Molecular Characterization of Hypothalamic–Pituitary–Ovarian Axis Regulation in the Manchurian Zokor (Myospalax psilurus) During Seasonal Estrus
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Tissue Collection
2.2. RNA Extraction and Library Construction
2.3. Identification of Differentially Expressed Genes
2.4. GO and KEGG Enrichment Analysis
2.5. Validation of DEGs by RT-qPCR
2.6. Statistical Analysis
3. Results
3.1. RNA Sequencing Data Quality
3.2. Differentially Expressed Gene Identification
3.3. GO Enrichment Analysis of DEGs in HPO-Axis Tissues
3.4. KEGG Pathway Enrichment of DEGs
3.5. Validation by RT-QPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BP | biological processes | 
| CC | cellular components | 
| Ciart | circadian-associated transcriptional repressor | 
| DEGs | differentially expressed genes | 
| FSH | follicle-stimulating hormone | 
| GO | Gene Ontology | 
| GnRH | gonadotropin-releasing hormone | 
| GPCR | G-protein-coupled receptor | 
| GHR | growth hormone receptor | 
| HPO | hypothalamic–pituitary–ovarian | 
| KEGG | Kyoto Encyclopedia of Genes and Genomes | 
| LH | luteinizing hormone | 
| Mc3r | Melanocortin receptor 3 | 
| MF | molecular functions | 
| NPY | neuropeptide Y | 
| PVN | paraventricular nucleus | 
| Pck1 | Phosphoenolpyruvate carboxykinase 1 | 
| PTGER2 | prostaglandin E2 receptor subtype 2 | 
| Qrfpr | Pyroglutamylated arginine-phenylalanine-amide peptide receptor | 
| qRT-PCR | quantitative real-time PCR | 
| S1P | sphingosine-1-phosphate | 
| Trh | thyrotropin-releasing hormone | 
References
- Baohui, Y.; Kang, A.; Yukun, K.; Yuchen, T.; Degang, Z.; Junhu, S. Reproductive Suppression Caused by Spermatogenic Arrest: Transcriptomic Evidence from a Non-Social Animal. Int. J. Mol. Sci. 2023, 24, 4611. [Google Scholar] [CrossRef]
- Wayne, N.L.; Malpaux, B.; Karsch, F.J. Social cues can play a role in timing onset of the breeding season of the ewe. Reprod. Fertil. 1989, 87, 707–713. [Google Scholar] [CrossRef]
- Allan, E.H. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 2016, 12, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Sasha, M.; Advaita, P.-P.; Larisa, G.-J. Hypothalamic-Pituitary-Ovarian Axis Disorders Impacting Female Fertility. Biomedicines 2019, 7, 5. [Google Scholar]
- Wei, S.; Kang, X.; Yang, C.; Wang, F.; Dai, T.; Guo, X.; Ma, Z.; Li, C.; Zhao, H.; Dan, X. Analysis of reproduction-related transcriptomes on pineal-hypothalamic-pituitary-ovarian tissues during estrus and anestrus in Tan sheep. Front. Vet. Sci. 2022, 9, 1068882. [Google Scholar] [CrossRef]
- Nimmi, W.; Robert, H.; Craig, A.; Tracy, B. The roles of GnRH in the human central nervous system. Horm. Behav. 2022, 145, 105230. [Google Scholar] [CrossRef]
- Ren, Q.L.; Zhang, J.Q.; Lu, D.F.; Wang, J.; Chen, J.; Ma, Q.; Bai, X.X.; Guo, H.X.; Gao, B.W.; Xing, B.S. Comparison and analysis of lincRNAs expression profile in the hypothalamic-pituitary-ovarian axis of anestrous and estrous primiparous sows. Hereditas 2020, 42, 15. [Google Scholar]
- De Miera, C.S.; Monecke, S.; Bartzen-Sprauer, J.; Laran-Chich, M.P.; Pévet, P.; Hazlerigg, D.G.; Simonneaux, V. A circannual clock drives expression of genes central for seasonal reproduction. Curr. Biol. 2014, 24, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Nandi, S.; Iquebal, M.A.; Jasrotia, R.S.; Patra, S.; Mishra, G.; Udit, U.K.; Sahu, D.K.; Angadi, U.B.; Meher, P.K.; et al. Revelation of candidate genes and molecular mechanism of reproductive seasonality in female rohu (Labeo rohita Ham.) by RNA sequencing. BMC Genom. 2021, 22, 685. [Google Scholar] [CrossRef]
- Yao, W.; Wang, D.H.; Zhang, Y.Z. Research advances in endogenous annual clock and photosensitive neural circuitry regulating seasonal breeding in mammals. Chin. J. Zool. 2017, 52, 717–725. [Google Scholar]
- Kang, A.; Baohui, Y.; Yukun, K.; Mingfang, B.; Yuchen, T.; Qiangsheng, P.; Junhu, S. Seasonal Expression of Gonadotropin Genes in the Pituitary and Testes of Male Plateau Zokor (Eospalax baileyi). Animals 2022, 12, 275. [Google Scholar] [CrossRef]
- Li, Y.W.; Lu, J.Q.; Wang, Z.L. Complete mitochondrial genome of Manchurian Zokor (Myospalax psilurus). Mitochondrial DNA A DNA Mapp. Seq. Anal. 2015, 27, 1461–1462. [Google Scholar] [CrossRef]
- Fu, H.P.; Yuan, S.; Man, D.H.; Chai, X.X.; Yang, S.W.; Bao, D.H.; Wu, X.D. The burrow behavior and influenced factors of a prairie subterranean zokor (Myospalax psilurus). Ecol. Evol. 2019, 8, 12773–12779. [Google Scholar] [CrossRef]
- Man, D.H.; Yuan, S.; Yang, S.W.; Ji, Y.; Chao, K.T.; Wei, J.; Fu, H.P.; Wu, X.D. Activity intensity of Manchurian zokor and its relationship with soil temperature and humidity. Acta Theriol. Sin. 2021, 41, 441–450. [Google Scholar]
- Zhong, Y.; Di, R.; Yang, Y.; Liu, Q.; Chu, M. Transcriptome Analysis of Neuroendocrine Regulation of Ovine Hypothalamus-Pituitary-Ovary Axis during Ovine Anestrus and the Breeding Season. Genes 2021, 12, 1861. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Ye, W.; Liu, J.; Zhou, L.; Song, Y. The Emerging Key Role of Klotho in the Hypothalamus-Pituitary-Ovarian Axis. Reprod. Sci. 2020, 28, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Prunier, A.; Quesnel, H. Nutritional influences on the hormonal control of reproduction in female pigs. Livest. Prod. Sci. 2000, 63, 1–16. [Google Scholar] [CrossRef]
- Yuan, X.L.; Zhang, Z.; Li, B.; Gao, N.; Zhang, H.; Sangild, P.T.; Li, J.Q. Genome-wide DNA methylation analysis of the porcine hypothalamus-pituitary-ovary axis. Sci. Rep. 2017, 7, 4277. [Google Scholar] [CrossRef]
- Rory, S.; Marta, G.; James, H. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Hrdlickova, R.; Toloue, M.; Tian, B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 2017, 8, e1364. [Google Scholar] [CrossRef]
- Wang, W.M.; Hu, T.X.; Li, F.D.; Ma, Y.J.; Fan, H.Y.; Pan, X.Y. Genome-wide transcriptome profiling in ovaries of small-tail Han sheep during the follicular and luteal phases of the oestrous cycle. Anim. Reprod. Sci. 2018, 197, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Ungaro, A.; Pech, N.; Martin, J.F.; McCairns, R.S.; Mévy, J.P.; Gilles, A. Challenges and advances for transcriptome assembly in non-model species. PLoS ONE 2017, 12, e0185020. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Y.; Li, C.; Li, X.; Ni, W.; Yao, R.; Xu, Y.; Quan, R.; Li, H.; Zhang, M.; Liu, L.; et al. Identification and Profiling of Pituitary microRNAs of Sheep during Anestrus and Estrus Stages. Animals 2020, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.L.; He, W.; Lopez, J.A.; Bedenbaugh, M.N.; McCosh, R.B.; Bowdridge, E.C.; Coolen, L.M.; Lehman, M.N.; Hileman, S.M. Evidence That the LH Surge in Ewes Involves Both Neurokinin B-Dependent and -Independent Actions of Kisspeptin. Endocrinology 2019, 160, 2990–3000. [Google Scholar] [CrossRef]
- Lavalle, S.N.; Chou, T.; Hernandez, J.; Naing, N.C.P.; Tonsfeldt, K.J.; Hoffmann, H.M.; Mellon, P.L. Kiss1 is differentially regulated in male and female mice by the homeodomain transcription factor VAX1. Mol. Cell. Endocrinol. 2021, 534, 111358. [Google Scholar] [CrossRef]
- Tao, Z.; Song, W.; Zhu, C.; Xu, W.; Liu, H.; Zhang, S.; Huifang, L. Comparative transcriptomic analysis of high and low egg-producing duck ovaries. Poult. Sci. 2017, 96, 4378–4388. [Google Scholar] [CrossRef]
- Yan, X.; Liu, H.; Hu, J.; Han, X.; Qi, J.; Ouyang, Q.; Hu, B.; He, H.; Li, L.; Wang, J.; et al. Transcriptomic analyses of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with egg production in ducks. BMC Genom. 2022, 23, 281. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.; Han, K.; Zhang, X.; Zhang, G.; Dai, G.; Wang, J.; Xie, K. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Anim. Reprod. Sci. 2019, 208, 106114. [Google Scholar] [CrossRef]
- Chen, H.; Feng, W.; Chen, K.; Qiu, X.; Xu, H.; Mao, G.; Zhao, T.; Ding, Y.; Wu, X. Transcriptomic analysis reveals potential mechanisms of toxicity in a combined exposure to dibutyl phthalate and diisobutyl phthalate in zebrafish (Danio rerio) ovary. Aquat. Toxicol. 2019, 216, 105290. [Google Scholar] [CrossRef]
- Yong, Y.J.; Mei, L.C.; Wen, P.J.; Shi, L.L.; Shun, C.; Jian, B.Z.; Zhi, M.G. Identification of reproduction-related genes and pathways in the Culter alburnus H-P-G axis and characterization of their expression differences in malformed and normal gynogenetic ovaries. Fish Physiol. Biochem. 2020, 47, 1–20. [Google Scholar]
- Xu, S.; Wang, D.; Zhou, D.; Lin, Y.; Che, L.; Fang, Z.; Wu, D. Reproductive Hormone and Transcriptomic Responses of Pituitary Tissue in Anestrus Gilts Induced by Nutrient Restriction. PLoS ONE 2015, 10, e0143219. [Google Scholar] [CrossRef]
- Su, F.; Guo, X.; Wang, Y.; Wang, Y.; Cao, G.; Jiang, Y. Genome-Wide Analysis on the Landscape of Transcriptomes and Their Relationship With DNA Methylomes in the Hypothalamus Reveals Genes Related to Sexual Precocity in Jining Gray Goats. Front. Endocrinol. 2018, 9, 501. [Google Scholar] [CrossRef]
- Yamada, M.; Shibusawa, N.; Ishii, S.; Horiguchi, K.; Umezawa, R.; Hashimoto, K.; Monden, T.; Satoh, T.; Hirato, J.; Mori, M. Prolactin secretion in mice with thyrotropin-releasing hormone deficiency. Endocrinology 2006, 147, 2591–2596. [Google Scholar] [CrossRef]
- Zhao, G.K.; Zheng, Y.; Guo, H.X.; Wang, H.Q.; Ji, Z.H.; Wang, T.; Yu, S.; Zhang, J.B.; Yuan, B.; Ren, W.Z. TRH Regulates the Synthesis and Secretion of Prolactin in Rats with Adenohypophysis through the Differential Expression of miR-126a-5p. Int. J. Mol. Sci. 2022, 23, 15914. [Google Scholar] [CrossRef]
- Omprakash, S.; Devraj, S.; Saptarsi, M.; Anal, K.; Ronald, M.L.; Praful, S.S. TRH and NPY Interact to Regulate Dynamic Changes in Energy Balance in the Male Zebra Finch. Endocrinology 2022, 164, bqac195. [Google Scholar] [CrossRef]
- Baver, S.B.; Hope, K.; Guyot, S.; Bjørbaek, C.; Kaczorowski, C.; O’Connell, K.M. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. Neuroscience 2014, 34, 5486–5496. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, G.; Wei, W.; Zhang, Y.; Li, X.; Yang, D. Mechanism of Leptin on Impaired Ovarian Reserve Function After Cold Exposure in Female Rats. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Lam, B.Y.H.; Williamson, A.; Finer, S.; Day, F.R.; Tadross, J.A.; Gonçalves Soares, A.; Wade, K.; Sweeney, P.; Bedenbaugh, M.N.; Porter, D.T.; et al. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 2021, 599, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Rajae, T.; Victor, M.N. Novel insights into the metabolic action of Kiss1 neurons. Endocr. Connect. 2020, 9, R124–R133. [Google Scholar] [CrossRef] [PubMed]
- Yufu, T.; Yibing, Z.; Chunhui, W.; Zhongyi, S.; Longfei, L.; Shuqun, C.; Wenping, Z. Overexpression of PCK1 Gene Antagonizes Hepatocellular Carcinoma Through the Activation of Gluconeogenesis and Suppression of Glycolysis Pathways Cell Physiol Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 47, 344–355. [Google Scholar]
- McCosh, R.B.; Kreisman, M.J.; Tian, K.; Ho, B.S.; Thackray, V.G.; Breen, K.M. Insulin-induced hypoglycaemia suppresses pulsatile luteinising hormone secretion and arcuate Kiss1 cell activation in female mice. J. Neuroendocrinol. 2019, 31, e12813. [Google Scholar] [CrossRef]
- Takeshi, I.; Toshiya, M.; Kiyohito, Y.; Yiliyasi, M.; Rie, Y.; Yuri, Y.; Akira, K.; Minoru, I. Effects of Low Energy Availability on Reproductive Functions Their Underlying Neuroendocrine Mechanisms. J. Clin. Med. 2018, 7, 166. [Google Scholar] [CrossRef]
- Takayasu, S.; Sakurai, T.; Iwasaki, S.; Teranishi, H.; Yamanaka, A.; Williams, S.C.; Iguchi, H.; Kawasawa, Y.I.; Ikeda, Y.; Sakakibara, I.; et al. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 7438–7443. [Google Scholar] [CrossRef]
- Ryuichi, M.; Hideki, S.; Tatsuya, U.; Makoto, I.; Yuki, T.; Masao, M.; Akane, I.; Akio, K.; Hisashi, I. RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. Endocrinology 2006, 147, 2916–2922. [Google Scholar] [CrossRef] [PubMed]
- Raphaëlle, Q.; Safia, A.; Frédéric, B.; Khadija, E.; Brigitte, I.; Frédéric, S. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol. Ther. 2016, 160, 84–132. [Google Scholar] [CrossRef]
- Tamara, G.; Peter, W.; Alexandra, K.; Walter, B. Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22, 2308–2341. [Google Scholar]
- Michael, A.C.; Hoonkyo, S.; Tord, A.H.; Jacques, D.; Sally, A.C.; Philip, J.G. PITX genes are required for cell survival and Lhx3 activation. Mol. Endocrinol. 2005, 19, 1893–1903. [Google Scholar] [CrossRef]
- Ryota, T.; Daiki, N.; Masato, I.; Keisuke, M.; Titaree, L.; Shiro, K.; Mitsumori, K. Parallel expression patterns of NR4A nuclear receptor family genes in the pituitary gland of proestrus rats. Reprod. Dev. 2024, 70, 115–122. [Google Scholar]
- Khushnooda, R.; Bassam, B.-A.; Lolwa, A.-J.; Rabab, A.; Mohammed, A.-O.; Faiqa, I. Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss. BMC Endocr. Disord. 2017, 17, 17. [Google Scholar] [CrossRef]
- Rachel, D.M.; Stephanie, C.C.; Chad, S.H.; Jesse, J.S.; Emily, C.W.; Amrit, P.S.B.; Svetlana, T.; Johannes, W.; Roland, W.P.; Simon, J.R. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol. Cell. Endocrinol. 2007, 264, 190–195. [Google Scholar] [CrossRef]
- McQuillan, H.J.; Clarkson, J.; Kauff, A.; Han, S.Y.; Yip, S.H.; Cheong, I.; Porteous, R.; Heather, A.K.; Herbison, A.E. Definition of the estrogen negative feedback pathway controlling the GnRH pulse generator in female mice. Nat. Commun. 2022, 13, 7433. [Google Scholar] [CrossRef]
- Karine, R. Genetic regulation of murine pituitary development. Mol. Endocrinol. 2015, 54, R55–R73. [Google Scholar]
- Yoshihiro, O.; Taro, C.; Satoyo, Y.; Shoichi, I.; Toshinori, T.; Takahisa, F. Identification of GProtein-Coupled Receptors (GPCRs) in Primary Cilia Their Possible Involvement in Body Weight Control. PLoS ONE 2015, 10, e0128422. [Google Scholar]
- Xi, Q.; Pauer, G.J.; Ball, S.L.; Rayborn, M.; Hollyfield, J.G.; Peachey, N.S.; Crabb, J.W.; Hagstrom, S.A. Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2837–2844. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Y. Research advances in the role molecular mechanisms of Prostaglandin E2 during ovulation. Chin. J. Clin. Med. 2020, 27, 515–519. [Google Scholar]
- Hizaki, H.; Segi, E.; Sugimoto, Y.; Hirose, M.; Saji, T.; Ushikubi, F.; Matsuoka, T.; Noda, Y.; Tanaka, T.; Yoshida, N.; et al. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc. Natl. Acad. Sci. USA 1999, 96, 10501–10506. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Hao, X.; Cui, Y.; Huang, F.; Zhang, X.; Sun, Y.; Hao, T.; Wang, Z.; Xia, W.; Su, Y.; et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022, 13, 963. [Google Scholar] [CrossRef] [PubMed]
- Christopher, J.G.; Elizabeth, R.-B.; Mattias, L.; Anne, L.T.; Phillip, O.M.; Tracy, A.W.; Panagiota, Z.; Donald, M.; Ian, S.; Nicos, A.N.; et al. SOCS2 negatively regulates growth hormone action in vitro and in vivo. Clin. Investig. 2005, 115, 397–406. [Google Scholar]
- Li, J. Molecular Mechanism of NR1D1 in Regulating Estrogen Synthesis in Porcine Ovarian Granulosa Cells. Master’s Thesis, Northwest A&F University, Xianyang, China, 2020. [Google Scholar]
- Du, Y. Photoreception in the Visual System of Gansu Zokor (Eospalax cansus). Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2005. [Google Scholar]
- Nikkola, V.; Miettinen, M.E.; Karisola, P.; Grönroos, M.; Ylianttila, L.; Alenius, H.; Snellman, E.; Partonen, T. Ultraviolet B radiation modifies circadian time in epidermal skin and in subcutaneous adipose tissue. Photodermatol. Photoimmunol. Photomed. 2018, 35, 157–163. [Google Scholar] [CrossRef]
- Burns, J.N.; Jenkins, A.K.; Xue, X.; Petersen, K.A.; Ketchesin, K.D.; Perez, M.S.; Vadnie, C.A.; Scott, M.R.; Seney, M.L.; Tseng, G.C.; et al. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. Front. Neurosci. 2025, 18, 1524615. [Google Scholar] [CrossRef]
- Chu, L.W.; Till, C.; Yang, B.; Tangen, C.M.; Goodman, P.J.; Yu, K.; Zhu, Y.; Han, S.; Hoque, A.M.; Ambrosone, C.; et al. Circadian genes and risk of prostate cancer in the prostate cancer prevention trial. Mol. Carcinog. 2018, 57, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Erica, F.S.; Christine, B.; Niels, J.D.; Bart, K.; Jakob, C.M. Genetic Correlates of Individual Differences in Sleep Behavior of Free-Living Great Tits (Parus major). G3 2016, 6, 599–607. [Google Scholar]
- Peng, L.U.; Bai, G.; Pang, Y. PJABBS: Roles of NPAS2 in circadian rhythm and disease. Acta Biochim. Biophys. Sin. 2021, 53, 1257–1265. [Google Scholar] [CrossRef]
- Sung, H.; Frank, H.Y.; Michael, D.S.; Jonathan, D.L.; Martha, M.B.; James, B.H.; William, A.C.; Horacio, O. dlI: Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms. Proc. Natl. Acad. Sci. USA 2012, 109, E368–E377. [Google Scholar]
- Christopher, S.C. Linking neural activity and molecular oscillations in the SCN. Nat. Rev. Neurosci. 2011, 12, 553–569. [Google Scholar] [CrossRef]
- Beatriz, B.; Prashiela, M.; Anke, C.S. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front. Mol. Biosci. 2022, 9, 873777. [Google Scholar] [CrossRef]
- Avivi, A.; Albrecht, U.; Oster, H.; Joel, A.; Beiles, A.; Nevo, E. Biological clock in total darkness: The Clock/MOP3 circadian system of the blind subterranean mole rat. Proc. Natl. Acad. Sci. USA 2001, 98, 13751–13756. [Google Scholar] [CrossRef]
- Kalina, T.J.D.; Nigel, C.B.; Georgia, T.; Stephen, J.R.; Christopher, G.F. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis. Mol. Biol. Evolut. 2015, 32, 3089–3107. [Google Scholar]
- Sun, H. Comparative Study on Circadian Rhythm Regulation Mechanisms in Brandt’s Vole (Lasiopodomys brandtii) and Mandarin Vole (Lasiopodomys mandarinus). Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2019. [Google Scholar]




| Sample | Raw_Reads | Valid_Reads | Valid% | Q20% | Q30% | GC% | 
|---|---|---|---|---|---|---|
| HA_1 | 39,659,208 | 38,577,930 | 97.27 | 98.28 | 94.91 | 47.55 | 
| HA_2 | 40,108,460 | 39,110,952 | 97.51 | 98.31 | 94.91 | 47.40 | 
| HA_3 | 45,233,794 | 44,191,340 | 97.70 | 98.48 | 95.34 | 47.21 | 
| HA_4 | 43,329,156 | 42,210,708 | 97.42 | 98.33 | 94.97 | 47.62 | 
| HA_5 | 37,622,004 | 36,528,498 | 97.09 | 98.18 | 94.54 | 47.81 | 
| HE_1 | 42,220,284 | 41,172,088 | 97.52 | 98.33 | 94.96 | 47.51 | 
| HE_2 | 44,554,920 | 43,525,226 | 97.69 | 98.54 | 95.52 | 47.36 | 
| HE_3 | 34,298,706 | 33,402,070 | 97.39 | 98.09 | 94.39 | 48.13 | 
| HE_4 | 42,184,640 | 41,217,140 | 97.71 | 98.24 | 94.72 | 48.13 | 
| HE_5 | 40,441,964 | 39,401,858 | 97.43 | 98.33 | 95.05 | 47.78 | 
| OA_1 | 42,236,070 | 41,343,484 | 97.89 | 98.42 | 95.22 | 48.07 | 
| OA_2 | 40,477,686 | 39,551,868 | 97.71 | 98.37 | 95.15 | 48.84 | 
| OA_3 | 44,373,928 | 43,408,348 | 97.82 | 98.47 | 95.38 | 49.11 | 
| OA_4 | 41,722,314 | 40,773,392 | 97.73 | 98.40 | 95.15 | 48.35 | 
| OA_5 | 43,050,446 | 41,998,778 | 97.56 | 98.47 | 95.40 | 47.86 | 
| OE_1 | 46,817,224 | 45,654,450 | 97.52 | 98.48 | 95.42 | 48.97 | 
| OE_2 | 44,016,598 | 43,024,650 | 97.75 | 98.42 | 95.23 | 48.36 | 
| OE_3 | 41,430,944 | 40,403,572 | 97.52 | 98.36 | 95.09 | 48.43 | 
| OE_4 | 42,306,882 | 41,298,450 | 97.62 | 98.33 | 94.98 | 48.20 | 
| OE_5 | 40,895,868 | 39,921,076 | 97.62 | 98.35 | 95.03 | 48.35 | 
| PA_1 | 40,961,408 | 39,822,102 | 97.22 | 98.13 | 94.33 | 47.12 | 
| PA_2 | 40,893,564 | 39,866,926 | 97.49 | 98.35 | 94.93 | 47.96 | 
| PA_3 | 34,333,216 | 33,316,172 | 97.04 | 98.13 | 94.36 | 47.52 | 
| PA_4 | 41,997,552 | 40,841,310 | 97.25 | 98.34 | 94.96 | 47.41 | 
| PA_5 | 40,709,220 | 39,739,488 | 97.62 | 98.35 | 95.02 | 47.26 | 
| PE_1 | 41,099,134 | 40,133,734 | 97.65 | 98.38 | 95.16 | 47.88 | 
| PE_2 | 41,343,140 | 40,378,170 | 97.67 | 98.32 | 94.95 | 47.68 | 
| PE_3 | 41,326,142 | 40,262,252 | 97.43 | 98.36 | 95.13 | 47.30 | 
| PE_4 | 42,633,884 | 41,645,678 | 97.68 | 98.34 | 94.93 | 47.73 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nai, R.; Li, X.; Shan, D.; Bao, S.; Wang, F.; Lin, Y.; Zhang, Y.; Hu, B.; Xie, Y.; Man, D. Molecular Characterization of Hypothalamic–Pituitary–Ovarian Axis Regulation in the Manchurian Zokor (Myospalax psilurus) During Seasonal Estrus. Genes 2025, 16, 1289. https://doi.org/10.3390/genes16111289
Nai R, Li X, Shan D, Bao S, Wang F, Lin Y, Zhang Y, Hu B, Xie Y, Man D. Molecular Characterization of Hypothalamic–Pituitary–Ovarian Axis Regulation in the Manchurian Zokor (Myospalax psilurus) During Seasonal Estrus. Genes. 2025; 16(11):1289. https://doi.org/10.3390/genes16111289
Chicago/Turabian StyleNai, Rile, Xueru Li, Dan Shan, Saru Bao, Fei Wang, Yuerong Lin, Yan Zhang, Buqin Hu, Yuchun Xie, and Duhu Man. 2025. "Molecular Characterization of Hypothalamic–Pituitary–Ovarian Axis Regulation in the Manchurian Zokor (Myospalax psilurus) During Seasonal Estrus" Genes 16, no. 11: 1289. https://doi.org/10.3390/genes16111289
APA StyleNai, R., Li, X., Shan, D., Bao, S., Wang, F., Lin, Y., Zhang, Y., Hu, B., Xie, Y., & Man, D. (2025). Molecular Characterization of Hypothalamic–Pituitary–Ovarian Axis Regulation in the Manchurian Zokor (Myospalax psilurus) During Seasonal Estrus. Genes, 16(11), 1289. https://doi.org/10.3390/genes16111289
 
         
                                                
 
       