Engl. 2024, 403, 1683–1722. [Google Scholar] [CrossRef] [PubMed]
- Belev, N.F.; Brega, D.G.; Gorinchoi, G.V. Prostate Cancer and Hereditary Syndromes. Malig. Tumours 2015, 10, 97. [Google Scholar] [CrossRef]
- Kalampokis, N.; Zabaftis, C.; Spinos, T.; Karavitakis, M.; Leotsakos, I.; Katafigiotis, I.; Van Der Poel, H.; Grivas, N.; Mitropoulos, D. Review on the Role of BRCA Mutations in Genomic Screening and Risk Stratification of Prostate Cancer. Curr. Oncol. 2024, 31, 1162–1169. [Google Scholar] [CrossRef]
- Nguyen-Dumont, T.; MacInnis, R.J.; Steen, J.A.; Theys, D.; Tsimiklis, H.; Hammet, F.; Mahmoodi, M.; Pope, B.J.; Park, D.J.; Mahmood, K.; et al. Rare Germline Genetic Variants and Risk of Aggressive Prostate Cancer. Int. J. Cancer 2020, 147, 2142–2149. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.; Sulem, P.; Rafnar, T.; Bergthorsson, J.T.; Manolescu, A.; Gudbjartsson, D.; Agnarsson, B.A.; Sigurdsson, A.; Benediktsdottir, K.R.; Blondal, T.; et al. Common Sequence Variants on 2p15 and Xp11.22 Confer Susceptibility to Prostate Cancer. Nat. Genet. 2008, 40, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Liu, Y.; Bai, X.-Y.; Qu, X.; Xu, Z.; Hu, G.; Chen, M.; Wu, H. Association between EHBP1 Rs721048(A>G) Polymorphism and Prostate Cancer Susceptibility: A Meta-Analysis of 17 Studies Involving 150,678 Subjects. OncoTargets Ther. 2015, 8, 1671–1680. [Google Scholar] [CrossRef]
- Qi, L.; Ding, Y. Screening and Regulatory Network Analysis of Survival-Related Genes of Patients with Colorectal Cancer. Sci. China Life Sci. 2014, 57, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Kinsella, M.T.; Willis, J.E.; Hu, H.; Reynolds, H.; Delaney, C.; McCulla, A.; Deharo, S.; Ahdesmäki, M.; Allen, W.L.; et al. A Predictive Genetic Signature for Response to Fluoropyrimidine-Based Neoadjuvant Chemoradiation in Clinical Stage II and III Rectal Cancer. Front. Oncol. 2013, 3, 288. [Google Scholar] [CrossRef]
- Zhunussova, G.; Afonin, G.; Abdikerim, S.; Jumanov, A.; Perfilyeva, A.; Kaidarova, D.; Djansugurova, L. Mutation Spectrum of Cancer-Associated Genes in Patients With Early Onset of Colorectal Cancer. Front. Oncol. 2019, 9, 673. [Google Scholar] [CrossRef]
- Srigley, J.R.; Delahunt, B.; Egevad, L.; Samaratunga, H.; Yaxley, J.; Evans, A.J. One Is the New Six: The International Society of Urological Pathology (ISUP) Patient-Focused Approach to Gleason Grading. Can. Urol. Assoc. J. 2016, 10, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Miyamoto, H. Percent Gleason Pattern 4 in Stratifying the Prognosis of Patients with Intermediate-Risk Prostate Cancer. Transl. Androl. Urol. 2018, 7, S484–S489. [Google Scholar] [CrossRef]
- Fiorentino, V.; Martini, M.; Dell’Aquila, M.; Musarra, T.; Orticelli, E.; Larocca, L.M.; Rossi, E.; Totaro, A.; Pinto, F.; Lenci, N.; et al. Histopathological Ratios to Predict Gleason Score Agreement between Biopsy and Radical Prostatectomy. Diagnostics 2020, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Tsukamoto, T.; Chinen, Y.; Shimura, Y.; Sasaki, N.; Nagoshi, H.; Sato, R.; Adachi, H.; Nakano, M.; Horiike, S.; et al. Detection of Novel and Recurrent Conjoined Genes in Non-Hodgkin B-Cell Lymphoma. J. Clin. Exp. Hematop. 2021, 61, 71–77. [Google Scholar] [CrossRef]
- Den Dunnen, J.T.; Dalgleish, R.; Maglott, D.R.; Hart, R.K.; Greenblatt, M.S.; McGowan-Jordan, J.; Roux, A.-F.; Smith, T.; Antonarakis, S.E.; Taschner, P.E.M.; et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum. Mutat. 2016, 37, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Desai, T.A.; Hedman, Å.K.; Dimitriou, M.; Koprulu, M.; Figiel, S.; Yin, W.; Johansson, M.; Watts, E.L.; Atkins, J.R.; Sokolov, A.V.; et al. Identifying Proteomic Risk Factors for Overall, Aggressive, and Early Onset Prostate Cancer Using Mendelian Randomisation and Tumour Spatial Transcriptomics. eBioMedicine 2024, 105, 105168. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.; Jin, Y.; Zhang, H.; Qiang, W.; Shekhtman, E.; Shao, D.; Revoe, D.; Villamarin, R.; Ivanchenko, E.; Kimura, M.; et al. The ALFA Dataset: New Aggregated Allele Frequency from dbGaP and dbSNP Now Available. Available online: https://ncbiinsights.ncbi.nlm.nih.gov/2020/03/26/alfa/ (accessed on 9 December 2024).
- Beikzadeh, B.; Angaji, S.A.; Abolhasani, M. Association Study between Common Variations in Some Candidate Genes and Prostate Adenocarcinoma Predisposition through Multi-Stage Approach in Iranian Population. BMC Med. Genet. 2020, 21, 81. [Google Scholar] [CrossRef]
- Rai, A.; Bleimling, N.; Vetter, I.R.; Goody, R.S. The Mechanism of Activation of the Actin Binding Protein EHBP1 by Rab8 Family Members. Nat. Commun. 2020, 11, 4187. [Google Scholar] [CrossRef]
- Guilherme, A.; Soriano, N.A.; Furcinitti, P.S.; Czech, M.P. Role of EHD1 and EHBP1 in Perinuclear Sorting and Insulin-Regulated GLUT4 Recycling in 3T3-L1 Adipocytes. J. Biol. Chem. 2004, 279, 40062–40075. [Google Scholar] [CrossRef]
- Li, Z.; Schulze, R.J.; Weller, S.G.; Krueger, E.W.; Schott, M.B.; Zhang, X.; Casey, C.A.; Liu, J.; Stöckli, J.; James, D.E.; et al. A Novel Rab10-EHBP1-EHD2 Complex Essential for the Autophagic Engulfment of Lipid Droplets. Sci. Adv. 2016, 2, e1601470. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Feng, J.; Zhang, Y.; Yi, M.; Zhang, L.; Yan, Y.; Zhu, A.J.; Liu, M. Ehbp1 Orchestrates Orderly Sorting of Wnt/Wingless to the Basolateral and Apical Cell Membranes. EMBO Rep. 2024, 25, 5053–5079. [Google Scholar] [CrossRef]
- Strippoli, A.; Cocomazzi, A.; Basso, M.; Cenci, T.; Ricci, R.; Pierconti, F.; Cassano, A.; Fiorentino, V.; Barone, C.; Bria, E.; et al. C-MYC Expression Is a Possible Keystone in the Colorectal Cancer Resistance to EGFR Inhibitors. Cancers 2020, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, L.; Brugiolo, M.; Park, S.; Angarola, B.L.; Leclair, N.K.; Yurieva, M.; Palmer, P.; Sahu, S.K.; Anczuków, O. MYC Regulates a Pan-Cancer Network of Co-Expressed Oncogenic Splicing Factors. Cell Rep. 2022, 41, 111704. [Google Scholar] [CrossRef]
- Osman, N.; Shawky, A.-E.-M.; Brylinski, M. Exploring the Effects of Genetic Variation on Gene Regulation in Cancer in the Context of 3D Genome Structure. BMC Genom. Data 2022, 23, 13. [Google Scholar] [CrossRef]
- Tu, X.-P.; Li, H.; Chen, L.-S.; Luo, X.-N.; Lu, Z.-M.; Zhang, S.-Y.; Chen, S.-H. OTX1 Exerts an Oncogenic Role and Is Negatively Regulated by miR129-5p in Laryngeal Squamous Cell Carcinoma. BMC Cancer 2020, 20, 794. [Google Scholar] [CrossRef] [PubMed]
- Acampora, D.; Gulisano, M.; Broccoli, V.; Simeone, A. Otx Genes in Brain Morphogenesis. Prog. Neurobiol. 2001, 64, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yang, L.; Long, M.; Wu, F.; Shi, Y.; Xia, R.; Lv, J.; Zhang, Y.; Lei, Y.; Jiao, Y.; et al. Taurodeoxycholic Acid-YAP1 Upregulates OTX1 in Promoting Gallbladder Cancer Malignancy through IFITM3-Dependent AKT Activation. Oncogene 2023, 42, 1466–1477. [Google Scholar] [CrossRef]
- Li, J.; Zhao, L.-M.; Zhang, C.; Li, M.; Gao, B.; Hu, X.-H.; Cao, J.; Wang, G.-Y. The lncRNA FEZF1-AS1 Promotes the Progression of Colorectal Cancer Through Regulating OTX1 and Targeting miR-30a-5p. Oncol. Res. 2020, 28, 51–63. [Google Scholar] [CrossRef]
- Terrinoni, A.; Pagani, I.S.; Zucchi, I.; Chiaravalli, A.M.; Serra, V.; Rovera, F.; Sirchia, S.; Dionigi, G.; Miozzo, M.; Frattini, A.; et al. OTX1 Expression in Breast Cancer Is Regulated by P53. Oncogene 2011, 30, 3096–3103. [Google Scholar] [CrossRef]
- Jiang, L.; Zuo, Z.; Lin, J.; Yang, C. Orthodenticle Homeobox OTX1 Is a Potential Prognostic Biomarker for Bladder Cancer. Bioengineered 2021, 12, 6559–6571. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, X.; Jiao, K. Orthodenticle Homeobox OTX1 Promotes Papillary Thyroid Carcinoma Progression and Is a Potential Prognostic Biomarker. Genet. Res. 2023, 2023, 5513812. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, H.; Zhang, D.; Chen, L.; Dong, H.; Yuan, Y.; Wang, T. OTX1 Promotes Tumorigenesis and Progression of Cervical Cancer by Regulating the Wnt Signaling Pathway. Oncol. Rep. 2022, 48, 204. [Google Scholar] [CrossRef]
- Hazelett, D.J.; Rhie, S.K.; Gaddis, M.; Yan, C.; Lakeland, D.L.; Coetzee, S.G.; Ellipse/GAME-ON Consortium; Practical Consortium; Henderson, B.E.; Noushmehr, H.; et al. Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci. PLoS Genet. 2014, 10, e1004102. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Pettinato, A.; Fraggetta, F.; Calogero, A.E.; Pennisi, M.; Pepe, L.; Pepe, P. Expression of miR-132 and miR-212 in Prostate Cancer and Metastatic Lymph Node: Case Report and Revision of the Literature. Arch. Ital. Urol. E Androl. 2020, 92, 209–210. [Google Scholar] [CrossRef] [PubMed]
Patients with Prostate Cancer | Control Group, Male | Patients with Colorectal Cancer | Control Group, Male and Female | |
---|---|---|---|---|
Number | 72 | 43 | 119 | 78 |
Age, years | 68.7 (50–92) | 65.1(50–80) | 42.2 (21–72) | 55.1 (37–80) |
Stage: | ||||
0, number | 0 | - | 1 | - |
Age, years | - | 40 | ||
I, number | 2 | - | 7 | - |
Age, years | 66.5 (63–70) | 41.9 (36–69) | ||
II, number | 18 | - | 50 | - |
Age, years | 67.2 (50–82) | 42.3 (27–60) | ||
III, number | 14 | - | 49 | - |
Age, years | 71.6 (60–84) | 42.2 (21–72) | ||
IV, number | 38 | - | 12 | - |
Age, years | 68.2 (50–92) | 35.9 (24–49) | ||
History: | ||||
With family history | 2 | - | 26 | 78 |
Without family history | 12 | - | 5 | - |
No data | 58 | 43 | 88 | |
Gender: | ||||
Male | 72 | 43 | 56 | 41 |
Female | 0 | 0 | 63 | 37 |
Gleason score | ||||
7 (4 + 3) Age, years | 21 66.2 (55–76) | - | - | - |
8 (4 + 4) Age, years | 29 68.6 (50–84) | - | - | - |
8 (5 + 3) Age, years | 1 82 | - | - | - |
9 (4 + 5) Age, years | 8 71.8 (61–92) | - | - | - |
9 (5 + 4) Age, years | 7 73.0 (69–77) | - | - | - |
10 (5 + 5) Age, years | 5 66.6 (50–79) | - | - | - |
Prostate Cancer Group | Control Group | Colorectal Cancer Group | Control Group | |
---|---|---|---|---|
Number | 72 | 43 | 119 | 78 |
Number with rs721048 | 18 (25%) | 4 (9.3%) | 17 (14.2%) | 8 (10.8%) |
Without variant | 54 (75%) | 39 (91.7%) | 102 (85.8%) | 70 (89.2%) |
Age of patients with variant, years | 67.1 (50–81) | 66.8 (61–78) | 41.1 (24–69) | 56.8 (41–78) |
Age of patients without variant, years | 69.2 (50–92) | 65.1 (50–80) | 42.3 (21–72) | 54.8 (37–80) |
Patients with variant, family history: | ||||
With family history | 0 | - | 7 | - |
Without family history | 1 | - | 1 | - |
No data | 17 | 4 | 9 | 8 |
Patients without variant, Family History: | ||||
With family history | 2 | - | 19 | - |
Without family history | 11 | - | 4 | - |
No data | 21 | 39 | 79 | 70 |
Stage: patients with variant | ||||
I, number | 0 | - | 3 | - |
Age, years | - | - | 52.5 (36–69) | - |
II, number | 5 | - | 6 | - |
Age, years | 70 (59–81) | - | 42.7 (36–51) | - |
III, number | 2 | - | 7 | - |
Age, years | 67 (60–74) | - | 39.7 (25–46) | - |
IV, number | 11 | - | 2 | - |
Age, years | 65.8 (50–76) | - | 30.0 (24–36) | - |
Gleason score | ||||
7 (4 + 3) Age, years | 9 66.1 (59–76) | - | - | - |
8 (4 + 4) Age, years | 7 69.7 (50–81) | - | - | - |
8 (5 + 3) Age, years | 0 | - | - | - |
9 (4 + 5) Age, years | 0 | - | - | - |
9 (5 + 4) Age, years | 0 | - | - | - |
10 (5 + 5) Age, years | 2 62.5 (55–70) | - | - | - |
Gender: | ||||
Male | 18 | 4 | 8 | 4 |
Female | - | - | 9 | 4 |
Stage: patients without variant | ||||
0, number | 0 | - | 1 | - |
Age, years | - | 40 | - | |
I, number | 2 | - | 5 | - |
Age, years | 66.5 (63–70) | - | 53.2 (45–65) | - |
II, number | 13 | - | 44 | - |
Age, years | 66.2 (50–82) | - | 42.2 (27–60) | - |
III, number | 12 | 42 | - | |
Age, years | 72.4 (61–84) | - | 42.6 (21–72) | - |
IV, number | 27 | - | 11 | - |
Age, years | 69.5 (55–92) | - | 37.1 (28–49) | |
Gleason score | ||||
7 (4 + 3) Age, years | 12 66.2 (55–73) | - | - | - |
8 (4 + 4) Age, years | 23 68.1 (55–84) | - | - | - |
8 (5 + 3) Age, years | 1 82 | - | - | - |
9 (4 + 5) Age, years | 8 71.8 (61–92) | - | - | - |
9 (5 + 4) Age, years | 7 73.0 (69–77) | - | - | - |
10 (5 + 5) Age, years | 3 69.3 (50–79) | - | - | -- |
Gender: | ||||
Male | 54 | 43 | 48 | 37 |
Female | - | - | 54 | 33 |
Groups | Patients (n) | Average Age (Range) | rs721048, N | p-Value (Age) | p-Value (Gender) | p-Value (Risk Factor) | Odds Ratio (OR) | 95% Confidence Interval (CI) |
---|---|---|---|---|---|---|---|---|
PC group | 72 | 68.7 (50–92) | 18 | >0.05 | <0.05 | 3.25 | 1.02–10.36 | |
Control group (male) | 43 | 65.1(50–80) | 4 | |||||
CRC group | 119 | 42.2 (21–72) | 17 | >0.05 | 0.41 | 1.00 | 0.595–3.557 | |
Control group (male + female) | 78 | 55.1 (37–80) | 8 | >0.05 | ||||
PC group with rs721048, age | 18 | 67.1 (50–81) | 18 | >0.05 | ||||
Control group with rs721048 | 4 | 69.2 (50–92) | 4 | >0.05 | ||||
PC group without rs721048 | 54 | 69.2 (50–92) | 54 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanova, M.; Abdikerim, S.; Dauyey, K.; Gassanov, Z.; Baltayev, N.; Satymbayev, S.; Zhunussova, A.; Kaidarova, D.; Zhunussova, G. The Relationship of the Pathogenic Variant rs721048 in the Intron of the EHBP1 Gene with the Development of Prostate Cancer and Colorectal Cancer in the Kazakh Population. Genes 2025, 16, 171. https://doi.org/10.3390/genes16020171
Romanova M, Abdikerim S, Dauyey K, Gassanov Z, Baltayev N, Satymbayev S, Zhunussova A, Kaidarova D, Zhunussova G. The Relationship of the Pathogenic Variant rs721048 in the Intron of the EHBP1 Gene with the Development of Prostate Cancer and Colorectal Cancer in the Kazakh Population. Genes. 2025; 16(2):171. https://doi.org/10.3390/genes16020171
Chicago/Turabian StyleRomanova, Marina, Saltanat Abdikerim, Kaisar Dauyey, Ziyo Gassanov, Nurlan Baltayev, Shyngys Satymbayev, Aigul Zhunussova, Dilyara Kaidarova, and Gulnur Zhunussova. 2025. "The Relationship of the Pathogenic Variant rs721048 in the Intron of the EHBP1 Gene with the Development of Prostate Cancer and Colorectal Cancer in the Kazakh Population" Genes 16, no. 2: 171. https://doi.org/10.3390/genes16020171
APA StyleRomanova, M., Abdikerim, S., Dauyey, K., Gassanov, Z., Baltayev, N., Satymbayev, S., Zhunussova, A., Kaidarova, D., & Zhunussova, G. (2025). The Relationship of the Pathogenic Variant rs721048 in the Intron of the EHBP1 Gene with the Development of Prostate Cancer and Colorectal Cancer in the Kazakh Population. Genes, 16(2), 171. https://doi.org/10.3390/genes16020171