CBFB::MYH11 Fusion Located on a Supernumerary Ring Chromosome 16 in Pediatric Acute Myeloid Leukemia: Diagnostic Challenges and Prognostic Implications
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolouri, H.; Farrar, J.E.; Triche, T., Jr.; Ries, R.E.; Lim, E.L.; Alonzo, T.A.; Ma, Y.; Moore, R.; Mungall, A.J.; Marra, M.A.; et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 2018, 24, 103–112. [Google Scholar] [CrossRef]
- Speck, N.A.; Gilliland, D.G. Core-binding factors in haematopoiesis and leukaemia. Nat. Rev. Cancer 2002, 2, 502–513. [Google Scholar] [CrossRef]
- Liu, P.; Tarle, S.A.; Hajra, A.; Claxton, D.F.; Marlton, P.; Freedman, M.; Siciliano, M.J.; Collins, F.S. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993, 261, 1041–1044. [Google Scholar] [CrossRef]
- Hyde, R.K.; Kamikubo, Y.; Anderson, S.; Kirby, M.; Alemu, L.; Zhao, L.; Liu, P.P. Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 2010, 115, 1433–1443. [Google Scholar] [CrossRef]
- Hyde, R.K.; Zhao, L.; Alemu, L.; Liu, P.P. Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia 2015, 29, 1771–1778. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.P.; Sun, S.J.; Gao, Y.; Ai, Y.; Chen, X.; Sun, Y.; Zhou, M.; Liu, Y.; Xiong, Y.; et al. CBFB-MYH11 Fusion Sequesters RUNX1 in Cytoplasm to Prevent DNMT3A Recruitment to Target Genes in AML. Front. Cell Dev. Biol. 2021, 9, 675424. [Google Scholar] [CrossRef]
- Benicio, M.T.L.; Ribeiro, A.F.T.; Americo, A.D.; Furtado, F.M.; Gloria, A.B.; Lima, A.S.; Santos, S.M.; Xavier, S.G.; Lucena-Araujo, A.R.; Fagundes, E.M.; et al. Evaluation of the European LeukemiaNet recommendations for predicting outcomes of patients with acute myeloid leukemia treated in low- and middle-income countries (LMIC): A Brazilian experience. Leuk. Res. 2017, 60, 109–114. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Hospital, M.A.; Prebet, T.; Bertoli, S.; Thomas, X.; Tavernier, E.; Braun, T.; Pautas, C.; Perrot, A.; Lioure, B.; Rousselot, P.; et al. Core-binding factor acute myeloid leukemia in first relapse: A retrospective study from the French AML Intergroup. Blood 2014, 124, 1312–1319. [Google Scholar] [CrossRef]
- Shurtleff, S.A.; Meyers, S.; Hiebert, S.W.; Raimondi, S.C.; Head, D.R.; Willman, C.L.; Wolman, S.; Slovak, M.L.; Carroll, A.J.; Behm, F.; et al. Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 1995, 85, 3695–3703. [Google Scholar] [CrossRef]
- van der Reijden, B.A.; Lombardo, M.; Dauwerse, H.G.; Giles, R.H.; Muhlematter, D.; Bellomo, M.J.; Wessels, H.W.; Beverstock, G.C.; van Ommen, G.J.; Hagemeijer, A.; et al. RT-PCR diagnosis of patients with acute nonlymphocytic leukemia and inv(16)(p13q22) and identification of new alternative splicing in CBFB-MYH11 transcripts. Blood 1995, 86, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Schwind, S.; Edwards, C.G.; Nicolet, D.; Mrozek, K.; Maharry, K.; Wu, Y.Z.; Paschka, P.; Eisfeld, A.K.; Hoellerbauer, P.; Becker, H.; et al. inv(16)/t(16;16) acute myeloid leukemia with non-type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations. Blood 2013, 121, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Zhang, P.; Li, H.; Ma, X.; Liu, H. Rare type I CBFbeta/MYH11 fusion transcript in primary acute myeloid leukemia with inv(16)(p13.1q22): A case report. Braz. J. Med. Biol. Res. 2021, 54, e11605. [Google Scholar] [CrossRef]
- Huang, B.J.; Smith, J.L.; Wang, Y.C.; Taghizadeh, K.; Leonti, A.R.; Ries, R.E.; Liu, Y.; Kolekar, P.; Tarlock, K.; Gerbing, R.; et al. CBFB-MYH11 fusion transcripts distinguish acute myeloid leukemias with distinct molecular landscapes and outcomes. Blood Adv. 2021, 5, 4963–4968. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.; Lan, F.; Hao, J.; Zhang, W.; Li, Y.; Yin, Y.; Huang, M.; Wu, X. Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy. Int. J. Mol. Sci. 2024, 25, 9581. [Google Scholar] [CrossRef]
- Sethapati, V.R.; Jabr, R.; Shune, L.; El Atrouni, W.; Gonzales, P.R.; Cui, W.; Golem, S. De Novo Acute Myeloid Leukemia with Combined CBFB-MYH11 and BCR-ABL1 Gene Rearrangements: A Case Report and Review of Literature. Case Rep. Hematol. 2020, 2020, 8822670. [Google Scholar] [CrossRef]
- Salter, B.; Ge, S.; Tam, A.; Demczuk, S.; Butcher, D.; McCready, E.; Khalaf, D. Concurrent BCR-ABL1 and core binding factor beta rearrangement in de novo acute myeloid leukemia: A case report and review of literature. eJHaem 2024, 5, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, W.; Beird, H.C.; Cheng, X.; Fang, H.; Tang, G.; Toruner, G.A.; Yin, C.C.; You, M.J.; Issa, G.C.; et al. PPP1R7 Is a Novel Translocation Partner of CBFB via t(2;16)(q37;q22) in Acute Myeloid Leukemia. Genes 2022, 13, 1367. [Google Scholar] [CrossRef]
- Yang, R.K.; Toruner, G.A.; Wang, W.; Fang, H.; Issa, G.C.; Wang, L.; Quesada, A.E.; Thakral, B.; Patel, K.P.; Peng, G.; et al. CBFB Break-Apart FISH Testing: An Analysis of 1629 AML Cases with a Focus on Atypical Findings and Their Implications in Clinical Diagnosis and Management. Cancers 2021, 13, 5354. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Shahswar, R.; Haferlach, T.; Walter, W.; Hutter, S.; Meggendorfer, M.; Kern, W.; Haferlach, C. Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv. 2020, 4, 5393–5401. [Google Scholar] [CrossRef]
- Fukagawa, T.; Earnshaw, W.C. The centromere: Chromatin foundation for the kinetochore machinery. Dev. Cell 2014, 30, 496–508. [Google Scholar] [CrossRef]
- Vasilyev, S.A.; Lebedev, I.N. Molecular Mechanisms of Ring Chromosome Formation and Instability. In Human Ring Chromosomes: A Practical Guide for Clinicians and Families; Li, P., Liehr, T., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Gisselsson, D. Ring chromosomes: Vicious circles at the end and beginning of life. Bioessays 2008, 30, 524–533. [Google Scholar] [CrossRef]
- Gisselsson, D.; Hoglund, M. Connecting mitotic instability and chromosome aberrations in cancer—Can telomeres bridge the gap? Semin. Cancer Biol. 2005, 15, 13–23. [Google Scholar] [CrossRef]
- Gisselsson, D.; Hakanson, U.; Stoller, P.; Marti, D.; Jin, Y.; Rosengren, A.H.; Stewenius, Y.; Kahl, F.; Panagopoulos, I. When the genome plays dice: Circumvention of the spindle assembly checkpoint and near-random chromosome segregation in multipolar cancer cell mitoses. PLoS ONE 2008, 3, e1871. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.W.; Pozdnyakova, O.; Geyer, J.T.; Dal Cin, P.; Hasserjian, R.P. Ring chromosome in myeloid neoplasms is associated with complex karyotype and disease progression. Hum. Pathol. 2017, 68, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.C.; Marconi, G.; Feenstra, J.D.M.; Fonzi, E.; Papayannidis, C.; Ghelli Luserna di Rora, A.; Padella, A.; Solli, V.; Franchini, E.; Ottaviani, E.; et al. Chromothripsis in acute myeloid leukemia: Biological features and impact on survival. Leukemia 2018, 32, 1609–1620. [Google Scholar] [CrossRef]
- Mrozek, K.; Heerema, N.A.; Bloomfield, C.D. Cytogenetics in acute leukemia. Blood Rev. 2004, 18, 115–136. [Google Scholar] [CrossRef]
- Heim, S.; Mitelman, F. Cancer Cytogenetics, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Boyd, R.J.; Murry, J.B.; Morsberger, L.A.; Klausner, M.; Chen, S.; Gocke, C.D.; McCallion, A.S.; Zou, Y.S. Ring Chromosomes in Hematological Malignancies Are Associated with TP53 Gene Mutations and Characteristic Copy Number Variants. Cancers 2023, 15, 5439. [Google Scholar] [CrossRef] [PubMed]
- Gisselsson, D.; Pettersson, L.; Hoglund, M.; Heidenblad, M.; Gorunova, L.; Wiegant, J.; Mertens, F.; Dal Cin, P.; Mitelman, F.; Mandahl, N. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. USA 2000, 97, 5357–5362. [Google Scholar] [CrossRef]
- Johansson, B.; Mertens, F.; Mitelman, F. Clinical and biological importance of cytogenetic abnormalities in childhood and adult acute lymphoblastic leukemia. Ann. Med. 2004, 36, 492–503. [Google Scholar] [CrossRef]
- Sivendran, S.; Gruenstein, S.; Malone, A.K.; Najfeld, V. Ring chromosome 18 abnormality in acute myelogenous leukemia: The clinical dilemma. J. Hematol. Oncol. 2010, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Kawamoto, S.; Kurata, K.; Kitao, A.; Mizutani, Y.; Ichikawa, H.; Yakushijin, K.; Kajimoto, K.; Hayashi, Y.; Matsuoka, H.; et al. MYC Amplification in the Form of Ring Chromosomes 8 in Acute Myeloid Leukemia with t(11;16)(q13;p11.2). Cytogenet. Genome Res. 2017, 153, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F.; Johansson, B.; Mertens, F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. Available online: https://mitelmandatabase.isb-cgc.org/result (accessed on 22 October 2025).
- Guilherme, R.S.; Meloni, V.F.; Kim, C.A.; Pellegrino, R.; Takeno, S.S.; Spinner, N.B.; Conlin, L.K.; Christofolini, D.M.; Kulikowski, L.D.; Melaragno, M.I. Mechanisms of ring chromosome formation, ring instability and clinical consequences. BMC Med. Genet. 2011, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liehr, T. The Need for a Concert of Cytogenomic Methods in Chromosomic Research and Diagnostics. Genes 2025, 16, 533. [Google Scholar] [CrossRef]
- Alawieh, D.; Cysique-Foinlan, L.; Willekens, C.; Renneville, A. RAS mutations in myeloid malignancies: Revisiting old questions with novel insights and therapeutic perspectives. Blood Cancer J. 2024, 14, 72. [Google Scholar] [CrossRef]
- Gutierrez-Abril, J.; Gundem, G.; Fiala, E.; Liosis, K.; Farnoud, N.; Leongamornlert, D.; Amallraja, A.; Arango-Ossa, J.E.; Domenico, D.; Levine, M.; et al. Supernumerary ring chromosome 1 syndrome leads to fusion-driven B-cell acute lymphoblastic leukemia in monozygotic twins. Blood Adv. 2025, 9, 2063–2067. [Google Scholar] [CrossRef] [PubMed]


| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Acquazzino, M.; Althof, P.A.; Nelson, M.; Harris, R.A.; Spaulding, J.R.; Khoury, J.D.; Tang, Z. CBFB::MYH11 Fusion Located on a Supernumerary Ring Chromosome 16 in Pediatric Acute Myeloid Leukemia: Diagnostic Challenges and Prognostic Implications. Genes 2025, 16, 1283. https://doi.org/10.3390/genes16111283
Xia C, Acquazzino M, Althof PA, Nelson M, Harris RA, Spaulding JR, Khoury JD, Tang Z. CBFB::MYH11 Fusion Located on a Supernumerary Ring Chromosome 16 in Pediatric Acute Myeloid Leukemia: Diagnostic Challenges and Prognostic Implications. Genes. 2025; 16(11):1283. https://doi.org/10.3390/genes16111283
Chicago/Turabian StyleXia, Changqing, Melissa Acquazzino, Pamela A. Althof, Marilu Nelson, Rachel A. Harris, Joanna R. Spaulding, Joseph D. Khoury, and Zhenya Tang. 2025. "CBFB::MYH11 Fusion Located on a Supernumerary Ring Chromosome 16 in Pediatric Acute Myeloid Leukemia: Diagnostic Challenges and Prognostic Implications" Genes 16, no. 11: 1283. https://doi.org/10.3390/genes16111283
APA StyleXia, C., Acquazzino, M., Althof, P. A., Nelson, M., Harris, R. A., Spaulding, J. R., Khoury, J. D., & Tang, Z. (2025). CBFB::MYH11 Fusion Located on a Supernumerary Ring Chromosome 16 in Pediatric Acute Myeloid Leukemia: Diagnostic Challenges and Prognostic Implications. Genes, 16(11), 1283. https://doi.org/10.3390/genes16111283
 
        




