Complete Mitochondrial Genome and Phylogenetic Analysis of Turdus pallidus (Passeriformes, Turdidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Methods
2.2.1. Genomic DNA Extraction and Quality Control
2.2.2. High-Throughput Sequencing and Genome Assembly
2.2.3. Annotation and Visualization
2.2.4. Phylogenetic Analysis
3. Results
3.1. General Features and Protein-Coding Gene Organization of the T. pallidus Mitochondrial Genome
3.2. Codon Usage and Synonymous Codon Bias
3.3. Characteristics and Secondary Structures of Mitochondrial tRNA Genes
3.4. Characteristics and Secondary Structures of Mitochondrial rRNA Genes
3.5. Phylogenetic Relationships of T. pallidus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batista, R.; Olsson, U.; Andermann, T.; Aleixo, A.; Ribas, C.C.; Antonelli, A. Phylogenomics and biogeography of the world’s thrushes (Aves, Turdus): New evidence for a more parsimonious evolutionary history. Proc. R. Soc. B 2020, 287, 20192400. [Google Scholar] [CrossRef]
- Rehling, F.; Jongejans, E.; Schlautmann, J.; Albrecht, J.; Fassbender, H.; Jaroszewicz, B.; Matthies, D.; Waldschmidt, L.; Farwig, N.; Schabo, D.G. Common Seed Dispersers Contribute Most to the Persistence of a Fleshy-Fruited Tree. Commun. Biol. 2023, 6, 330. [Google Scholar] [CrossRef]
- Nagy, J.; Végvári, Z.; Varga, Z. Phylogeny, migration and life history: Filling the gaps in the origin and biogeography of the Turdus thrushes. J. Ornithol. 2019, 160, 529–543. [Google Scholar] [CrossRef]
- Vazquez, M.S.; La Sala, L.F.; Scorolli, A.L.; Caruso, N.C.; Zalba, S.M. Pushing the boundaries: Actual and potential distribution of thrushes expanding their ranges in South America. Sci. Rep. 2024, 14, 17587. [Google Scholar] [CrossRef]
- Brust, V.; Michalik, B.; Hüppop, O. To cross or not to cross—Thrushes at the German North Sea coast adapt flight and routing to wind conditions in autumn. Mov. Ecol. 2019, 7, 32. [Google Scholar] [CrossRef]
- Chiatante, G.; Meriggi, A. Habitat use of the mistle thrush (Turdus viscivorus) in central Apulia, Italy. J. Vertebr. Biol. 2022, 71, 22041. [Google Scholar] [CrossRef]
- Clement, P.; Hathway, R.; Byers, C.; Wilczur, J. Thrushes; Princeton University Press: London, UK, 2001. [Google Scholar]
- Fitzgerald, A.M.; Weir, J.; Ralston, J.; Warkentin, I.G.; Whitaker, D.M.; Kirchman, J.J. Genetic Structure and Biogeographic History of the Bicknell’s Thrush/Gray-Cheeked Thrush Species Complex. Auk 2020, 137, ukz066. [Google Scholar] [CrossRef]
- Reeve, A.H.; Gower, G.; Pujolar, J.M.; Smith, B.T.; Petersen, B.; Olsson, U.; Haryoko, T.; Koane, B.; Maiah, G.; Blom, M.P.K.; et al. Population genomics of the island thrush elucidates one of earth’s great archipelagic radiations. Evol. Lett. 2023, 7, 24–36. [Google Scholar] [CrossRef]
- Voelker, G.; Rohwer, S.; Bowie, R.C.K.; Outlaw, D.C. Molecular systematics of a speciose, cosmopolitan songbird genus: Defining the limits of, and relationships among, the Turdus thrushes. Mol. Phylogenet. Evol. 2007, 42, 422–434. [Google Scholar] [CrossRef]
- Klicka, J.; Voelker, G.; Spellman, G.M. A molecular phylogenetic analysis of the “true thrushes” (Aves: Turdinae). Mol. Phylogenet. Evol. 2005, 34, 486–500. [Google Scholar] [CrossRef]
- Pan, Q.-W.; Lei, F.-M.; Yin, Z.-H.; Krištín, A.; Kanuch, P. Phylogenetic relationships between Turdus species: Mitochondrial cytochrome b gene analysis. Ornis Fenn. 2007, 84, 1–11. Available online: https://ornisfennica.journal.fi/article/view/133674 (accessed on 19 August 2025).
- Lovette, I.J.; Bermingham, E. c-mos variation in songbirds: Molecular evolution, phylogenetic implications, and comparisons with mitochondrial differentiation. Mol. Biol. Evol. 2000, 17, 1569–1577. [Google Scholar] [CrossRef]
- Barker, F.K.; Barrowclough, G.F.; Groth, J.G. A phylogenetic hypothesis for passerine birds: Taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc. R. Soc. B 2002, 269, 295–308. [Google Scholar] [CrossRef]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]
- Sangster, G.; Luksenburg, J.A. Sharp increase of problematic mitogenomes of birds: Causes, effects and remedies. Genome Biol. Evol. 2021, 13, evab210. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics: Cambridge, UK, 2010; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 19 August 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, Version 1.4.4; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 19 August 2025).
- Sharp, P.M.; Li, W.H. The codon adaptation index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Fonseca, M.M.; Harris, D.J.; Posada, D. The inversion of the control region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PLoS ONE 2014, 9, e106654. [Google Scholar] [CrossRef]
- Peng, L.-F.; Yang, D.-C.; Lu, C.-H. Complete mitochondrial genome sequence of Eurasian blackbird, Turdus merula (Aves: Turdidae). Mitochondrial DNA A 2016, 27, 4609–4610. [Google Scholar] [CrossRef]
- Li, B.; Zhou, L.; Liu, G.; Gu, C. Complete mitochondrial genome of Naumann’s thrush Turdus naumanni (Passeriformes: Turdidae). Mitochondrial DNA A 2016, 27, 1117–1118. [Google Scholar] [CrossRef]
- Gou, X.; Li, S.; Su, H. The complete mitochondrial genome of the black breasted thrush, Turdus dissimilis (Passeriformes: Turdidae). Mitochondrial DNA B 2024, 9, 1298–1301. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Zhang, H.; Gou, X.; Li, S.; Wang, C.; Peng, C.; Hu, C.; Zhang, M.; Yu, L.; Su, H. Complete mitochondrial genome of black drongo Dicrurus macrocercus (Passeriformes: Dicruridae) and phylogenetic analyses. Mitochondrial DNA B 2021, 6, 2442–2444. [Google Scholar] [CrossRef]
- Mo, R.; Zhu, D.; Sun, J.; Yuan, Q.; Guo, F.; Duan, Y. Molecular identification and phylogenetic analysis of the mitogenome in endangered giant nuthatch Sitta magna (Passeriformes, Sittidae). Heliyon 2024, 10, e30513. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding gene boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Skorupski, J. Characterisation of the complete mitochondrial genome of critically endangered Mustela lutreola (Carnivora: Mustelidae) and its phylogenetic and conservation implications. Genes 2022, 13, 125. [Google Scholar] [CrossRef]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar] [CrossRef]
- Gibb, G.C.; England, R.; Hartig, G.; McLenachan, P.A.; Taylor Smith, B.L.; McComish, B.J.; Cooper, A.; Penny, D. New Zealand passerines help clarify the diversification of major songbird lineages during the Oligocene. Genome Biol. Evol. 2015, 7, 2983–2995. [Google Scholar] [CrossRef]
- Hou, R.; Zhang, Q.; Duan, M.; Tang, S.; Liu, S.; Jiang, D.; Du, C.; Yang, X. Characterization of the complete mitochondrial genome of Monticola rufiventris and phylogenetic implications. Sci. Rep. 2025, 15, 18449. [Google Scholar] [CrossRef]
- Ding, H.; Bi, D.; Han, S.; Yi, R.; Zhang, S.; Ye, Y.; Gao, J.; Yang, J.; Kan, X. Mitogenomic codon usage patterns of superfamily Certhioidea (Aves, Passeriformes): Insights into asymmetrical bias and phylogenetic implications. Animals 2022, 13, 96. [Google Scholar] [CrossRef]
- Jia, W.; Higgs, P.G. Codon usage in mitochondrial genomes: Distinguishing context-dependent mutation from translational selection. Mol. Biol. Evol. 2008, 25, 339–351. [Google Scholar] [CrossRef]
- Sonongbua, J.; Thong, T.; Panthum, T.; Budi, T.; Singchat, W.; Kraichak, E.; Chaiyes, A.; Muangmai, N.; Duengkae, P.; Sitdhibutr, R.; et al. Insights into Mitochondrial Rearrangements and Selection in Accipitrid Mitogenomes, with New Data on Haliastur indus and Accipiter badius poliopsis. Genes 2024, 15, 1439. [Google Scholar] [CrossRef]
- Nylander, J.A.A.; Olsson, U.; Alström, P.; Sanmartín, I. Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal–vicariance analysis of the thrushes (Aves: Turdus). Syst. Biol. 2008, 57, 257–268. [Google Scholar] [CrossRef]





| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Q.; Tang, Y.; Zhao, X.; Xue, X.; Chen, Y.; Huang, Y. Complete Mitochondrial Genome and Phylogenetic Analysis of Turdus pallidus (Passeriformes, Turdidae). Genes 2025, 16, 1284. https://doi.org/10.3390/genes16111284
Zhan Q, Tang Y, Zhao X, Xue X, Chen Y, Huang Y. Complete Mitochondrial Genome and Phylogenetic Analysis of Turdus pallidus (Passeriformes, Turdidae). Genes. 2025; 16(11):1284. https://doi.org/10.3390/genes16111284
Chicago/Turabian StyleZhan, Qingbin, Yin Tang, Xiaoyan Zhao, Xiaoming Xue, Yunxia Chen, and Yalin Huang. 2025. "Complete Mitochondrial Genome and Phylogenetic Analysis of Turdus pallidus (Passeriformes, Turdidae)" Genes 16, no. 11: 1284. https://doi.org/10.3390/genes16111284
APA StyleZhan, Q., Tang, Y., Zhao, X., Xue, X., Chen, Y., & Huang, Y. (2025). Complete Mitochondrial Genome and Phylogenetic Analysis of Turdus pallidus (Passeriformes, Turdidae). Genes, 16(11), 1284. https://doi.org/10.3390/genes16111284
 
        
