FLI1 Expression in Invasive Breast Carcinoma: Clinicopathological Correlations and Prognostic Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. List of Variables Examined
2.3. Selection Criteria
2.4. Histopathological Evaluation
2.5. Immunohistochemical Procedure
2.6. Immunohistochemical Analysis
2.7. Follow-Up and Statistical Analysis
2.8. Database
2.9. Humanized Breast Cancer Mouse Model
3. Results
3.1. Demographics
3.2. Tumor Type and Stage
3.3. Distribution of Nodal Involvement and Hormonal Receptor Status in Study Cohort
3.4. Histological Grading and Its Association with FLI1 Expression
3.5. Kaplan–Meier Survival and Stromal/TIL Analyses
3.6. FLI1-LSD1 Axis in Oncogenesis-Associated Transcriptional Programs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ETS | E26 transformation-specific |
| FLI1 | Friend Leukemia Integration 1 |
| LSD1 | Lysine specific demethylase 1 |
| ICB | Immune checkpoint blockade |
| TNBC | Triple-negative breast cancer |
| HER2 | Human epidermal growth factor receptor 2 |
| TME | Tumor microenvironment |
| IBC | Invasive breast carcinoma |
| H&E | Hematoxylin and eosin |
| DAB | Diaminobenzidine |
| IHC | Immunohistochemistry |
| METABRIC | Molecular Taxonomy of Breast Cancer International Consortium |
| TCGA | The Cancer Genome Atlas |
| FUSCC | Fudan University Shanghai Cancer Center |
| HIS | Humanized immune system |
| pT | Tumor size |
| pN | Lymph node involvement |
| pM | Excluding metastasis |
| ER | Estrogen receptor |
| PR | Progesterone receptor |
| IDC | Infiltrating duct carcinoma |
| LVI | Lymphovascular invasion |
References
- Won, K.A.; Spruck, C. Triple-negative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol. 2020, 57, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.D.; Haque, S.; Kim, Y.; Han, I.; Yadav, D.K. Remodeling of tumour microenvironment: Strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front. Immunol. 2024, 15, 1455211. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.I.; Baek, S.H. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J. Biomed. Sci. 2021, 28, 41. [Google Scholar] [CrossRef]
- Sheng, W.; LaFleur, M.W.; Nguyen, T.H.; Chen, S.; Chakravarthy, A.; Conway, J.R.; Li, Y.; Chen, H.; Yang, H.; Hsu, P.-H.; et al. LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell 2018, 174, 549–563.e19. [Google Scholar] [CrossRef]
- Sankar, S.; Theisen, E.R.; Bearss, J.; Mulvihill, T.; Hoffman, L.M.; Sorna, V.; Beckerle, M.C.; Sharma, S.; Lessnick, S.L. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin. Cancer Res. 2014, 20, 4584–4597. [Google Scholar] [CrossRef]
- Scheiber, M.N.; Watson, P.M.; Rumboldt, T.; Stanley, C.; Wilson, R.C.; Findlay, V.J.; Anderson, P.E.; Watson, D.K. FLI1 expression is correlated with breast cancer cellular growth, migration, and invasion and altered gene expression. Neoplasia 2014, 16, 801–813. [Google Scholar] [CrossRef]
- Song, W.; Li, W.; Li, L.; Zhang, S.; Yan, X.; Wen, X.; Zhang, X.; Tian, H.; Li, A.; Hu, J.-F.; et al. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer. Oncotarget 2015, 6, 23764–23775. [Google Scholar] [CrossRef] [PubMed]
- Lafta, I.J. FLI1 Expression in Breast Cancer Cell Lines and Primary Breast Carcinomas is Correlated with ER, PR and HER2. Int. J. Med. Res. Health Sci. 2017, 6, 87–95. [Google Scholar]
- Boone, M.A.; Taslim, C.; Crow, J.C.; Selich-Anderson, J.; Byrum, A.K.; Showpnil, I.A.; Sunkel, B.D.; Wang, M.; Stanton, B.Z.; Theisen, E.R.; et al. The FLI portion of EWS/FLI contributes a transcriptional regulatory function that is distinct and separable from its DNA-binding function in Ewing sarcoma. Oncogene 2021, 40, 4759–4769. [Google Scholar] [CrossRef]
- Yan, X.; Yu, Y.; Li, L.; Chen, N.; Song, W.; He, H.; Dong, J.; Liu, X.; Cui, J. Friend leukemia virus integration 1 is a predictor of poor prognosis of breast cancer and promotes metastasis and cancer stem cell properties of breast cancer cells. Cancer Med. 2018, 7, 3548–3560. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Z.; Ma, D.; Suo, C.; Shi, J.; Xue, M.; Hu, X.; Xiao, Y.; Yu, K.-D.; Liu, Y.-R.; Yu, Y.; et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. Cancer Cell 2019, 35, 428–440.e5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, Y.; Gao, Y.; Zhang, R.; Hou, W.; Cao, Z.; Jiang, Y.-Z.; Zheng, Y.; Shi, L.; Ma, D.; et al. A comprehensive genomic and transcriptomic dataset of triple-negative breast cancers. Sci. Data 2022, 9, 587. [Google Scholar] [CrossRef]
- Krug, K.; Jaehnig, E.J.; Satpathy, S.; Blumenberg, L.; Karpova, A.; Anurag, M.; Miles, G.; Mertins, P.; Geffen, Y.; Tang, L.C.; et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020, 183, 1436–1456.e31. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, Y.; Lee, W.C.; Ong, L.-T.; Lee, P.L.; Jiang, Z.; Oguz, G.; Niu, Z.; Liu, M.; Goh, J.Y.; et al. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. Nat. Commun. 2022, 13, 4118. [Google Scholar] [CrossRef]
- Biswal, P.; Behera, S.; Kar, A.; Pradhan, D.; Behera, P.K.; Burma, S.; Mishra, C. Correlation of Hormonal Receptors Estrogen Receptor, Progesterone Receptor and Her-2/Neu with Tumor Characteristics in Breast Carcinoma: Study of 100 Consecutive Cases. Int. J. Clin. Med. 2015, 6, 961–966. [Google Scholar] [CrossRef]
- Gannon, L.M.; Cotter, M.B.; Quinn, C.M. The Classification of Invasive Carcinoma of the Breast. Expert Rev. Anticancer Ther. 2013, 13, 941–954. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chirukandath, R.; Krishnan, S.; Nazrin, R.; Meera, M.S.; Veeshma, P. Lymphovascular Invasion and Ductal In-Situ Components in Operable Infiltrating Duct Carcinoma of Breast—A Single Centre Experience. J. Clin. Diagn. Res. 2022, 40, PC01–PC04. [Google Scholar] [CrossRef]
- Bansal, C.; Pujani, M.; Sharma, K.L.; Srivastava, A.; Singh, U. Grading Systems in the Cytological Diagnosis of Breast Cancer: A Review. J. Cancer Res. Ther. 2014, 10, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Sementchenko, V.I.; Watson, D.K. Ets target genes: Past, present and future. Oncogene 2000, 19, 6533–6548. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, J. The biology of the Ets1 proto-oncogene. Mol. Cancer 2003, 20, 2–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pei, J.; Peng, Y.; Ma, K.; Lan, C.; Zhang, T.; Li, Y.; Chen, X.; Gao, H. Integrated analysis reveals FLI1 regulates the tumor immune microenvironment via its cell-type- specific expression and transcriptional regulation of distinct target genes of immune cells in breast cancer. BMC Genom. 2024, 25, 91. [Google Scholar] [CrossRef] [PubMed]




| Percentage (%) of Tumor Cells | Scoring |
|---|---|
| No positive tumor cells | 0 |
| Less than 10% positive tumor cells | 1 |
| 10–50% positive cells | 2 |
| More than 50% positive cells | 3 |
| Staining | Scoring |
|---|---|
| No staining | 0 |
| Weak staining | 1 |
| Moderate staining | 2 |
| Strong staining | 3 |
| Age | Frequency | Percentage |
|---|---|---|
| 26–35 | 17 | 17.0 |
| 36–45 | 31 | 31.0 |
| 46–55 | 34 | 34.0 |
| 56–65 | 13 | 13.0 |
| >66 | 5 | 5.0 |
| Total | 100 | 100.0 |
| Mean ± SD (min-max) | 46.94 ± 10.67 (26–74) | |
| Type of the Tumor | Frequency | Percentage |
|---|---|---|
| Infiltrating duct carcinoma | 93 | 93.0 |
| Invasive lobular carcinoma | 4 | 4.0 |
| Invasive carcinoma with mixed ductal and lobular features | 2 | 2.0 |
| Mucinous carcinoma | 1 | 1.0 |
| Pathological T Stage | Frequency | Percentage |
|---|---|---|
| pT1b | 2 | 2.0 |
| pT1c | 15 | 15.0 |
| pT2 | 57 | 57.0 |
| pT3 | 13 | 13.0 |
| pT4b | 13 | 13.0 |
| Size of the Tumor | Frequency | Percentage |
|---|---|---|
| ≤2 cm | 16 | 16.0 |
| 2.1–5.0 cm | 57 | 57.0 |
| >5 cm | 27 | 27.0 |
| Histopathological Findings | Frequency | Percentage |
|---|---|---|
| In Situ component | ||
| Present | 56 | 56.0 |
| Not identified | 44 | 44.0 |
| LVI | ||
| Present | 44 | 44.0 |
| Not identified | 56 | 56.0 |
| Lymph node involvement | ||
| Involved | 42 | 42.0 |
| Uninvolved | 52 | 52.0 |
| Cannot be assessed | 6 | 6.0 |
| Microcalcification | ||
| Present | 27 | 27.0 |
| Not identified | 73 | 73.0 |
| Necrosis | ||
| Present | 58 | 58.0 |
| Not identified | 42 | 42.0 |
| Hormonal Status | Frequency | Percentage |
|---|---|---|
| ER | ||
| Positive | 60 | 60.0 |
| Negative | 40 | 40.0 |
| PR | ||
| Positive | 45 | 45.0 |
| Negative | 55 | 55.0 |
| Her2 | ||
| Positive | 6 | 6.0 |
| Negative | 94 | 94.0 |
| Clinicopathological Parameters | FLI1 Expression (n = 60) | p Value | |
|---|---|---|---|
| High (n = 33) | Low (n = 27) | ||
| Age (range 25–75 y), median -> | 44.3 | 46.7 | 0.939 |
| 25–35 | 6 (18.2%) | 4 (14.8%) | |
| 36–45 | 13 (39.4%) | 9 (33.3%) | |
| 46–55 | 10 (30.3%) | 9 (33.3%) | |
| 56–65 | 3 (9.1%) | 3 (11.1%) | |
| ≥66 | 1 (3.0%) | 2 (7.4%) | |
| Hormonal status (immunoprofile) | Basal like | Luminal B | |
| ER positive | 14 (42.4%) | 16 (49.3%) | 0.194 Not significant |
| ER negative | 19 (57.6%) | 11 (47.0%) | |
| PR positive | 13 (39.4%) | 10 (37.0%) | 0.852 |
| PR negative | 20 (60.6%) | 17 (63.0%) | |
| Her2 positive | 1 (3.0%) | 2 (7.4%) | 0.598 Not significant |
| Her2 negative | 32 (97.0%) | 25 (92.6%) | |
| Tumor size (range 0–6 cm), median -> | 3 | 3.1 | 0.604 |
| pT1 | 5 (15.2%) | 4 (14.8%) | |
| pT2 | 21 (63.6%) | 21 (77.8%) | |
| pT3 | 4 (12.1%) | 1 (3.7%) | |
| pT4 | 3 (9.1%) | 1 (3.7%) | |
| Histological grade (range 3–9), median -> | 7.71 | 5.74 | <0.001, Significant |
| Grade 1 | 0 (0.0%) | 9 (33.3%) | |
| Grade 2 | 13 (39.4%) | 17 (63.0%) | |
| Grade 3 | 20 (60.0%) | 1 (3.7%) | |
| Lymph nodes (range 1–12), median -> | 2.75 | 2.84 | 0.125 |
| pN0 | 18 (60.0%) | 12 (48.0%) | |
| pN1a | 4 (13.3%) | 4 (16.0%) | |
| pN2a | 3 (10.0%) | 8 (32.0%) | |
| pN3a | 5 (16.7%) | 1 (4.0%) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doly, N.J.; Lee, D.Y.; Tahsin, K.N.; Akhter, J.; Sultana, S.; Khatun, J.; Chua, S.-z.; Banu, A.T.; Chen, Q.; Iqbal, J. FLI1 Expression in Invasive Breast Carcinoma: Clinicopathological Correlations and Prognostic Implications. Genes 2025, 16, 1313. https://doi.org/10.3390/genes16111313
Doly NJ, Lee DY, Tahsin KN, Akhter J, Sultana S, Khatun J, Chua S-z, Banu AT, Chen Q, Iqbal J. FLI1 Expression in Invasive Breast Carcinoma: Clinicopathological Correlations and Prognostic Implications. Genes. 2025; 16(11):1313. https://doi.org/10.3390/genes16111313
Chicago/Turabian StyleDoly, Nusrat Jahan, Dong Yeul Lee, Kazi Nafisa Tahsin, Jhuma Akhter, Shahana Sultana, Julekha Khatun, Sue-zann Chua, A. Tasleema Banu, Qingfeng Chen, and Jabed Iqbal. 2025. "FLI1 Expression in Invasive Breast Carcinoma: Clinicopathological Correlations and Prognostic Implications" Genes 16, no. 11: 1313. https://doi.org/10.3390/genes16111313
APA StyleDoly, N. J., Lee, D. Y., Tahsin, K. N., Akhter, J., Sultana, S., Khatun, J., Chua, S.-z., Banu, A. T., Chen, Q., & Iqbal, J. (2025). FLI1 Expression in Invasive Breast Carcinoma: Clinicopathological Correlations and Prognostic Implications. Genes, 16(11), 1313. https://doi.org/10.3390/genes16111313

