Genetic Predisposition and Genetic Resilience Factors in Stress-Related Disorders During the Developmental Age: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Data Extraction and Synthesis
3. Genetic Predisposition and Epigenetics of SRDs During Developmental Age
3.1. Genetic Predisposition to SRDs
3.1.1. HPA Axis
3.1.2. Serotoninergic System
3.1.3. Noradrenergic and Dopaminergic System
3.1.4. BDNF
3.1.5. Estrogen Receptor
3.1.6. Excitatory Amino Acid Transporters (EAAT)
3.2. Epigenetics of SRDs
4. Genetic Factors and Epigenetics of Resilience During Developmental Age
4.1. Genetic and Epigenetic Factors Related to Resilience
4.1.1. HPA Axis
4.1.2. Serotoninergic System
4.1.3. Noradrenergic and Dopaminergic System
4.1.4. BDNF
4.1.5. NPY
4.1.6. Glutamate, GABA
4.1.7. OXTR
5. The Role of Psychology and Environment in Coping with Stress
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halbreich, U. Stress-related physical and mental disorders: A new paradigm. BJPsych Adv. 2021, 27, 145–152. [Google Scholar] [CrossRef]
- Shenk, C.E.; O’Donnell, K.J.; Pokhvisneva, I.; Kobor, M.S.; Meaney, M.J.; Bensman, H.E.; Allen, K.E.; Olson, A.E. Epigenetic Age Acceleration and Risk for Posttraumatic Stress Disorder following Exposure to Substantiated Child Maltreatment. J. Clin. Child Adolesc. Psychol. 2022, 51, 651–661. [Google Scholar] [CrossRef]
- Lee, R.S.; Oswald, L.M.; Wand, G.S. Early Life Stress as a Predictor of Co-Occurring Alcohol Use Disorder and Post-Traumatic Stress Disorder. Alcohol Res. 2018, 39, 147–159. [Google Scholar] [CrossRef]
- Danzi, B.A.A.; La Greca, A.M. Does age matter in genetics? The role of ADCYAP1R1 in sex-specific risk for posttraumatic stress disorder in trauma-exposed preadolescent children. J. Psychiatr. Res. 2023, 164, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Rossi, R.; Lanfredi, M.; Cattaneo, A. Borderline personality disorder and childhood trauma: Exploring the affected biological systems and mechanisms. BMC Psychiatry 2017, 17, 221. [Google Scholar] [CrossRef] [PubMed]
- Ochi, S.; Dwivedi, Y. Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol. Psychiatry 2023, 28, 141–153. [Google Scholar] [CrossRef]
- Nemeroff, C.B. Paradise Lost: The Neurobiological and Clinical Consequences of Child Abuse and Neglect. Neuron 2016, 89, 892–909. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.J.; Clukay, C.J.; Matarazzo, A.; Hadfield, K.; Nevell, L.; Dajani, R.; Panter-Brick, C. Novel GxE effects and resilience: A case: Control longitudinal study of psychosocial stress with war-affected youth. PLoS ONE 2022, 17, e0266509. [Google Scholar] [CrossRef]
- Sheerin, C.M.; Lancaster, E.E.; York, T.P.; Walker, J.; Danielson, C.K.; Amstadter, A.B. Epigenome-Wide Study of Posttraumatic Stress Disorder Symptom Severity in a Treatment-Seeking Adolescent Sample. J. Trauma. Stress 2021, 34, 607–615. [Google Scholar] [CrossRef]
- Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S.; Belden, A.C.; Botteron, K.N.; Harms, M.P.; Barch, D.M. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. J. Abnorm. Psychol. 2015, 124, 817–833. [Google Scholar] [CrossRef]
- Dee, G.; Ryznar, R.; Dee, C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023, 12, 1258. [Google Scholar] [CrossRef]
- Lovallo, W.R.; Enoch, M.A.; Acheson, A.; Cohoon, A.J.; Sorocco, K.H.; Hodgkinson, C.A.; Vincent, A.S.; Goldman, D. Early-Life Adversity Interacts with FKBP5 Genotypes: Altered Working Memory and Cardiac Stress Reactivity in the Oklahoma Family Health Patterns Project. Neuropsychopharmacology 2016, 41, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Vrshek-Schallhorn, S.; Stroud, C.B.; Mineka, S.; Zinbarg, R.E.; Adam, E.K.; Redei, E.E.; Hammen, C.; Craske, M.G. Additive genetic risk from five serotonin system polymorphisms interacts with interpersonal stress to predict depression. J. Abnorm. Psychol. 2015, 124, 776–790. [Google Scholar] [CrossRef]
- Ghosh, M.; Ali, A.; Joshi, S.; Srivastava, A.S.; Tapadia, M.G. SLC1A3 C3590T but not BDNF G196A is a predisposition factor for stress as well as depression, in an adolescent eastern Indian population. BMC Med. Genet. 2020, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Marzi, S.J.; Sugden, K.; Arseneault, L.; Belsky, D.W.; Burrage, J.; Corcoran, D.L.; Danese, A.; Fisher, H.L.; Hannon, E.; Moffitt, T.E.; et al. Analysis of DNA methylation in young people: Limited evidence for an association between victimization stress and epigenetic variation in blood. Am. J. Psychiatry 2018, 175, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Feder, A.; Cohen, H.; Kim, J.J.; Calderon, S.; Charney, D.S.; Mathé, A.A. Understanding resilience. Front. Behav. Neurosci. 2013, 7, 10. [Google Scholar] [CrossRef]
- Rutten, B.P.F.; Hammels, C.; Geschwind, N.; Menne-Lothmann, C.; Pishva, E.; Schruers, K.; van den Hove, D.; Kenis, G.; van Os, J.; Wichers, M. Resilience in mental health: Linking psychological and neurobiological perspectives. Acta Psychiatr. Scand. 2013, 128, 3–20. [Google Scholar] [CrossRef]
- Pereira, D.M.B.P.; Grasso, D.J.; Hodgkinson, C.A.; McCarthy, K.J.; Wakschlag, L.S.; Briggs-Gowan, M.J. Maternal posttraumatic stress and FKBP5 Genotype interact to predict trauma-related symptoms in preschool-age offspring. J. Affect. Disord. 2021, 292, 212–216. [Google Scholar] [CrossRef]
- Parade, S.H.; Novick, A.M.; Parent, J.; Seifer, R.; Klaver, S.J.; Marset, C.J.; Gobin, A.P.; Yang, B.Z.; Tyrka, A.R. Stress exposure and psychopathology alter methylation of the serotonin receptor 2A (HTR2A) gene in preschoolers. Dev. Psychopathol. 2017, 29, 1619–1626. [Google Scholar] [CrossRef]
- Non, A.L.; Hollister, B.M.; Humphreys, K.L.; Childebayeva, A.; Esteves, K.; Zeanah, C.H.; Fox, N.A.; Nelson, C.A.; Drury, S.S. DNA methylation at stress-related genes is associated with exposure to early life institutionalization. Am. J. Phys. Anthropol. 2016, 161, 84–93. [Google Scholar] [CrossRef]
- Van Der Knaap, L.J.; Riese, H.; Hudziak, J.J.; Verbiest, M.M.; Verhulst, F.C.; Oldehinkel, A.J.; van Oort, F.V. Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. the TRAILS study. Transl. Psychiatry 2014, 4, e381. [Google Scholar] [CrossRef]
- Romens, S.E.; Mcdonald, J.; Svaren, J.; Pollak, S.D. Associations Between Early Life Stress and Gene Methylation in Children. Child Dev. 2015, 86, 303–309. [Google Scholar] [CrossRef]
- Bosmans, G.; Young, J.F.; Hankin, B.L. NR3C1 methylation as a moderator of the effects of maternal support and stress on insecure attachment development. Dev. Psychol. 2018, 54, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Efstathopoulos, P.; Andersson, F.; Melas, P.A.; Yang, L.L.; Villaescusa, J.C.; Rȕegg, J.; Ekström, T.J.; Forsell, Y.; Galanti, M.R.; Lavebratt, C. NR3C1 hypermethylation in depressed and bullied adolescents. Transl. Psychiatry 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Cicchetti, D.; Handley, E.D. Methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), in maltreated and nonmaltreated children: Associations with behavioral undercontrol, emotional lability/negativity, and externalizing and internalizing symptoms. Dev. Psychopathol. Dev. Psychopathol. 2017, 29, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, S.V.; Ivanoshchuk, D.E.; Orlov, P.S.; Bairqdar, A.; Anisimenko, M.S.; Denisova, D.V. Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis. Genes 2023, 14, 2064. [Google Scholar] [CrossRef] [PubMed]
- Etain, B.; Lajnef, M.; Henrion, A.; Dargél, A.A.; Stertz, L.; Kapczinski, F.; Mathieu, F.; Henry, C.; Gard, S.; Kahn, J.P.; et al. Interaction between SLC6A4 promoter variants and childhood trauma on the age at onset of bipolar disorders. Sci. Rep. 2015, 5, 16301. [Google Scholar] [CrossRef]
- Lin, X.; Cao, Y.; Ji, L.; Zhang, W. Inhibitory control mediates the interaction between serotonin transporter gene (5-HTTLPR) and peer victimization on adolescent depressive symptoms. Sci. Rep. 2021, 11, 14640. [Google Scholar] [CrossRef]
- Van Der Knaap, L.J.; Riese, H.; Hudziak, J.J.; Verbiest, M.M.; Verhulst, F.C.; Oldehinkel, A.J.; van Oort, F.V. Adverse life events and allele-specific methylation of the serotonin transporter gene (SLC6A4) in adolescents. Psychosom. Med. 2015, 77, 246–255. [Google Scholar] [CrossRef]
- Simsek, S.; Uysal, C.; Kaplan, I.; Yuksel, T.; Aktas, H. BDNF and cortisol levels in children with or without post-traumatic stress disorder after sustaining sexual abuse. Psychoneuroendocrinology 2015, 56, 45–51. [Google Scholar] [CrossRef]
- Şimşek, Ş.; Yüksel, T.; Kaplan, I.; Uysal, C.; Alaca, R. Examining the levels of BDNF and cortisol in children and adolescent victims of sexual abuse—A preliminary study. Compr. Psychiatry 2015, 61, 23–27. [Google Scholar] [CrossRef]
- Aksu, S.; Unlu, G.; Kardesler, A.C.; Cakaloz, B.; Aybek, H. Altered levels of brain-derived neurotrophic factor, proBDNF and tissue plasminogen activator in children with posttraumatic stress disorder. Psychiatry Res. 2018, 268, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Ensink, J.B.M.; Keding, T.J.; Henneman, P.; Venema, A.; Papale, L.A.; Alisch, R.S.; Westerman, Y.; van Wingen, G.; Zantvoord, J.; Middeldorp, C.M.; et al. Differential DNA Methylation Is Associated With Hippocampal Abnormalities in Pediatric Posttraumatic Stress Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Weder, N.; Weder, N.; Zhang, H.; Jensen, K.; Yang, B.Z.; Simen, A.; Jackowski, A.; Lipschitz, D.; Douglas-Palumberi, H.; Ge, M.; et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J. Am. Acad. Child. Adolesc. Psychiatry 2014, 53, 417–424.e5. [Google Scholar] [CrossRef]
- Hecker, T.; Radtke, K.M.; Hermenau, K.; Papassotiropoulos, A.; Elbert, T. Associations among child abuse, mental health, and epigenetic modifications in the proopiomelanocortin gene (POMC): A study with children in Tanzania. Dev. Psychopathol. 2016, 28, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus--norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef]
- Russo, S.J.; Murrough, J.W.; Han, M.H.; Charney, D.S.; Nestler, E.J. Neurobiology of resilience. Nat. Neurosci. 2012, 15, 1475–1484. [Google Scholar] [CrossRef]
- Gerritsen, L.; Milaneschi, Y.; Vinkers, C.; van Hemert, A.M.; van Velzen, L.; Schmaal, L.; Penninx, B.W.J.H. HPA axis genes, and their interaction with childhood maltreatment, are related to cortisol levels and stress-related phenotypes. Neuropsychopharmacology 2017, 42, 2446–2455. [Google Scholar] [CrossRef]
- Korgan, A.C.; Prendergast, K.; Rosenhauer, A.M.; Morrison, K.E.; Jovanovic, T.; Bale, T.L. Trauma and Sensory Systems: Biological Mechanisms Involving the Skin and the 17q21 Gene Cluster. Biol. Psychiatry 2024, 97, 854–861. [Google Scholar] [CrossRef]
- Wu, G.; Feder, A.; Wegener, G.; Bailey, C.; Saxena, S.; Charney, D.; Mathé, A.A. Central functions of neuropeptide Y in mood and anxiety disorders. Expert. Opin. Ther. Targets 2011, 15, 1317–1331. [Google Scholar] [CrossRef]
- Akimova, E.; Lanzenberger, R.; Kasper, S. The Serotonin--1A Receptor in Anxiety Disorders. Biol. Psychiatry 2009, 66, 627–635. [Google Scholar] [CrossRef]
- Benekareddy, M.; Vadodaria, K.C.; Nair, A.R.; Vaidya, V.A. Postnatal serotonin type 2 receptor blockade prevents the emergence of anxiety behavior, dysregulated stress-induced immediate early gene responses, and specific transcriptional changes that arise following early life stress. Biol. Psychiatry 2011, 70, 1024–1032. [Google Scholar] [CrossRef]
- Strawn, J.R.; Geracioti, T.D. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress Anxiety 2008, 25, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Charney, D.S. Psychobiological Mechanisms of Resilience and Vulnerability: Implications for Successful Adaptation to Extreme Stress. Am. J. Psychiatry 2004, 161, 195–216. [Google Scholar] [CrossRef]
- Feder, A.; Nestler, E.J.; Charney, D.S. Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci. 2009, 10, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Onur, O.A.; Walter, H.; Schlaepfer, T.E.; Rehme, A.K.; Schmidt, C.; Keysers, C.; Maier, W.; Hurlemann, R. Noradrenergic enhancement of amygdala responses to fear. Soc. Cogn. Affect. Neurosci. 2009, 4, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Caspi, A.; McClay, J.; Moffitt, T.E.; Mill, J.; Martin, J.; Craig, I.W.; Taylor, A.; Poulton, R. Role of genotype in the cycle of violence in maltreated children. Science 2002, 297, 851–854. [Google Scholar] [CrossRef]
- Brummett, B.H.; Boyle, S.H.; Siegler, I.C.; Kuhn, C.M.; Surwit, R.S.; Garrett, M.E.; Collins, A.; Ashely-Koch, A.; William, R.B. HPA axis function in male caregivers: Effect of the monoamine oxidase-A gene promoter (MAOA-uVNTR). Biol. Psychol. 2008, 79, 250–255. [Google Scholar] [CrossRef]
- Schlüter, T.; Winz, O.; Henkel, K.; Eggermann, T.; Mohammadkhani-Shali, S.; Dietrich, C.; Heinzel, A.; Decker, M.; Cumming, P.; Zerres, K.; et al. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. Neuroimage 2016, 125, 378–385. [Google Scholar] [CrossRef]
- Plieger, T.; Melchers, M.; Felten, A.; Lieser, T.; Meermann, R.; Reuter, M. Moderator Effects of Life Stress on the Association between MAOA-uVNTR, Depression, and Burnout. Neuropsychobiology 2019, 78, 86–94. [Google Scholar] [CrossRef]
- Taliaz, D.; Loya, A.; Gersner, R.; Haramati, S.; Chen, A.; Zangen, A. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. J. Neurosci. 2011, 31, 4475–4483. [Google Scholar] [CrossRef]
- Yamada, K.; Nabeshima, T. Brain--Derived Neurotrophic Factor/TrkB Signaling in Memory Processes. J. Pharmacol. Sci. 2003, 91, 267–270. [Google Scholar] [CrossRef]
- Sonoyama, T.; Stadler, L.K.J.; Zhu, M.; Keogh, J.M.; Henning, E.; Hisama, F.; Kirwan, P.; Jura, M.; Blaszczyk, B.K.; DeWitt, D.C.; et al. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci. Rep. 2020, 10, 9028. [Google Scholar] [CrossRef]
- Mahan, A.L.; Ressler, K.J. Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends Neurosci. 2012, 35, 24–35. [Google Scholar] [CrossRef]
- Zwolińska, W.; Dmitrzak-Węglarz, M.; Słopień, A. Biomarkers in Child and Adolescent Depression. Child. Psychiatry Hum. Dev. 2023, 54, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q.; Chen, X.; Gu, X.; Wang, M.; Wu, J. A functional variant in SLC1A3 influences ADHD risk by disrupting a hsa-miR-3171 binding site: A two-stage association study. Genes Brain Behav. 2019, 18, e12574. [Google Scholar] [CrossRef]
- Lu, D.; Sapkota, Y.; Valdimarsdóttir, U.A.; Koenen, K.C.; Li, N.; Leisenring, W.M.; Gibson, T.; Wilson, C.L.; Robison, L.L.; Hudson, M.M.; et al. Genome-wide association study of posttraumatic stress disorder among childhood cancer survivors: Results from the Childhood Cancer Survivor Study and the St. Jude Lifetime Cohort. Transl. Psychiatry 2022, 12, 342. [Google Scholar] [CrossRef]
- Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Bierer, L.M. The relevance of epigenetics to PTSD: Implications for the DSM-V. J. Trauma. Stress 2009, 22, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Dall’Aglio, L.; Muka, T.; Cecil, C.A.M.; Bramer, W.M.; Verbiest, M.M.P.J.; Nano, J.; Hidalgo, A.C.; Franco, O.H.; Tiemeier, H. The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neurosci. Biobehav. Rev. 2018, 94, 17–30. [Google Scholar] [CrossRef]
- Aref-Eshghi, E.; Kerkhof, J.; Pedro, V.P.; Groupe DI France; Barat-Houari, M.; Ruiz-Pallares, N.; Andrau, J.C.; Lacombe, D.; Van-Gils, J.; Fergelot, P.; et al. Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders. Am. J. Hum. Genet. 2020, 106, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. Perceptions of epigenetics. Nature 2007, 447, 396–398. [Google Scholar] [CrossRef]
- Thumfart, K.M.; Jawaid, A.; Bright, K.; Flachsmann, M.; Mansuy, I.M. Epigenetics of childhood trauma: Long term sequelae and potential for treatment. Neurosci. Biobehav. Rev. 2022, 132, 1049–1066. [Google Scholar] [CrossRef]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Poulter, M.O.; Du, L.; Weaver, I.C.G.; Palkovits, M.; Faludi, G.; Merali, Z.; Szyf, M.; Anisman, H. GABAA Receptor Promoter Hypermethylation in Suicide Brain: Implications for the Involvement of Epigenetic Processes. Biol. Psychiatry 2008, 64, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Merali, Z.; Du, L.; Hrdina, P.; Palkovits, M.; Faludi, G.; Poulter, M.O.; Anisman, H. Dysregulation in the Suicide Brain: mRNA Expression of Corticotropin-Releasing Hormone Receptors and GABAA Receptor Subunits in Frontal Cortical Brain Region. J. Neurosci. 2004, 24, 1478–1485. [Google Scholar] [CrossRef]
- Parade, S.H.; Parent, J.; Rabemananjara, K.; Seifer, R.; Marsit, C.J.; Yang, B.Z.; Zhang, H.; Tyrka, A.R. Change in FK506 binding protein 5 (FKBP5) methylation over time among preschoolers with adversity. Dev. Psychopathol. 2017, 29, 1627–1634. [Google Scholar] [CrossRef]
- Naumova, O.Y.; Lee, M.; Koposov, R.; Szyf, M.; Dozier, M.; Grigorenko, E.L. Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev. Psychopathol. 2012, 24, 143–155. [Google Scholar] [CrossRef]
- Papale, L.A.; Seltzer, L.J.; Madrid, A.; Pollak, S.D.; Alisch, R.S. Differentially Methylated Genes in Saliva are linked to Childhood Stress. Sci. Rep. 2018, 8, 10785. [Google Scholar] [CrossRef]
- Esposito, E.A.; Jones, M.J.; Doom, J.R.; MacIsaac, J.L.; Gunnar, M.R.; Kobor, M.S. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev. Psychopathol. 2016, 28, 1385–1399. [Google Scholar] [CrossRef]
- Walton, E.; Baltramonaityte, V.; Calhoun, V.; Heijmans, B.T.; Thompson, P.M.; Cecil, C.A.M. A systematic review of neuroimaging epigenetic research: Calling for an increased focus on development. Mol. Psychiatry 2023, 28, 2839–2847. [Google Scholar] [CrossRef]
- Bradley, B.; Westen, D.; Mercer, K.B.; Binder, E.B.; Jovanovic, T.; Crain, D.; Wingo, A.; Heim, C. Association between childhood maltreatment and adult emotional dysregulation in a low-income, urban, African American sample: Moderation by oxytocin receptor gene. Dev. Psychopathol. 2011, 23, 439–452. [Google Scholar] [CrossRef]
- Binder, E.B.; Nemeroff, C.B. The CRF system, stress, depression and anxietyinsights from human genetic studies. Mol. Psychiatry 2010, 15, 574–588. [Google Scholar] [CrossRef]
- Armbruster, D.; Mueller, A.; Strobel, A.; Lesch, K.P.; Brocke, B.; Kirschbaum, C. Children under stress-COMT genotype and stressful life events predict cortisol increase in an acute social stress paradigm. Int. J. Neuropsychopharmacol. 2012, 15, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- La Greca, A.M.; Lai, B.S.; Joormann, J.; Auslander, B.B.; Short, M.A. Children’s risk and resilience following a natural disaster: Genetic vulnerability, posttraumatic stress, and depression. J. Affect. Disord. 2013, 151, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Donner, J.; Sipilä, T.; Ripatti, S.; Kananen, L.; Chen, X.; Kendler, K.S.; Lönnqvist, J.; Pirkola, S.; Hettema, J.M.; Hovatta, I. Support for involvement of glutamate decarboxylase 1 and neuropeptide y in anxiety susceptibility. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159B, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Smearman, E.L.; Yu, T.; Brody, G.H. Variation in the oxytocin receptor gene moderates the protective effects of a family-based prevention program on telomere length. Brain Behav. 2016, 6, e00423. [Google Scholar] [CrossRef] [PubMed]
- Hostinar, C.E.; Cicchetti, D.; Rogosch, F.A. Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents. Dev. Psychopathol. 2014, 26, 465–477. [Google Scholar] [CrossRef]
- Morgan, C.A.; Southwick, S.; Hazlett, G.; Rasmusson, A.; Hoyt, G.; Zimolo, Z.; Charney, D.S. Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiatry 2004, 61, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Markopoulou, K.; Papadopoulos, A.; Juruena, M.F.; Poon, L.; Pariante, C.M.; Cleare, A.J. The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology 2009, 34, 19–26. [Google Scholar] [CrossRef]
- Hauger, R.L.; Risbrough, V.; Oakley, R.H.; Olivares-Reyes, J.A.; Dautzenberg, F.M. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann. N. Y. Acad. Sci. 2009, 1179, 120–143. [Google Scholar] [CrossRef]
- Krystal, J.H.; Neumeister, A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res. 2009, 1293, 13–23. [Google Scholar] [CrossRef]
- Jhaveri, D.J.; Mackay, E.W.; Hamlin, A.S.; Marathe, S.V.; Nandam, L.S.; Vaidya, V.A.; Bartlett, P.F. Norepinephrine directly activates adult hippocampal precursors via β3-adrenergic receptors. J. Neurosci. 2010, 30, 2795–2806. [Google Scholar] [CrossRef]
- Masi, G.; Brovedani, P. The Hippocampus, Neurotrophic Factors and Depression: Possible Implications for the Pharmacotherapy of Depression. CNS Drugs 2011, 25, 913–931. [Google Scholar] [CrossRef]
- Li, Y.; Luikart, B.W.; Birnbaum, S.; Chen, J.; Kwon, C.H.; Kernie, S.G.; Bassel-Duby, R.; Parada, L.F. TrkB Regulates Hippocampal Neurogenesis and Governs Sensitivity to Antidepressive Treatment. Neuron 2008, 59, 399–412. [Google Scholar] [CrossRef]
- Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef]
- Petersén, Å.; Wörtwein, G.; Gruber, S.H.M.; El-Khoury, A.; Mathé, A.A. Nortriptyline mediates behavioral effects without affecting hippocampal cytogenesis in a genetic rat depression model. Neurosci. Lett. 2009, 451, 148–151. [Google Scholar] [CrossRef]
- Hansson, A.C.; Rimondini, R.; Heilig, M.; Mathé, A.A.; Sommer, W.H. Dissociation of antidepressant-like activity of escitalopram and nortriptyline on behaviour and hippocampal BDNF expression in female rats. J. Psychopharmacol. 2011, 25, 1378–1387. [Google Scholar] [CrossRef]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar]
- Cohen, H.; Liu, T.; Kozlovsky, N.; Kaplan, Z.; Zohar, J.; Mathé, A.A. The neuropeptide y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 2012, 37, 350–363. [Google Scholar] [CrossRef]
- Sah, R.; Geracioti, T.D. Neuropeptide Y and posttraumatic stress disorder. Mol. Psychiatry 2013, 18, 428–439. [Google Scholar] [CrossRef]
- Sajdyk, T.J.; Shekhar, A.; Gehlert, D.R. Interactions between NPY and CRF in the amygdala to regulate emotionality. Neuropeptides 2004, 38, 225–234. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, G.; Hariri, A.R.; Enoch, M.A.; Scott, D.; Sinha, R.; Virkkunen, M.; Mash, D.C.; Lipsky, R.H.; Hu, X.Z.; et al. Genetic variation in human NPY expression affects stress response and emotion. Nature 2008, 452, 997–1001. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C. Evaluating the challenges and reproducibility of studies investigating DNA methylation signatures of psychological stress. Epigenomics 2022, 14, 405–421. [Google Scholar] [CrossRef]
- Harvey, B.H.; Shahid, M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol. Biochem. Behav. 2012, 100, 775–800. [Google Scholar] [CrossRef]
- Hill, M.N. Introduction to the special issue on stress, emotional behavior, and the endocannabinoid system: A decade of research. Neuroscience 2012, 204, 1–3. [Google Scholar] [CrossRef]
- Sanacora, G.; Treccani, G.; Popoli, M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012, 62, 63–77. [Google Scholar] [CrossRef]
- Kirilly, E.; Gonda, X.; Bagdy, G. CB1 receptor antagonists: New discoveries leading to new perspectives. Acta Physiol. 2012, 205, 41–60. [Google Scholar] [CrossRef]
- Mathew, S.J.; Shah, A.; Lapidus, K.; Clark, C.; Jarun, N.; Ostermeyer, B.; Murrough, J.W. Ketamine for treatment-resistant unipolar depression: Current evidence. CNS Drugs 2012, 26, 189–204. [Google Scholar] [CrossRef]
- Mathews, D.C.; Henter, I.D.; Zarate, C.A. Targeting the glutamatergic system to treat major depressive disorder: Rationale and progress to date. Drugs 2012, 72, 1313–1333. [Google Scholar] [CrossRef]
- Hillard, C.J.; Beatka, M.; Sarvaideo, J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr. Physiol. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Lisboa, S.F.; Niraula, A.; Resstel, L.B.; Guimaraes, F.S.; Godbout, J.P.; Sheridan, J.F. Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology 2018, 43, 1924–1933. [Google Scholar] [CrossRef]
- Richardson, G.E. The metatheory of resilience and resiliency. J. Clin. Psychol. 2002, 58, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Wichers, M.C.; Myin-Germeys, I.; Jacobs, N.; Peeters, F.; Kenis, G.; Derom, C.; Vlietinck, R.; Delespaul, P.; van Os, J. Evidence that moment-to-moment variation in positive emotions buffer genetic risk for depression: A momentary assessment twin study. Acta Psychiatr. Scand. 2007, 115, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Boardman, J.D.; Blalock, C.L.; Button, T.M.M. Sex differences in the heritability of resilience. Twin Res. Hum. Genet. 2008, 11, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Diamond, L.M.; Aspinwall, L.G. Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes. Motiv. Emot. 2003, 27, 125–156. [Google Scholar] [CrossRef]
- Hankin, B.L.; Nederhof, E.; Oppenheimer, C.W.; Jenness, J.; Young, J.F.; Abela, J.R.; Smolen, A.; Ormel, J.; Oldehinkel, A.J. Differential susceptibility in youth: Evidence that 5-HTTLPR x positive parenting is associated with positive affect for better and worse. Transl. Psychiatry 2011, 1, e44. [Google Scholar] [CrossRef]

| Gene | Genetic or Epigenetic Changes | Stress-Related Psychiatric Disorder | Reference |
|---|---|---|---|
| FKBP5 (FK506-Binding Protein 5) | Polymorphism rs1360780 | PTSD, Depression, Alcohol Use Disorders (AUD) | [3,7,18] |
| Demethylation | PTSD | [7,19,20] | |
| NR3C1 (Glucocorticoid Receptor) | Polymorphisms rs41423247, rs10482605, rs10052957 | PTSD | [10] |
| Hypermethylation | Anxiety, Emotional Lability, Externalizing and Internalizing Symptoms | [21,22,23,24,25] | |
| ACE-I (Angiotensin I-Converting Enzyme) | Polymorphism ACE D allele of rs4311 | Depression, Anxiety, PTSD | [26] |
| ADCYAP1R1 (Type I Adenylate Cyclase Activating Polypeptide Receptor) | Polymorphism rs2267735 | PTSD | [4] |
| CRHR1 (Corticotropin-Releasing Hormone Receptor 1) | Polymorphism rs4792887, rs110402, rs242941, rs242939, rs1876828 | Depression, Anxiety, PTSD | [10] |
| SLC6A4 (Solute Carrier Family 6 Member 4) | Polymorphism 5-HTTLPR | Depression, Bipolar Disorder | [27,28] |
| Methylation | Externalizing behavior | [20,29] | |
| HTR2A (Serotonin Receptor 2A) | Polymorphism HTR1A, HTR2A, HTR2C, TPH2 | Depression | [13,19] |
| COMT (Catechol-O-Methyltransferase) | Polymorphism Val158Met (rs4680) | Psychosis | [8] |
| MAOA (Monoamine Oxidase A) | Polymorphism MAOA-L and MAOA-H | Aggressivity (male) Depression (female) | [26] |
| BDNF (Brain-Derived Neurotrophic Factor) | Polymorphism Val66Met | Depression, PTSD | [14,30,31,32] |
| Methylation | PTSD, Depression, Suicidal behavior | [11] | |
| ESR1 (Estrogen Receptor Alpha) | Polymorphism rs6557168 | Anxiety, Suicidal behavior | [26] |
| SLC1A3 (EEAT1—Excitatory Aminoacid Transporter 1) | Polymorphism C3590T | Depression, Stress, ADHD | [14] |
| TNXB (Tenascin XB) | Hypermethylation | PTSD | [33] |
| MOBP (Myelin Associated Oligodendrocyte Basic Protein) | Methylation | PTSD | [9] |
| TPPP (Tubulin Polymerization Promoting Protein) | Methylation | Depression | [34] |
| GRIN1 (Glutamate Receptor, Ionotropic N-methyl-D-aspartate 1) | Methylation | Depression | [34] |
| ID3 3 (DNA-Binding Protein Inhibitor ID–3) | Methylation | Depression | [34] |
| POMC (Proopiomelanocortin) | Methylation | Emotional and behavioral problems | [35] |
| Gene | Genetic or Epigenetic Changes | Stress-Protective Effects | Reference |
|---|---|---|---|
| CRHR1 (Corticotropin-Releasing Hormone Receptor 1) | Allelic variants | Controversial role in the regulation of stress reward | [16,73] |
| CRHR2 (Corticotropin-Releasing Hormone Receptor 2) | Polymorphism | May amplify or reduce stress effects | [16,74] |
| ACE-I (Angiotensin I -Converting Enzyme) | Polymorphism ACE I allele of rs4311 | Decreases neuroendocrine and inflammatory stress responses (results not univocal) | [26] |
| COMT (Catechol-O -Methyltransferase) | Polymorphism Val158Met | Influences the capacity to experience reward | [8,16,17,75] |
| MAOA (Monoamine Oxidase A) | Polymorphism MAOA-L | Greater emotional stability, lower anxiety and depressive symptoms (female; not univocal results) | [26] |
| BDNF (Brain-Derived Neurotrophic Factor) | Polymorphism Val66Met | Uncertainty contributes | [16,17,76] |
| NPY (Neuropeptide Y) | Polymorphism | Anxiety-reducing effects, supports adaptive responses to adversity | [16,77] |
| FKBP5 (FK506-binding protein 5) | Single Nucleotide Polimorfism | Controversial role in coping with stress | [16] |
| CNR1 (Cannabinoid receptor type 1) | Polymorphism | Neural plasticity, regulation of HPA response (controversial results) | [26] |
| OXTR (Oxytocin receptor gene) | Methylation | Influences the stress response | [78,79] |
| Polymorphism (rs53576, G allele) | More sensitive to the social environment, influencing the response | [26,78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffagnato, A.; Raicich, A.; Paiusco, L.; Coser, G.; Bonemazzi, I.; Gazzin, A.; Pelizza, M.F.; Ancora, C.; Toldo, I. Genetic Predisposition and Genetic Resilience Factors in Stress-Related Disorders During the Developmental Age: A Narrative Review. Genes 2025, 16, 1362. https://doi.org/10.3390/genes16111362
Raffagnato A, Raicich A, Paiusco L, Coser G, Bonemazzi I, Gazzin A, Pelizza MF, Ancora C, Toldo I. Genetic Predisposition and Genetic Resilience Factors in Stress-Related Disorders During the Developmental Age: A Narrative Review. Genes. 2025; 16(11):1362. https://doi.org/10.3390/genes16111362
Chicago/Turabian StyleRaffagnato, Alessia, Arianna Raicich, Lisa Paiusco, Giulia Coser, Ilaria Bonemazzi, Andrea Gazzin, Maria Federica Pelizza, Caterina Ancora, and Irene Toldo. 2025. "Genetic Predisposition and Genetic Resilience Factors in Stress-Related Disorders During the Developmental Age: A Narrative Review" Genes 16, no. 11: 1362. https://doi.org/10.3390/genes16111362
APA StyleRaffagnato, A., Raicich, A., Paiusco, L., Coser, G., Bonemazzi, I., Gazzin, A., Pelizza, M. F., Ancora, C., & Toldo, I. (2025). Genetic Predisposition and Genetic Resilience Factors in Stress-Related Disorders During the Developmental Age: A Narrative Review. Genes, 16(11), 1362. https://doi.org/10.3390/genes16111362

