Genetic Testing for Malignant Hyperthermia Susceptibility—Threading the Needle in the Haystack
Abstract
1. Introduction
2. Diagnostic Testing for MH
3. Translational Genetics of MH
4. Beyond the Operating Theater
5. Final Thoughts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guttmacher, A.E.; Collins, F.S. Welcome to the Genomic Era. N. Engl. J. Med. 2003, 349, 996–998. [Google Scholar] [CrossRef]
- Collins, F.S.; Morgan, M.; Patrinos, A. The Human Genome Project: Lessons from Large-Scale Biology. Science 2003, 300, 286–290. [Google Scholar] [CrossRef]
- Collins, F.S.; Green, E.D.; Guttmacher, A.E.; Guyer, M.S. US National Human Genome Research Institute A Vision for the Future of Genomics Research. Nature 2003, 422, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Paegel, B.M.; Emrich, C.A.; Wedemayer, G.J.; Scherer, J.R.; Mathies, R.A. High Throughput DNA Sequencing with a Microfabricated 96-Lane Capillary Array Electrophoresis Bioprocessor. Proc. Natl. Acad. Sci. USA 2002, 99, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, K.L.; Steemers, F.J.; Lee, G.; Mendoza, L.G.; Chee, M.S. A Genome-Wide Scalable SNP Genotyping Assay Using Microarray Technology. Nat. Genet. 2005, 37, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.L.; Hansen, M.S.T.; Faruqi, A.F.; Giannola, D.; Irsula, O.R.; Lasken, R.S.; Latterich, M.; Makarov, V.; Oliphant, A.; Pinter, J.H.; et al. Two Methods of Whole-Genome Amplification Enable Accurate Genotyping across a 2320-SNP Linkage Panel. Genome Res. 2004, 14, 901–907. [Google Scholar] [CrossRef]
- Steemers, F.J.; Chang, W.; Lee, G.; Barker, D.L.; Shen, R.; Gunderson, K.L. Whole-Genome Genotyping with the Single-Base Extension Assay. Nat. Methods 2006, 3, 31–33. [Google Scholar] [CrossRef]
- Miura, F.; Shibata, Y.; Miura, M.; Sangatsuda, Y.; Hisano, O.; Araki, H.; Ito, T. Highly Efficient Single-Stranded DNA Ligation Technique Improves Low-Input Whole-Genome Bisulfite Sequencing by Post-Bisulfite Adaptor Tagging. Nucleic Acids Res. 2019, 47, e85. [Google Scholar] [CrossRef]
- Koren, S.; Schatz, M.C.; Walenz, B.P.; Martin, J.; Howard, J.T.; Ganapathy, G.; Wang, Z.; Rasko, D.A.; McCombie, W.R.; Jarvis, E.D.; et al. Hybrid Error Correction and de Novo Assembly of Single-Molecule Sequencing Reads. Nat. Biotechnol. 2012, 30, 693–700. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.-W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; et al. Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. Science 2005, 310, 644–648. [Google Scholar] [CrossRef]
- Gonzaga-Jauregui, C.; Lupski, J.R.; Gibbs, R.A. Human Genome Sequencing in Health and Disease. Annu. Rev. Med. 2012, 63, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J. The Regulation of Direct-to-Consumer Genetic Tests. Hum. Mol. Genet. 2008, 17, R180–R183. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Song, L.; Clayton, E.W.; Malin, B.A. Health and Kinship Matter: Learning about Direct-to-Consumer Genetic Testing User Experiences via Online Discussions. PLoS ONE 2020, 15, e0238644. [Google Scholar] [CrossRef]
- Nelson, R. 23andMe Declares Bankruptcy. Am. J. Med. Genet. A 2025, 197, e63752. [Google Scholar] [CrossRef]
- MacLennan, D.H.; Duff, C.; Zorzato, F.; Fujii, J.; Phillips, M.; Korneluk, R.G.; Frodis, W.; Britt, B.A.; Worton, R.G. Ryanodine Receptor Gene Is a Candidate for Predisposition to Malignant Hyperthermia. Nature 1990, 343, 559–561. [Google Scholar] [CrossRef]
- McCarthy, T.V.; Healy, J.M.; Heffron, J.J.; Lehane, M.; Deufel, T.; Lehmann-Horn, F.; Farrall, M.; Johnson, K. Localization of the Malignant Hyperthermia Susceptibility Locus to Human Chromosome 19q12-13.2. Nature 1990, 343, 562–564. [Google Scholar] [CrossRef]
- Kauliñš, T.; Proñina, N.; Rüffert, H.; Wehner, M.; Mihelsons, M.; Osipova, O.; Miščuks, A. Identification of A Novel Mutation in RYR1 Gene in Malignant Hyperthermia-Like Patient’s Family Members. Proc. Latv. Acad. Sciences. Sect. B Nat. Exact. Appl. Sci. 2008, 62, 156–161. [Google Scholar] [CrossRef]
- Ibarra, M.C.A.; Wu, S.; Murayama, K.; Minami, N.; Ichihara, Y.; Kikuchi, H.; Noguchi, S.; Hayashi, Y.K.; Ochiai, R.; Nishino, I. Malignant Hyperthermia in Japan: Mutation Screening of the Entire Ryanodine Receptor Type 1 Gene Coding Region by Direct Sequencing. Anesthesiology 2006, 104, 1146–1154. [Google Scholar] [CrossRef]
- Watt, S.; McAllister, R.K. Malignant Hyperthermia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Britt, B.A. History of Malignant Hyperthermia. In Malignant Hyperthermia; Morio, M., Kikuchi, H., Yuge, O., Eds.; Springer: Tokyo, Japan, 1996; pp. 3–17. [Google Scholar]
- Glahn, K.P.E.; Ellis, F.R.; Halsall, P.J.; Müller, C.R.; Snoeck, M.M.J.; Urwyler, A.; Wappler, F. European Malignant Hyperthermia Group Recognizing and Managing a Malignant Hyperthermia Crisis: Guidelines from the European Malignant Hyperthermia Group. Br. J. Anaesth. 2010, 105, 417–420. [Google Scholar] [CrossRef]
- Rosenberg, H.; Davis, M.; James, D.; Pollock, N.; Stowell, K. Malignant Hyperthermia. Orphanet J. Rare Dis. 2007, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Larach, M.G.; Gronert, G.A.; Allen, G.C.; Brandom, B.W.; Lehman, E.B. Clinical Presentation, Treatment, and Complications of Malignant Hyperthermia in North America from 1987 to 2006. Anesth. Analg. 2010, 110, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.E.; Flewellen, E.H. Current Concepts. The Malignant Hyperthermia Syndrome. N. Engl. J. Med. 1983, 309, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, Y. Special Article: General Anesthetic Gases and the Global Environment. Anesth. Analg. 2011, 112, 213–217. [Google Scholar] [CrossRef]
- Larach, M.G.; Klumpner, T.T.; Brandom, B.W.; Vaughn, M.T.; Belani, K.G.; Herlich, A.; Kim, T.W.; Limoncelli, J.; Riazi, S.; Sivak, E.L.; et al. Succinylcholine Use and Dantrolene Availability for Malignant Hyperthermia Treatment. Anesthesiology 2019, 130, 41–54. [Google Scholar] [CrossRef]
- Harrison, G.G. Control of the Malignant Hyperpyrexic Syndrome in MHS Swine by Dantrolene Sodium. Br. J. Anaesth. 1975, 47, 62–65. [Google Scholar] [CrossRef]
- Friesen, C.M.; Brodsky, J.B.; Dillingham, M.F. Successful Use of Dantrolene Sodium in Human Malignant Hyperthermia Syndrome: A Case Report. Can. Anaesth. Soc. J. 1979, 26, 319–321. [Google Scholar] [CrossRef]
- Denborough, M.A.; Forster, J.F.; Lovell, R.R.; Maplestone, P.A.; Villiers, J.D. Anaesthetic Deaths in a Family. Br. J. Anaesth. 1962, 34, 395–396. [Google Scholar] [CrossRef]
- Allen, G.C.; Larach, M.G.; Kunselman, A.R. The Sensitivity and Specificity of the Caffeine-Halothane Contracture Test: A Report from the North American Malignant Hyperthermia Registry. The North American Malignant Hyperthermia Registry of MHAUS. Anesthesiology 1998, 88, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.M.; Rüffert, H.; Snoeck, M.M.; Girard, T.; Glahn, K.P.E.; Ellis, F.R.; Müller, C.R.; Urwyler, A. European Malignant Hyperthermia Group European Malignant Hyperthermia Group Guidelines for Investigation of Malignant Hyperthermia Susceptibility. Br. J. Anaesth. 2015, 115, 531–539. [Google Scholar] [CrossRef]
- Riazi, S.; Kraeva, N.; Muldoon, S.M.; Dowling, J.; Ho, C.; Petre, M.-A.; Parness, J.; Dirksen, R.T.; Rosenberg, H. Malignant Hyperthermia and the Clinical Significance of Type-1 Ryanodine Receptor Gene (RYR1) Variants: Proceedings of the 2013 MHAUS Scientific Conference. Can. J. Anaesth. 2014, 61, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Ording, H.; Brancadoro, V.; Cozzolino, S.; Ellis, F.R.; Glauber, V.; Gonano, E.F.; Halsall, P.J.; Hartung, E.; Heffron, J.J.; Heytens, L.; et al. In Vitro Contracture Test for Diagnosis of Malignant Hyperthermia Following the Protocol of the European MH Group: Results of Testing Patients Surviving Fulminant MH and Unrelated Low-Risk Subjects. The European Malignant Hyperthermia Group. Acta Anaesthesiol. Scand. 1997, 41, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Rueffert, H.; Olthoff, D.; Deutrich, C.; Froster, U.G. Determination of a Positive Malignant Hyperthermia (MH) Disposition without the in Vitro Contracture Test in Families Carrying the RYR1 Arg614Cys Mutation. Clin. Genet. 2001, 60, 117–124. [Google Scholar] [CrossRef]
- Pan, T.H.; Wollack, A.R.; DeMarco, J.A. Malignant Hyperthermia Associated with Enflurane Anesthesia: A Case Report. Anesth. Analg. 1975, 54, 47–49. [Google Scholar] [CrossRef]
- Shulman, M.; Braverman, B.; Ivankovich, A.D.; Gronert, G. Sevoflurane Triggers Malignant Hyperthermia in Swine. Anesthesiology 1981, 54, 259–260. [Google Scholar] [CrossRef]
- Joseph, M.M.; Shah, K.; Viljoen, J.F. Malignant Hyperthermia Associated with Isoflurane Anesthesia. Anesth. Analg. 1982, 61, 711–712. [Google Scholar] [CrossRef]
- Paterson, I.S. Generalized Myotonia Following Suxamethonium. A Case Report. Br. J. Anaesth. 1962, 34, 340–342. [Google Scholar] [CrossRef]
- Nelson, T.E.; Bedell, D.M.; Jones, E.W. Porcine Malignant Hyperthermia: Effects of Temperature and Extracellular Calcium Concentration on Halothane-Induced Contracture of Susceptible Skeletal Muscle. Anesthesiology 1975, 42, 301–306. [Google Scholar] [CrossRef]
- Britt, B.A.; Endrenyi, L.; Kalow, W.; Peters, P.L. The Adenosine Triphosphate (ATP) Depletion Test: Comparison with the Caffeine Contracture Test as a Method of Diagnosing Malignant Hyperthermia Susceptibility. Can. Anaesth. Soc. J. 1976, 23, 624–635. [Google Scholar] [CrossRef]
- Ibarra Moreno, C.A.; Hu, S.; Kraeva, N.; Schuster, F.; Johannsen, S.; Rueffert, H.; Klingler, W.; Heytens, L.; Riazi, S. An Assessment of Penetrance and Clinical Expression of Malignant Hyperthermia in Individuals Carrying Diagnostic Ryanodine Receptor 1 Gene Mutations. Anesthesiology 2019, 131, 983–991. [Google Scholar] [CrossRef]
- Yu, K.D.; Betts, M.N.; Urban, G.M.; Schwartz, M.L.B.; Robinson, T.O.; Moyer, R.J.; Taddonio, S.W.; Vasudevan, A.; Johns, A.; Sturm, A.C.; et al. Evaluation of Malignant Hyperthermia Features in Patients with Pathogenic or Likely Pathogenic RYR1 Variants Disclosed through a Population Genomic Screening Program. Anesthesiology 2024, 140, 52–61. [Google Scholar] [CrossRef]
- Brady, J.E.; Sun, L.S.; Rosenberg, H.; Li, G. Prevalence of Malignant Hyperthermia Due to Anesthesia in New York State, 2001-2005. Anesth. Analg. 2009, 109, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Rosenberg, H.; Li, G. Prevalence of Malignant Hyperthermia Diagnosis in Hospital Discharge Records in California, Florida, New York, and Wisconsin. J. Clin. Anesth. 2017, 39, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, H.; Pollock, N.; Schiemann, A.; Bulger, T.; Stowell, K. Malignant Hyperthermia: A Review. Orphanet J. Rare Dis. 2015, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tan, L.; Deng, X. Improving Dantrolene Mobilization in Regions with Limited Availability. Anesthesiology 2024, 140, 1201–1202. [Google Scholar] [CrossRef]
- Stewart, S.L.; Hogan, K.; Rosenberg, H.; Fletcher, J.E. Identification of the Arg1086His Mutation in the Alpha Subunit of the Voltage-Dependent Calcium Channel (CACNA1S) in a North American Family with Malignant Hyperthermia. Clin. Genet. 2001, 59, 178–184. [Google Scholar] [CrossRef]
- Zaharieva, I.T.; Sarkozy, A.; Munot, P.; Manzur, A.; O’Grady, G.; Rendu, J.; Malfatti, E.; Amthor, H.; Servais, L.; Urtizberea, J.A.; et al. STAC3 Variants Cause a Congenital Myopathy with Distinctive Dysmorphic Features and Malignant Hyperthermia Susceptibility. Hum. Mutat. 2018, 39, 1980–1994. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Brandom, B.W.; Henker, R.A.; McAuliffe, J.J. Bayesian Modeling to Predict Malignant Hyperthermia Susceptibility and Pathogenicity of RYR1, CACNA1S and STAC3 Variants. Pharmacogenomics 2019, 20, 989–1003. [Google Scholar] [CrossRef]
- Riazi, S.; Biesecker, L.G.; Rosenberg, H.; Dirksen, R.T. Nonsyndromic Malignant Hyperthermia Susceptibility. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 2003. [Google Scholar]
- Biesecker, L.G.; Dirksen, R.T.; Girard, T.; Hopkins, P.M.; Riazi, S.; Rosenberg, H.; Stowell, K.; Weber, J. Genomic Screening for Malignant Hyperthermia Susceptibility. Anesthesiology 2020, 133, 1277–1282. [Google Scholar] [CrossRef]
- Miyoshi, H.; Mukaida, K.; Otsuki, S.; Kido, K.; Sumii, A.; Ikeda, T.; Xia, G.; Noda, Y.; Ishii, T.; Kamiya, S.; et al. Genetic Panel Testing for Malignant Hyperthermia in Japan: Discovery of Novel Variants and Clinical Implications. Genes 2025, 16, 944. [Google Scholar] [CrossRef] [PubMed]
- Riazi, S.; Kraeva, N.; Hopkins, P.M. Malignant Hyperthermia in the Post-Genomics Era: New Perspectives on an Old Concept. Anesthesiology 2018, 128, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Riazi, S.; Kraeva, N.; Girard, T. Perioperative Genetic Screening: Entering a New Era. Br. J. Anaesth. 2020, 125, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Carpenter, D.; Robinson, R.L.; Quinnell, R.J.; Ringrose, C.; Hogg, M.; Casson, F.; Booms, P.; Iles, D.E.; Halsall, P.J.; Steele, D.S.; et al. Genetic Variation in RYR1 and Malignant Hyperthermia Phenotypes. Br. J. Anaesth. 2009, 103, 538–548. [Google Scholar] [CrossRef]
- Rüffert, H.; Bastian, B.; Bendixen, D.; Girard, T.; Heiderich, S.; Hellblom, A.; Hopkins, P.M.; Johannsen, S.; Snoeck, M.M.; Urwyler, A.; et al. Consensus Guidelines on Perioperative Management of Malignant Hyperthermia Suspected or Susceptible Patients from the European Malignant Hyperthermia Group. Br. J. Anaesth. 2021, 126, 120–130. [Google Scholar] [CrossRef]
- Gonsalves, S.G.; Dirksen, R.T.; Sangkuhl, K.; Pulk, R.; Alvarellos, M.; Vo, T.; Hikino, K.; Roden, D.; Klein, T.E.; Poler, S.M.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for the Use of Potent Volatile Anesthetic Agents and Succinylcholine in the Context of RYR1 or CACNA1S Genotypes. Clin. Pharmacol. Ther. 2019, 105, 1338–1344. [Google Scholar] [CrossRef]
- Johnston, J.J.; Dirksen, R.T.; Girard, T.; Hopkins, P.M.; Kraeva, N.; Ognoon, M.; Radenbaugh, K.B.; Riazi, S.; Robinson, R.L.; Saddic Iii, L.A.; et al. Updated Variant Curation Expert Panel Criteria and Pathogenicity Classifications for 251 Variants for RYR1-Related Malignant Hyperthermia Susceptibility. Hum. Mol. Genet. 2022, 31, 4087–4093. [Google Scholar] [CrossRef]
- Roberts, D.A.; Bastarache, L.; He, J.; Lewis, A.; Aka, I.T.; Shotwell, M.S.; Reddy, S.K.; Hogan, K.J.; Biesecker, L.G.; Kertai, M.D. Updating Probability of Pathogenicity for RYR1 and CACNA1S Exon Variants in Individuals without Malignant Hyperthermia after Exposure to Triggering Anesthetics. Pharmacogenet. Genom. 2025, 35, 65–72. [Google Scholar] [CrossRef]
- Belkadi, A.; Bolze, A.; Itan, Y.; Cobat, A.; Vincent, Q.B.; Antipenko, A.; Shang, L.; Boisson, B.; Casanova, J.-L.; Abel, L. Whole-Genome Sequencing Is More Powerful than Whole-Exome Sequencing for Detecting Exome Variants. Proc. Natl. Acad. Sci. USA 2015, 112, 5473–5478. [Google Scholar] [CrossRef]
- Cooper, D.N.; Krawczak, M.; Polychronakos, C.; Tyler-Smith, C.; Kehrer-Sawatzki, H. Where Genotype Is Not Predictive of Phenotype: Towards an Understanding of the Molecular Basis of Reduced Penetrance in Human Inherited Disease. Hum. Genet. 2013, 132, 1077–1130. [Google Scholar] [CrossRef]
- Cooper, G.M.; Shendure, J. Needles in Stacks of Needles: Finding Disease-Causal Variants in a Wealth of Genomic Data. Nat. Rev. Genet. 2011, 12, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.M. Malignant Hyperthermia: Pharmacology of Triggering. Br. J. Anaesth. 2011, 107, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, M.H.; Zook, J.M.; Salit, M.; Vallone, P.M. Determining Performance Metrics for Targeted Next-Generation Sequencing Panels Using Reference Materials. J. Mol. Diagn. 2018, 20, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.-B.; Lee, I.-H.; Park, J.-H.; Hambuch, T.; Choe, Y.; Kim, M.; Lee, K.; Song, T.; Neu, M.B.; Gupta, N.; et al. Reducing False-Positive Incidental Findings with Ensemble Genotyping and Logistic Regression Based Variant Filtering Methods. Hum. Mutat. 2014, 35, 936–944. [Google Scholar] [CrossRef]
- Howard, J.T.; Androne, N.; Alcover, K.C.; Santos-Lozada, A.R. Trends of Heat-Related Deaths in the US, 1999-2023. JAMA 2024, 332, 1203–1204. [Google Scholar] [CrossRef]
- Endo, Y.; Groom, L.; Celik, A.; Kraeva, N.; Lee, C.S.; Jung, S.Y.; Gardner, L.; Shaw, M.-A.; Hamilton, S.L.; Hopkins, P.M.; et al. Variants in ASPH Cause Exertional Heat Illness and Are Associated with Malignant Hyperthermia Susceptibility. Nat. Commun. 2022, 13, 3403. [Google Scholar] [CrossRef]
- Fiszer, D.; Shaw, M.-A.; Fisher, N.A.; Carr, I.M.; Gupta, P.K.; Watkins, E.J.; Roiz de Sa, D.; Kim, J.H.; Hopkins, P.M. Next-Generation Sequencing of RYR1 and CACNA1S in Malignant Hyperthermia and Exertional Heat Illness. Anesthesiology 2015, 122, 1033–1046. [Google Scholar] [CrossRef]
- Muldoon, S.; Bunger, R.; Deuster, P.; Sambuughin, N. Identification of Risk Factors for Exertional Heat Illness: A Brief Commentary on Genetic Testing. J. Sport. Rehabil. 2007, 16, 222–226. [Google Scholar] [CrossRef]
- Kraeva, N.; Sapa, A.; Dowling, J.J.; Riazi, S. Malignant Hyperthermia Susceptibility in Patients with Exertional Rhabdomyolysis: A Retrospective Cohort Study and Updated Systematic Review. Can. J. Anaesth. 2017, 64, 736–743. [Google Scholar] [CrossRef]
- Carsana, A. Exercise-Induced Rhabdomyolysis and Stress-Induced Malignant Hyperthermia Events, Association with Malignant Hyperthermia Susceptibility, and RYR1 Gene Sequence Variations. Sci. World J. 2013, 2013, 531465. [Google Scholar] [CrossRef]
- Voermans, N.C.; Snoeck, M.; Jungbluth, H. RYR1-Related Rhabdomyolysis: A Common but Probably Underdiagnosed Manifestation of Skeletal Muscle Ryanodine Receptor Dysfunction. Rev. Neurol. 2016, 172, 546–558. [Google Scholar] [CrossRef]
- Flacco, L.; Colozzi, A.; Ripari, P.; Pieralisi, G. Dantrolene Sodium in Traumatic Muscle Contracture: Double-Blind Clinical and Pharmacological Trial. Clin. Ther. 1989, 11, 623–632. [Google Scholar]
- Wren, P.; Chun, S.M.; Vietor, R. Malignant Hyperthermia-A Case From Camp Humphreys, South Korea, and Lessons for the Military Health System. Mil. Med. 2023, 188, usab281. [Google Scholar] [CrossRef]
- Lee, M.A.; McGlinch, E.B.; McGlinch, M.C.; Capacchione, J.F. Malignant Hyperthermia Susceptibility and Fitness for Duty. Mil. Med. 2017, 182, e1854–e1857. [Google Scholar] [CrossRef]
- Douville, N.J.; Kheterpal, S.; Engoren, M.; Mathis, M.; Mashour, G.A.; Hornsby, W.E.; Willer, C.J.; Douville, C.B. Genetic Mutations Associated with Susceptibility to Perioperative Complications in a Longitudinal Biorepository with Integrated Genomic and Electronic Health Records. Br. J. Anaesth. 2020, 125, 986–994. [Google Scholar] [CrossRef]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, A.K.; Pinyavat, T. Genetic Testing for Malignant Hyperthermia Susceptibility—Threading the Needle in the Haystack. Genes 2025, 16, 1281. https://doi.org/10.3390/genes16111281
Saha AK, Pinyavat T. Genetic Testing for Malignant Hyperthermia Susceptibility—Threading the Needle in the Haystack. Genes. 2025; 16(11):1281. https://doi.org/10.3390/genes16111281
Chicago/Turabian StyleSaha, Anjan K., and Teeda Pinyavat. 2025. "Genetic Testing for Malignant Hyperthermia Susceptibility—Threading the Needle in the Haystack" Genes 16, no. 11: 1281. https://doi.org/10.3390/genes16111281
APA StyleSaha, A. K., & Pinyavat, T. (2025). Genetic Testing for Malignant Hyperthermia Susceptibility—Threading the Needle in the Haystack. Genes, 16(11), 1281. https://doi.org/10.3390/genes16111281
 
        
 
                                                

