Analysis of Human Degraded DNA in Forensic Genetics
Abstract
1. Introduction
2. Environmental Factors Affecting DNA Preservation
3. Strategies for Successful DNA Acquisition from Compromised Forensic Samples
4. Standard Human Identification Analysis
5. Analysis of Degraded DNA
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, J.M. Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers, 2nd ed.; Elsevier Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Collins, P.; Hennessy, L.; Leibelt, C.; Roby, R.; Reeder, D.; Foxall, P. Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: The AmpFlSTR Identifiler PCR Amplification Kit. J. Forensic Sci. 2004, 49, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Craig, O.; James, N.; Sokol, R. Comparison of three DNA extraction methods on bone and blood stains up to 43 years old and amplification of three different gene sequences. J. Forensic Sci. 1997, 42, 1126–1135. [Google Scholar] [CrossRef]
- Butler, J.M. Advanced Topics in Forensic DNA Typing: Methodology, 1st ed.; Academic Press: Waltham, MA, USA, 2012; pp. 590–598. [Google Scholar]
- Butler, J.M.; Hill, C.R. Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci. Rev. 2012, 24, 15–26. [Google Scholar]
- Alaeddini, R.; Walsh, S.J.; Abbas, A. Forensic implications of genetic analyses from degraded DNA—A review. Forensic Sci. Int. Genet. 2010, 4, 148–157. [Google Scholar] [CrossRef]
- Milos, A.; Selmanović, A.; Smajlović, L.; Huel, R.L.M.; Katzmarzyk, C.; Rizvić, A.; Parsons, T.J. Success Rates of Nuclear Short Tandem Repeat Typing from Different Skeletal Elements. Croat. Med. J. 2007, 48, 486–493. [Google Scholar]
- Burger, J.; Hummel, S.; Hermann, B.; Henke, W. DNA preservation: A microsatellite-DNA study on ancient skeletal remains. Electrophoresis 1999, 20, 1722–1728. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sedmak, D.; Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 2002, 161, 1961–1971. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef]
- Dabney, J.; Knapp, M.; Glocke, I.; Gansauge, M.-T.; Weihmann, A.; Nickel, B.; Valdiosera, C.; García, N.; Pääbo, S.; Arsuaga, J.-L.; et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 2013, 110, 15758–15763. [Google Scholar] [CrossRef]
- Hansen, A.J.; Mitchell, D.L.; Wiuf, C.; Paniker, L.; Brand, T.B.; Binladen, J.; A Gilichinsky, D.; Rønn, R.; Willerslev, E. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 2006, 173, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Anslinger, K.; Weichhold, G.; Keil, W.; Bayer, B.; Eisenmenger, W. Identification of the skeletal remains of Martin Bormann by mtDNA analysis. Int. J. Leg. Med. 2001, 114, 194–196. [Google Scholar] [CrossRef]
- Palo, J.U.; Hedman, M.; Söderholm, N.; Sajantila, A. Repatriation and identification of the Finnish World War II soldiers. Croat. Med. J. 2007, 48, 528–535. [Google Scholar] [PubMed]
- Carracedo, A.; Bär, W.; Lincoln, P.; Mayr, W.; Morling, N.; Olaisen, B.; Schneider, P.; Budowle, B.; Brinkmann, B.; Gill, P.; et al. DNA commission of the International Society for Forensic Genetics: Guidelines for mitochondrial DNA typing. Forensic Sci. Int. 2000, 110, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Pajnič, I.Z.; Balažic, J.; Komel, R. Sequence polymorphism of the mitochondrial DNA control region in the Slovenian population. Int. J. Leg. Med. 2004, 118, 1–4. [Google Scholar] [CrossRef]
- Budowle, B.; Allard, M.W.; Wilson, M.R.; Chakraborty, R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Annu. Rev. Genom. Hum. Genet. 2003, 4, 119–141. [Google Scholar] [CrossRef]
- Børsting, C.; Morling, N. Next generation sequencing and its applications in forensic genetics. Forensic Sci. Int. Genet. 2015, 18, 78–89. [Google Scholar] [CrossRef]
- Carratto, T.M.T.; Moraes, V.M.S.; Recalde, T.S.F.; de Oliveira, M.L.G.; Mendes-Junior, C.T. Applications of massively parallel sequencing in forensic genetics. Genet. Mol. Biol. 2022, 45, e20220077. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Grigorenko, E.L.; Kajuna, S.L.; Karoma, N.J.; Kungulilo, S.; Kim, J.-J.; Lu, R.-B.; Odunsi, A.; et al. Developing a SNP panel for forensic identification of individuals. Forensic Sci. Int. 2006, 164, 20–32. [Google Scholar] [CrossRef]
- Ballard, D.; Winkler-Galicki, J.; Wesoły, J. Massive parallel sequencing in forensics: Advantages, issues, technicalities, and prospects. Int. J. Leg. Med. 2020, 134, 1291–1303. [Google Scholar] [CrossRef]
- Mehta, B.; Daniel, R.; Phillips, C.; McNevin, D. Forensically relevant SNaPshot assays from human DNA SNP analysis: A review. Int. J. Leg. Med. 2017, 131, 21–37. [Google Scholar] [CrossRef]
- Wyner, N.; Barash, M.; McNevin, D. Forensic Autosomal Short Tandem Repeats and Their Potential Association with Phenotype. Front. Genet. 2020, 11, 884. [Google Scholar] [CrossRef] [PubMed]
- Novroski, N.M.M.; Cihlar, J.C. Evolution of Single-Nucleotide Polymorphism Use in Forensic Genetics. WIREs Forensic Sci. 2022, 4, e1459. [Google Scholar] [CrossRef]
- Davenport, L.; Devesse, L.; Court, D.S.; Ballard, D. Forensic identity SNPs: Characterisation of flanking region variation using massively parallel sequencing. Forensic Sci. Int. Genet. 2023, 64, 102847. [Google Scholar] [CrossRef]
- Cavalcanti, P.; Nogueira, T.L.S.; DE Carvalho, E.F.; DA Silva, D.A. Forensic use of human mitochondrial DNA: A review. An. Acad. Bras. Cienc. 2024, 96, e20231179. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.; Taylor, D.; Linacre, A. PCR in Forensic Science: A Critical Review. Genes 2024, 15, 438. [Google Scholar] [CrossRef]
- Fattorini, P.; Previderè, C.; Livieri, T.; Zupanc, T.; Pajnič, I.Z. SNP analysis of challenging bone DNA samples using the HID-Ion AmpliSeq™ Identity Panel: Facts and artefacts. Int. J. Leg. Med. 2023, 137, 981–993. [Google Scholar] [CrossRef]
- Gansauge, M.-T.; Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 2013, 8, 737–748. [Google Scholar] [CrossRef]
- Gorden, E.M.; Sturk-Andreaggi, K.; Marshall, C. Capture enrichment and massively parallel sequencing for human identification. Forensic Sci. Int. Genet. 2021, 53, 102496. [Google Scholar] [CrossRef]
- Emery, M.V.; Bolhofner, K.; Spake, L.; Ghafoor, S.; Versoza, C.J.; Rawls, E.M.; Winingear, S.; Buikstra, J.E.; Loreille, O.; Fulginiti, L.C.; et al. Targeted enrichment of whole—Genome SNPs from highly burned skeletal remains. J. Forensic Sci. 2024, 69, 1558–1577. [Google Scholar] [CrossRef]
- Zupanič Pajnič, I. Extraction of DNA from human skeletal material. In Forensic DNA Typing Protocols, Methods in Molecular Biology; Goodwin, W., Ed.; Springer Science & Business Media, LLC: New York, NY, USA, 2016; Volume 1420, pp. 89–108. [Google Scholar]
- Pokines, J.T.; L’aBbé, E.N.; Symes, S.A. Manual of Forensic Taphonomy; Taylor & Francis Group: Oxfordshire, UK, 2021. [Google Scholar]
- Hagelberg, E.; Bell, L.S.; Allen, T.; Boyde, A.; Jones, S.J.; Clegg, J.B.; Hummel, S.; Brown, T.A.; Ambler, R.P. Analysis of ancient bone DNA: Techniques and applications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1991, 333, 399–407. [Google Scholar]
- Higgins, D.; Austin, J.J. Teeth as a source of DNA for forensic identification of human remains: A review. Sci. Justice 2013, 53, 433–441. [Google Scholar] [CrossRef]
- Dabney, J.; Meyer, M.; Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 2013, 5, a012567. [Google Scholar] [CrossRef]
- Żarczyńska, M.; Żarczyński, P.; Tomsia, M. Nucleic acids persistence—Benefits and limitations in forensic genetics. Genes 2023, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
- Bhoyar, L.; Mehar, P.; Chavali, K. An overview of DNA degradation and its implications in forensic caseworks. Egypt. J. Forensic Sci. 2024, 14, 15. [Google Scholar] [CrossRef]
- Pääbo, S.; Poinar, H.; Serre, D.; Jaenicke-Després, V.; Hebler, J.; Rohland, N.; Kuch, M.; Krause, J.; Vigilant, L.; Hofreiter, M. Genetic Analyses from Ancient DNA. Annu. Rev. Genet. 2004, 38, 645–679. [Google Scholar] [CrossRef] [PubMed]
- Höss, M.; Jaruga, P.; Zastawny, T.H.; Dizdaroglu, M.; Paabo, S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 1996, 24, 1304–1307. [Google Scholar] [CrossRef] [PubMed]
- Poinar, H.N.; Höss, M.; Bada, J.L.; Pääbo, S. Amino acid racemiSation and the preservation of ancient DNA. Science 1996, 272, 864–866. [Google Scholar] [CrossRef]
- Putkonen, M.T.; Palo, J.U.; Cano, J.M.; Hedman, M.; Sajantila, A. Factors affecting the STR amplification success in poorly preserved bone samples. Investig. Genet. 2010, 1, 9. [Google Scholar] [CrossRef]
- Pruvost, M.; Schwarz, R.; Correia, V.B.; Chamolot, S.; Braguier, S.; Morel, N.; Fernandez-Jalvo, Y.; Grange, T.; Geigl, E.-M. Freshly excavated fossil bones are best for amplification of ancient DNA. Proc. Natl. Acad. Sci. USA 2007, 104, 739–744. [Google Scholar] [CrossRef]
- Kravanja, P.; Golob, A.; Concato, M.; Leskovar, T.; Pajnič, I.Z. Effects of different environmental factors on preservation of DNA in petrous bones: A comparative study of two Slovenian archaeological sites. Forensic Sci. Int. 2025, 371, 112495. [Google Scholar] [CrossRef]
- Raffone, C.; Baeta, M.; Lambacher, N.; Granizo-Rodríguez, E.; Etxeberria, F.; de Pancorbo, M.M. Intrinsic and extrinsic factors that may influence DNA preservation in skeletal remains: A review. Forensic Sci. Int. 2021, 325, 110859. [Google Scholar] [CrossRef]
- Prangnell, J.; McGowan, G. Soil temperature calculation for burial site analysis. Forensic Sci. Int. 2009, 191, 104–109. [Google Scholar] [CrossRef]
- Latham, K.E.; Miller, J.J. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci. Res. 2018, 4, 51–59. [Google Scholar] [CrossRef]
- Higgins, D.; Rohrlach, A.B.; Kaidonis, J.; Townsend, G.; Austin, J.J. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies. PLoS ONE 2015, 10, e0126935. [Google Scholar] [CrossRef]
- Willerslev, E.; Hansen, A.J.; Binladen, J.; Brand, T.B.; Gilbert, M.T.P.; Shapiro, B.; Bunce, M.; Wiuf, C.; Gilichinsky, D.A.; Cooper, A. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 2003, 300, 791–795. [Google Scholar] [CrossRef]
- Lindo, J.; Huerta-Sánchez, E.; Nakagome, S.; Rasmussen, M.; Petzelt, B.; Mitchell, J.; Cybulski, J.S.; Willerslev, E.; DeGiorgio, M.; Malhi, R.S. A time transect of exome sequencing from a Native American population before and after European contact. Nat. Commun. 2016, 7, 13175. [Google Scholar] [CrossRef]
- Shapiro, B.; Hofreiter, M. A paleogenomic perspective on evolution and gene function: New insights from ancient DNA. Science 2014, 343, 1236573. [Google Scholar] [CrossRef] [PubMed]
- Haslam, T.C.F.; Tibbett, M. Soils of Contrasting pH Affect the Decomposition of Buried Mammalian (Ovis aries) Skeletal Muscle Tissue. J. Forensic Sci. 2009, 54, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Manifold, B.M. Intrinsic and extrinsic factors involved in the preservation of non-adult skeletal remains in archaeology and forensic science. Bull. Int. Assoc. Paleodont. 2012, 6, 51–69. [Google Scholar]
- Hofreiter, M.; Paijmans, J.L.A.; Goodchild, H.; Speller, C.F.; Barlow, A.; Fortes, G.G.; Thomas, J.A.; Ludwig, A.; Collins, M.J. The future of ancient DNA: Technical advances and conceptual shifts. BioEssays 2014, 37, 284–293. [Google Scholar] [CrossRef]
- Sutlovic, D.; Gamulin, S.; Definis-Gojanovic, M.; Gugic, D.; Andjelinovic, S. Interaction of humic acids with human DNA: Proposed mechanisms and kinetics. Electrophoresis 2008, 29, 1467–1472. [Google Scholar] [CrossRef]
- Hofreiter, M.; Collins, M.; Stewart, J.R. Ancient biomolecules in Quaternary palaeoecology. Quat. Sci. Rev. 2012, 33, 1–13. [Google Scholar] [CrossRef]
- Kemp, B.M.; Smith, D.G. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci. Int. 2005, 154, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef]
- Rodriguez, W.C.; Bass, W.M. Insect activity with its relationship to decay rates of human cadavers in East Tennessee. J. Forensic Sci. 1983, 28, 423–430. [Google Scholar] [CrossRef]
- Yang, D.Y.; Eng, B.; Waye, J.S.; Dudar, J.C.; Saunders, S.R. Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 1998, 105, 539–543. [Google Scholar] [CrossRef]
- Dabney, J.; Meyer, M. Extraction of Highly Degraded DNA from Ancient Bones and Teeth. In Ancient DNA. Methods in Molecular Biology; Shapiro, B., Barlow, A., Heintzman, P., Hofreiter, M., Paijmans, J., Soares, A., Eds.; Humana Press: New York, NY, USA, 2019; Volume 1963. [Google Scholar]
- Bruijns, B.; Tiggelaar, R.; Gardeniers, H. Massively parallel sequencing techniques for forensics: A review. Electrophoresis 2018, 39, 2642–2654. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Debska, M.; Gornjak-Pogorelc, B.; Vodopivec Mohorčič, K.; Balažic, J.; Zupanc, T.; Štefanič, B.; Geršak, K. Highly efficient automated extraction of DNA from old and contemporary skeletal remains. J. Forensic Legal Med. 2016, 37, 78–86. [Google Scholar] [CrossRef]
- Zupanič Pajnič, I.; Gornjak-Pogorelc, B.; Balažic, J.; Zupanc, T.; Štefanič, B. Highly efficient nuclear DNA typing of the World War II skeletal remains using three new autosomal short tandem repeat amplification kits with the extended European Standard Set of loci. Croat. Med. J. 2012, 53, 17–23. [Google Scholar] [CrossRef]
- Finaughty, C.; Heathfield, L.J.; Kemp, V.; Márquez-Grant, N. Forensic DNA extraction methods for human hard tissue: A systematic literature review and meta-analysis of technologies and sample type. Forensic Sci. Int. Genet. 2022, 63, 102818. [Google Scholar] [CrossRef]
- Xavier, C.; Eduardoff, M.; Bertoglio, B.; Amory, C.; Berger, C.; Casas-Vargas, A.; Pallua, J.; Parson, W. Evaluation of DNA extraction methods developed for forensic and ancient DNA applications using bone samples of different age. Genes 2021, 12, 146. [Google Scholar] [CrossRef]
- Straube, N.; Lyra, M.L.; Paijmans, J.L.A.; Preick, M.; Basler, N.; Penner, J.; Rödel, M.; Westbury, M.V.; Haddad, C.F.B.; Barlow, A.; et al. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Mol. Ecol. Resour. 2021, 21, 2299–2315. [Google Scholar] [CrossRef]
- Rohland, N.; Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2007, 2, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Nagy, M.; Otremba, P.; Krüger, C.; Bergner-Greiner, S.; Anders, P.; Henske, B.; Prinz, M.; Roewer, L. Optimization and validation of a fully automated silica-coated magnetic beads technology in forensics. Forensic Sci. Int. 2005, 152, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Montpetit, S.; Fitch, I.; O’Donnell, P. A simple automated instrument for DNA extraction in forensic casework. J. Forensic Sci. 2005, 50, 555–563. [Google Scholar] [CrossRef]
- Kishore, R.; Hardy, W.R.; Anderson, V.J.; Sanchez, N.; Buoncristiani, M.R. Optimization of DNA extraction from low-yield and degraded samples using the biorobot EZ1 and biorobot M48. J. Forensic Sci. 2006, 51, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Berdimuratova, K.T.; Amirgazin, A.O.; Kuibagarov, M.A.; Lutsay, V.B.; Mukanov, K.K. Optimization of PCR purification using silica-coated magnetic beads. Eurasian J. Appl. Biotechnol. 2020, 81–89. [Google Scholar] [CrossRef]
- Pääbo, S. Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl. Acad. Sci. USA 1989, 86, 1939–1943. [Google Scholar] [CrossRef]
- Cooper, A.; Poinar, H.N. Ancient DNA: Do it right or not at all. Science 2000, 289, 1139. [Google Scholar] [CrossRef]
- Pääbo, S. Amplifying ancient DNA. In PCR-Protocols and Amplifications—A Laboratory Manual; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 159–166. [Google Scholar]
- Gilbert, M.T.P.; Bandelt, H.-J.; Hofreiter, M.; Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 2005, 20, 541–544. [Google Scholar] [CrossRef]
- Knapp, M.; Clarke, A.C.; Horsburgh, K.A.; Matisoo-Smith, E.A. Setting the stage—Building and working in an ancient DNA laboratory. Ann. Anat. 2012, 194, 3–6. [Google Scholar] [CrossRef]
- Willerslev, E.; Cooper, A. Ancient DNA. Proc Biol Sci. 2005, 272, 3–16. [Google Scholar]
- Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996, 24, 3189–3194. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Martín, P.; Albarrán, C.; García, P.; García, O.; Fernández De Simón, L.; García-Hirschfeld, J.; Sancho, M.; De La Rúa, C.; Fernández-Piqueras, J. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies. Forensic Sci. Int. 2004, 139, 141–149. [Google Scholar] [CrossRef]
- Pajnič, I.Z.; Zupanc, T.; Balažic, J.; Geršak, Ž.M.; Stojković, O.; Skadrić, I.; Črešnar, M. Prediction of autosomal STR typing success in ancient and Second World War bone samples. Forensic Sci. Int. Genet. 2017, 27, 17–26. [Google Scholar] [CrossRef]
- Fattorini, P.; Previderé, C.; Carboni, I.; Marrubini, G.; Sorçaburu-Cigliero, S.; Grignani, P.; Bertoglio, B.; Vatta, P.; Ricci, U. Performance of the ForenSeqTM DNA Signature Prep Kit on highly degraded samples. Electrophoresis 2017, 38, 1163–1174. [Google Scholar] [CrossRef]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef]
- Jamieson, A.; Bader, S. A Guide to Forensic DNA Profiling; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Prinz, M.; Carracedo, A.; Mayr, W.R.; Morling, N.; Parsons, T.J.; Sajantila, A.; Scheithauer, R.; Schmitter, H.; Schneider, P.M.; International Society for Forensic Genetics. DNA Commission of the International society for forensic genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci. Int. Genet. 2007, 1, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Rutty, G.N.; Hopwood, A.; Tucker, V. The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene of crime. Int. J. Leg. Med. 2003, 117, 170–174. [Google Scholar] [CrossRef]
- Taberlet, P.; Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 1999, 68, 41–55. [Google Scholar] [CrossRef]
- Waits, L.P.; Luikart, G.; Taberlet, P. Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Mol. Ecol. 2001, 10, 249–256. [Google Scholar] [CrossRef]
- Gill, P.; Buckleton, J. A universal strategy to interpret DNA profiles that does not require a definition of low-copy-number. Forensic Sci. Int. Genet. 2010, 4, 221–227. [Google Scholar] [CrossRef]
- Gill, P.; Whitaker, J.; Flaxman, C.; Brown, N.; Buckleton, J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci. Int. 2000, 112, 17–40. [Google Scholar] [CrossRef]
- Krenke, B.; Tereba, A.; Anderson, S.; Buel, E.; Culhane, S.; Finis, C.; Tomsey, C.; Zachetti, J.; Masibay, A.; Rabbach, D.R.; et al. Validation of a 16-locus fluorescent multiplex system. J. Forensic Sci. 2002, 47, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Karger, B.L.; Snyder, L.R.; Horvath, C. An Introduction to Separation Science; Wiley: Taiwan, China, 1973. [Google Scholar]
- Zupanič Pajnič, I. Identification of a Slovenian prewar elite couple killed in the Second World War. Forensic Sci. Int. 2021, 327, 110994. [Google Scholar] [CrossRef]
- Zupanič Pajnič, I.; Gornjak-Pogorelc, B.; Balažic, J. Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int. J. Leg. Med. 2010, 124, 307–317. [Google Scholar] [CrossRef]
- Pajnič, I.Z.; Geršak, Ž.M.; Leskovar, T.; Črešnar, M. Kinship analysis of 5th- to 6th-century skeletons of Romanized indigenous people from the Bled–Pristava archaeological site. Forensic Sci. Int. Genet. 2023, 65, 102886. [Google Scholar] [CrossRef]
- Bieber, F.R.; Buckleton, J.S.; Budowle, B.; Butler, J.M.; Coble, M.D. Evaluation of forensic DNA mixture evidence: Protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion. BMC Genet. 2016, 17, 125. [Google Scholar] [CrossRef] [PubMed]
- Harteveld, J.; Lindenbergh, A.; Sijen, T. RNA cell typing and DNA profiling of mixed samples: Can cell types and donors be associated? Sci. Justice 2013, 53, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Buckleton, J.; Bright, J.A.; Taylor, D. (Eds.) Forensic DNA Evidence Interpretation; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Fonneløp, A.E.; Ramse, M.; Egeland, T.; Gill, P. The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci. Int. Genet. 2017, 29, 48–60. [Google Scholar] [CrossRef]
- Goray, M.; Eken, E.; Mitchell, R.J.; van Oorschot, R.A. Secondary DNA transfer of biological substances under varying test conditions. Forensic Sci. Int. Genet. 2010, 4, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.-C.; Morimoto, C.; Kawai, C.; Miyao, M.; Tamaki, K. Effects of DNA degradation and genotype imputation on high-density SNP microarray in pairwise kinship analysis. Leg. Med. 2022, 60, 102158. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.H.; Kling, D.; Vidaki, A.; Arp, P.; Kalamara, V.; Verbiest, M.M.; Piniewska-Róg, D.; Parsons, T.J.; Uitterlinden, A.G.; Kayser, M. Impact of SNP microarray analysis of compromised DNA on kinship classification success in the context of investigative genetic genealogy. Forensic Sci. Int. Genet. 2022, 56, 102625. [Google Scholar] [CrossRef] [PubMed]
- Yagasaki, K.; Mabuchi, A.; Higashino, T.; Wong, J.H.; Nishida, N.; Fujimoto, A.; Tokunaga, K. Practical forensic use of kinship determination using high-density SNP profiling based on a microarray platform, focusing on low-quantity DNA. Forensic Sci. Int. Genet. 2022, 61, 102752. [Google Scholar] [CrossRef]
- Sanchez, J.J.; Phillips, C.; Børsting, C.; Balogh, K.; Bogus, M.; Fondevila, M.; Harrison, C.D.; Musgrave-Brown, E.; Salas, A.; Syndercombe-Court, D.; et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 2006, 27, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Gill, P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int. J. Leg. Med. 2001, 114, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Børsting, C.; Sanchez, J.J.; Hansen, H.E.; Hansen, A.J.; Bruun, H.Q.; Morling, N. Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci. Int. Genet. 2008, 2, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Hughes-Stamm, R.S.J.; Ashton, K.; van Daal, A. Assessment of DNA degradation and the genotyping success of highly degraded samples. Int. J. Legal Med. 2010, 125, 341–348. [Google Scholar] [CrossRef]
- Sobrino, B.; Brión, M.; Carracedo, A. SNPs in forensic genetics: A review on SNP typing methodologies. Forensic Sci. Int. 2005, 154, 181–194. [Google Scholar] [CrossRef]
- Budowle, B.; van Daal, A. Forensically relevant SNP classes. Biotechniques 2008, 44, 603–610. [Google Scholar] [CrossRef]
- Churchill, J.D.; Schmedes, S.E.; King, J.L.; Budowle, B. Evaluation of the Illumina® Beta Version ForenSeq™ DNA Signature Prep Kit for use in genetic profiling. Forensic Sci. Int. Genet. 2016, 20, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M.; Coble, M.D.; Vallone, P.M. STRs vs. SNPs: Thoughts on the future of forensic DNA testing. Forensic Sci. Med. Pathol. 2007, 3, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Freire-Aradas, A.; Fondevila, M.; Kriegel, A.-K.; Phillips, C.; Gill, P.; Prieto, L.; Schneider, P.; Carracedo, Á.; Lareu, M. A new SNP assay for identification of highly degraded human DNA. Forensic Sci. Int. Genet. 2012, 6, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kayser, M.; de Knijff, P. Improving human forensics through advances in genetics, genomics and molecular biology. Nat. Rev. Genet. 2011, 12, 179–192. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Wang, J.; Chen, D.; Liu, Z.; Shi, J.; Cheng, F.; Li, Z.; Ren, J.; Zhang, G.; et al. A new set of DIP–SNP markers for detection of unbalanced and degraded DNA mixtures. Electrophoresis 2019, 40, 1795–1804. [Google Scholar] [CrossRef]
- Andersen, M.M.; Kampmann, M.-L.; Jepsen, A.H.; Morling, N.; Eriksen, P.S.; Børsting, C.; Andersen, J.D. Shotgun DNA sequencing for human identification: Dynamic SNP selection and likelihood ratio calculations accounting for errors. Forensic Sci. Int. Genet. 2024, 74, 103146. [Google Scholar] [CrossRef]
- Kayser, M. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci. Int. Genet. 2015, 18, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. Forensic genetic analysis of bio-geographical ancestry. Forensic Sci. Int. Genet. 2015, 18, 49–65. [Google Scholar] [CrossRef]
- Kayser, M.; Schneider, P.M. DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations. Forensic Sci. Int. Genet. 2009, 3, 154–161. [Google Scholar] [CrossRef]
- Kulstein, G.; Hadrys, T.; Wiegand, P. As solid as a rock—Comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int. J. Leg. Med. 2017, 132, 13–24. [Google Scholar] [CrossRef]
- Fordyce, S.L.; Ávila-Arcos, M.C.; Rockenbauer, E.; BoRsting, C.; Frank-Hansen, R.; Petersen, F.T.; Willerslev, E.; Hansen, A.J.; Morling, N.; Gilbert, M.T.P. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform. BioTechniques 2011, 51, 127–133. [Google Scholar] [CrossRef]
- Campos, P.F.; Craig, O.E.; Turner-Walker, G.; Peacock, E.; Willerslev, E.; Gilbert, M.T.P. DNA in ancient bone—Where is it located and how should we extract it? Ann. Anat. 2012, 194, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Djurić, M.; Djukić, K.; Milovanović, P.; Janović, A.; Milenković, P. Representing children in excavated cemeteries: The intrinsic preservation factors. Antiquity 2011, 85, 250–262. [Google Scholar] [CrossRef]
- Gettings, K.B.; Kiesler, K.M.; Vallone, P.M. Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Sci. Int. Genet. 2015, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.; Alessandro, A.; Ignazio, C.; Sharon, W.; Luigi, R.; Andrea, B. Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeqTM Identity panel v2.3 on the PGM Sequencer. Forensic Sci. Int. Genet. 2016, 22, 25–36. [Google Scholar] [CrossRef]
- Turchi, C.; Previderè, C.; Bini, C.; Carnevali, E.; Grignani, P.; Manfredi, A.; Melchionda, F.; Onofri, V.; Pelotti, S.; Robino, C.; et al. Assessment of the Precision ID Identity Panel kit on challenging forensic samples. Forensic Sci. Int. Genet. 2020, 49, 102400. [Google Scholar] [CrossRef]
- Meiklejohn, K.A.; Robertson, J.M. Evaluation of the precision ID identity panel for the ion Torrent™ PGM™ sequencer. Forensic Sci. Int. Genet. 2017, 31, 48–56. [Google Scholar] [CrossRef]
- Emmons, A.L.; Mundorff, A.Z.; Hoeland, K.M.; Davoren, J.; Keenan, S.W.; Carter, D.O.; Campagna, S.R.; DeBruyn, J.M. Postmortem skeletal microbial community composition and function in buried human remains. mSystems 2022, 7, e0004122. [Google Scholar] [CrossRef]
- Ma, X.; Shao, Y.; Tian, L.; Flasch, D.A.; Mulder, H.L.; Edmonson, M.N.; Liu, Y.; Chen, X.; Newman, S.; Nakitandwe, J.; et al. Analysis of error profiles in deep next-generation sequencing data. Genome Biol. 2019, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Estrella, C.S.; Lumayna, M.P.; Sagum, M.D.; Sosing, M.V.; Calacal, G.C.; De Ungria, M.C.A.; Salvador, J.M. Challenges in using massively parallel sequencing for forensic DNA analysis in Southeast Asia. Forensic Sci. Int. Synerg. 2025, 11, 100638. [Google Scholar] [CrossRef]
- Clayton, T.; Whitaker, J.; Sparkes, R.; Gill, P. Analysis and interpretation of mixed forensic stains using DNA STR profiling. Forensic Sci. Int. 1998, 91, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Matute, S.P.; Iyavoo, S. Implementation of NGS and SNP microarrays in routine forensic DNA analysis: Opportunities and challenges. BMC Genom. 2025, 26, 541. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Ren, H.; Li, H.; Li, R.; Shen, X.; Wang, N.; Huang, E.; Wu, R.; Sun, H. Identification of sequence polymorphisms at 58 STRs and 94 iiSNPs in a Tibetan population using massively parallel sequencing. Sci. Rep. 2020, 10, 12225. [Google Scholar] [CrossRef] [PubMed]
- Zavala, E.I.; Rohlfs, R.V.; Moorjani, P. Benchmarking for genotyping and imputation using degraded DNA for forensic applications across diverse populations. Forensic Sci. Int. Genet. 2025, 75, 103177. [Google Scholar] [CrossRef]
| Parameter | STRs | iiSNPs | mtDNA |
|---|---|---|---|
| Copy number per cell | Single-copy nuclear loci (2 copies per diploid cell per autosomal locus) [23] | Single-copy nuclear loci (2 copies per diploid cell for autosomal SNPs) [24,25] | High copy number (hundreds–thousands per cell) [26,27] |
| Amplicon size | Typically, 100–500 bp; longer amplicons limit degraded DNA use [23,27] | Very short (<150 bp); suitable for degraded DNA, NGS-optimized [24,25] | Small overlapping amplicons (<200 bp) or whole mitogenome panels [26] |
| Discriminative power | Very high (RMP ~10−15 to 10−20) [23] | Moderate per locus; needs large panels (90–120 SNPs, RMP ~10−34) [25,28] | Lower individualization, shared haplotypes [26] |
| Mode of inheritance | Autosomal, biparental, codominant [23] | Autosomal, biparental; Y-SNPs paternal [24] | Maternal inheritance, haploid, non-recombining [26] |
| Features | Multi-allelic, stutter artefacts, well-established CE workflows [23] | Biallelic, low mutation rate, minimal stutter, scalable in NGS [24,25] | Circular 16.6 kb genome, higher mutation rate, heteroplasmy [26] |
| Advantages | Extremely high discrimination; mature interpretation framework [23] | Short amplicons, good for degraded/low-template DNA [24,28] | Useful when nuclear DNA fails (hair shafts, bones); lineage tracing, recovery from degraded/low quantity samples [26] |
| Limitations | Poor performance with degraded DNA; stutter complicates mixtures [23] | Less informative per locus; requires large panels, bioinformatics, and higher costs [24,28] | Lower discrimination; heteroplasmy and NUMTs complicate analysis [26] |
| Typical forensic use | Routine human ID, databases, kinship [23] | Degraded/low-quantity samples; supplementary to STRs [25,28] | Maternal lineage, degraded remains, ancient samples [26] |
| Degradation Factor | Effect on DNA | Practical Implications |
|---|---|---|
| Temperature | Primary regulator of chemical and microbial activity; higher temperatures accelerate hydrolysis and oxidation; 2 °C rise can measurably destabilize DNA, 10 °C rise can double or triple degradation rates [47,48]. | Cold and constant environments (e.g., permafrost) preserve DNA exceptionally well, while hot and humid climates cause near-total degradation [49,50]. |
| Moisture | Essential for hydrolysis and microbial growth; high water activity is extremely detrimental to DNA [8,51]. | Dry depositional contexts favor preservation; waterlogged or humid conditions accelerate decay. |
| pH | Strongly acidic or alkaline soils catalyze degradation; neutral to slightly alkaline conditions suppress nuclease activity [8,51]. | Acidic soils accelerate soft tissue decomposition up to three times faster than alkaline soils [52]. |
| Soil/sediment geochemistry | DNA can adsorb to clays and hydroxyapatite, providing protection [53]; organic-rich soils enhance microbial activity and release PCR inhibitors such as humic acids [54,55]. | Mineral-rich soils promote preservation; organic soils hinder both preservation and downstream DNA analysis. |
| Microbial activity | Direct enzymatic cleavage of DNA; indirect damage via acidification and alteration of microenvironment [56]. | Microbial abundance must be considered; high activity drastically reduces DNA recovery. |
| Oxygen availability | Promotes oxidative damage via free radical formation [57]. | Anaerobic conditions are more favorable for long-term preservation. |
| Physical forces | Freeze–thaw cycles, sediment pressure, and plant root growth shear DNA into shorter fragments [57,58]. | Deeper burial reduces such forces and provides environmental buffering. |
| Burial depth | Deeper layers buffer temperature, reduce oxygen exposure, and eliminate UV radiation [8,59]. | Deep burial contexts are generally more favorable for long-term DNA survival. |
| Duration of exposure | Longer exposure time generally accelerates and intensifies DNA degradation [40,41,42]. | Older remains typically yield lower DNA quality and quantity; rapid recovery and analysis are advantageous. |
| Post-recovery handling | Improper collection or storage introduces modern contamination or further damages DNA [43]. | Strict contamination control and standardized protocols are required during sampling, storage, and analysis. |
| Aspect | Description | References |
|---|---|---|
| Discriminatory power | The probability of two unrelated individuals sharing a full STR profile can be <1 in 1 billion. | [4,84,85] |
| Probability of Identity (PID) | Estimates the chance that two unrelated individuals will share an identical multilocus genotype. Typical values: <10−15 when 15–24 loci are analyzed. | [88] |
| Probability of Identity among siblings (PIDsib) | More conservative measures account for increased allele sharing among siblings. Typical values: 10−4–10−6. | [87,88] |
| Likelihood Ratio (LR) | It indicates how much more likely the sample belongs to the target individual than to a randomly selected person. | [89,90] |
| Number of STR loci | LR for Unrelated Individuals | LR for Siblings (Close Relatives) |
|---|---|---|
| 16 | ≈1012–1013 | ≈102–103 |
| 18 | ≈1013–1014 | ≈103–104 |
| 20 | ≈1014–1015 | ≈103–105 |
| 24 | ≈1015–1016 | ≈104–106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zupanič Pajnič, I. Analysis of Human Degraded DNA in Forensic Genetics. Genes 2025, 16, 1375. https://doi.org/10.3390/genes16111375
Zupanič Pajnič I. Analysis of Human Degraded DNA in Forensic Genetics. Genes. 2025; 16(11):1375. https://doi.org/10.3390/genes16111375
Chicago/Turabian StyleZupanič Pajnič, Irena. 2025. "Analysis of Human Degraded DNA in Forensic Genetics" Genes 16, no. 11: 1375. https://doi.org/10.3390/genes16111375
APA StyleZupanič Pajnič, I. (2025). Analysis of Human Degraded DNA in Forensic Genetics. Genes, 16(11), 1375. https://doi.org/10.3390/genes16111375

