Fluid Biomarkers in Hereditary Spastic Paraplegia: A Narrative Review and Integrative Framework for Complex Neurodegenerative Mechanisms
Abstract
1. Introduction
2. Neuro-Biomarker Detection Across Fluids: A Technological Perspective
Technology | Principles | Typical Limit of Detection (LoD) | Strengths | Weaknesses |
---|---|---|---|---|
Single-Molecule Array (Simoa) | Digital immunoassay that isolates individual antibody–antigen complexes in femtoliter wells for single-molecule detection. | ~10–30 fg/mL (0.01–0.03 pg/mL) [13] | Ultra-high sensitivity (fg/mL); excellent specificity; low background noise; reproducibility; minimally invasive. | High equipment cost; limited clinical availability; complex instrument setup. |
Electrochemiluminescence (ECL) | Combines electrochemical activation and luminescence for detecting antibody–antigen interactions. | ~0.1–1 pg/mL (sub-pg/mL possible in optimized assays) [15] | High sensitivity; automation-compatible; suitable for multiplexing. | Requires specialized instruments; moderate cost; may need optimization for low-abundance proteins. |
xMAP (Luminex) | Fluorescent microsphere-based multiplex platform analyzed via flow cytometry. | ~0.05–0.1 pg/mL [16,17] | Multiplex capability; high throughput; good specificity. | Inter-lab variability; complex data analysis; high initial instrumentation cost. |
LC-MS/MS | Chromatographic separation is followed by mass spectrometry based on mass-to-charge ratios. | ~0.1–1 pg/mL (depending on enrichment and matrix) [18] | Unmatched specificity; distinguishes isoforms and PTMs; ideal for biomarker validation. | Technically demanding; expensive; low throughput; requires advanced lab infrastructure. |
Immunoprecipitation + MS (IP-MS) | Enrichment of target proteins via antibodies followed by mass spectrometry analysis. | Typically pg/mL (single-digit pg/mL with enrichment) [19] | High specificity; allows discovery of interactomes and biomarker isoforms. | Labor-intensive; needs high-quality samples; complex protocols. |
ELISA/CLIA | Antibody-based detection using enzyme-linked or chemiluminescent signal generation. | ~1 pg/mL (commercial kits range 1–100 pg/mL) [20] | Widely available; automation possible; cost-effective for high-abundance targets. | Limited sensitivity in blood; narrow dynamic range; prone to interference from plasma matrix. |
3. Targeting Molecular Pathways: A Biomarker-by-Biomarker Insight into HSP
3.1. Amyloid (Aβ40 and Aβ42)
3.2. Tau (Total, Brain-Derived and Phosphorylated)
3.3. Neurofilament Light Chain
3.4. Glial Fibrillary Acidic Protein
3.5. Soluble Triggering Receptor Expressed on Myeloid Cells 2
3.6. Ubiquitin Carboxy-Terminal Hydrolase L1
3.7. TAR DNA-Binding Protein 43
3.8. Synaptic Biomarkers in HSP: Potential Roles and Preliminary Evidence
3.9. Cytokines
4. Discussion
4.1. Biomarker Selection Strategy in HSP: Mechanistic and Pharmacokinetic Considerations
- NfL, to monitor chronic axonal damage;
- BD-tau, to assess CNS-specific neuronal injury;
- GFAP, cytokines, or sTREM2, to capture transient glial or immune activation.
4.2. Clinical Translation and Presymptomatic Carriers
4.3. Limitations
4.4. Future Perspectives: Toward Patient-Centered, Remote Monitoring in HSP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shribman, S.; Reid, E.; Crosby, A.H.; Houlden, H.; Warner, T.T. Hereditary Spastic Paraplegia: From Diagnosis to Emerging Therapeutic Approaches. Lancet Neurol. 2019, 18, 1136–1146. [Google Scholar] [CrossRef]
- Kara, E.; Tucci, A.; Manzoni, C.; Lynch, D.S.; Elpidorou, M.; Bettencourt, C.; Chelban, V.; Manole, A.; Hamed, S.A.; Haridy, N.A.; et al. Genetic and Phenotypic Characterization of Complex Hereditary Spastic Paraplegia. Brain 2016, 139, 1904–1918. [Google Scholar] [CrossRef]
- Jeyakumar, H.; Chandan, J.S.; Nirantharakumar, K.; Lee, S.I. The Epidemiology of Hereditary Spastic Paraplegia and Associated Common Mental Health Outcomes in England and Northern Ireland. Orphanet J. Rare Dis. 2025, 20, 326. [Google Scholar] [CrossRef]
- Mania-Pâris, L.; Ewenczyk, C.; Nicolas, G.; Anheim, M.; Durr, A.; Pichon, B.; Isner-Horobeti, M.E.; Angelini, C.; Goizet, C.; Roubertie, A.; et al. French Guidelines for the Diagnosis and Management of Pure Hereditary Spastic Paraplegia. Rev. Neurol. 2025, 181, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Cunha, I.A.; Ribeiro, J.A.; Santos, M.C. Hereditary Spastic Paraparesis: The Real-World Experience from a Neurogenetics Outpatient Clinic. Eur. J. Med. Genet. 2022, 65, 104430. [Google Scholar] [CrossRef] [PubMed]
- Malina, J.; Huessler, E.M.; Jöckel, K.H.; Boog-Whiteside, E.; Jeschonneck, N.; Schröder, B.; Schüle, R.; Kühl, T.; Klebe, S. Development and Validation of TreatHSP-QoL: A Patient-Reported Outcome Measure for Health-Related Quality of Life in Hereditary Spastic Paraplegia. Orphanet J. Rare Dis. 2024, 19, 2. [Google Scholar] [CrossRef]
- Meyyazhagan, A.; Orlacchio, A. Hereditary Spastic Paraplegia: An Update. Int. J. Mol. Sci. 2022, 23, 1697. [Google Scholar] [CrossRef] [PubMed]
- Meyyazhagan, A.; Kuchi Bhotla, H.; Pappuswamy, M.; Orlacchio, A. The Puzzle of Hereditary Spastic Paraplegia: From Epidemiology to Treatment. Int. J. Mol. Sci. 2022, 23, 7665. [Google Scholar] [CrossRef]
- Schöls, L.; Rattay, T.W.; Martus, P.; Meisner, C.; Baets, J.; Fischer, I.; Jägle, C.; Fraidakis, M.J.; Martinuzzi, A.; Saute, J.A.; et al. Hereditary Spastic Paraplegia Type 5: Natural History, Biomarkers and a Randomized Controlled Trial. Brain 2017, 140, 3112–3127. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, A.; Chen, M.; Cao, J. Advances in Circulating Biomarkers for Neurodegenerative Diseases, Traumatic Brain Injuries, and Central Nervous System Tumors. Ann. Lab. Med. 2025, 45, 381–390. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, K.; Zhou, L.; Wang, J.; Huang, L.; Sun, Y.; Peng, G.; Wu, W. Advances in Blood Biomarkers for Alzheimer’s Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener. Neurol. Neuromuscul. Dis. 2024, 14, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Z. Blood Biomarkers for Clinical Applications in Alzheimer’s Disease: A Narrative Review. NeuroMarkers 2025, 2, 100078. [Google Scholar] [CrossRef]
- Dong, R.; Yi, N.; Jiang, D. Advances in Single Molecule Arrays (SIMOA) for Ultra-Sensitive Detection of Biomolecules. Talanta 2024, 270, 125529. [Google Scholar] [CrossRef]
- Sahrai, H.; Norouzi, A.; Hamzehzadeh, S.; Majdi, A.; Kahfi-Ghaneh, R.; Sadigh-Eteghad, S. SIMOA-Based Analysis of Plasma NFL Levels in MCI and AD Patients: A Systematic Review and Meta-Analysis. BMC Neurol. 2023, 23, 331. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Yang, X.; Qi, H.; Zhang, C. Recent Advances in Electrogenerated Chemiluminescence Biosensing Methods for Pharmaceuticals. J. Pharm. Anal. 2019, 9, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Leung, Y.Y.; Chang, S.K.; Leight, S.; Knapik-Czajka, M.; Baek, Y.; Shaw, L.M.; Lee, V.M.Y.; Trojanowski, J.Q.; Clark, C.M. Comparison of XMAP and ELISA Assays for Detecting Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease. J. Alzheimer’s Dis. 2012, 31, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.O.; Dias, N.S.; Burgos, I.C.B.; Costa, M.V.; Carvalho, A.T.; Teixeira, A.L.; Barbosa, I.G.; Santos, L.A.V.; Rosa, D.V.F.; Ribeiro, A.J.F.; et al. Millipore XMap® Luminex (HATMAG-68K): An Accurate and Cost-Effective Method for Evaluating Alzheimer’s Biomarkers in Cerebrospinal Fluid. Front. Psychiatry 2021, 12, 716686. [Google Scholar] [CrossRef]
- Bronsema, K.J.; Bischoff, R.; Van De Merbel, N.C. High-Sensitivity LC-MS/MS Quantification of Peptides and Proteins in Complex Biological Samples: The Impact of Enzymatic Digestion and Internal Standard Selection on Method Performance. Anal. Chem. 2013, 85, 9528–9535. [Google Scholar] [CrossRef]
- Fredolini, C.; Byström, S.; Sanchez-Rivera, L.; Ioannou, M.; Tamburro, D.; Pontén, F.; Branca, R.M.; Nilsson, P.; Lehtiö, J.; Schwenk, J.M. Systematic Assessment of Antibody Selectivity in Plasma Based on a Resource of Enrichment Profiles. Sci. Rep. 2019, 9, 8324. [Google Scholar] [CrossRef]
- Aydin, S.; Emre, E.; Ugur, K.; Aydin, M.A.; Sahin, İ.; Cinar, V.; Akbulut, T. An Overview of ELISA: A Review and Update on Best Laboratory Practices for Quantifying Peptides and Proteins in Biological Fluids. J. Int. Med. Res. 2025, 53, 03000605251315913. [Google Scholar] [CrossRef]
- Alcolea, D.; Beeri, M.S.; Rojas, J.C.; Gardner, R.C.; Lleó, A. Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology 2023, 101, 172–180. [Google Scholar] [CrossRef]
- Cheslow, L.; Snook, A.E.; Waldman, S.A. Biomarkers for Managing Neurodegenerative Diseases. Biomolecules 2024, 14, 398. [Google Scholar] [CrossRef]
- Schindler, S.E.; Galasko, D.; Pereira, A.C.; Rabinovici, G.D.; Salloway, S.; Suárez-Calvet, M.; Khachaturian, A.S.; Mielke, M.M.; Udeh-Momoh, C.; Weiss, J.; et al. Acceptable Performance of Blood Biomarker Tests of Amyloid Pathology—Recommendations from the Global CEO Initiative on Alzheimer’s Disease. Nat. Rev. Neurol. 2024, 20, 426–439. [Google Scholar] [CrossRef]
- Iaccarino, L.; Burnham, S.C.; Dell’Agnello, G.; Dowsett, S.A.; Epelbaum, S. Diagnostic Biomarkers of Amyloid and Tau Pathology in Alzheimer’s Disease: An Overview of Tests for Clinical Practice in the United States and Europe. J. Prev. Alzheimer’s Dis. 2023, 10, 426–442. [Google Scholar] [CrossRef]
- Ashton, N.J.; Brum, W.S.; Di Molfetta, G.; Benedet, A.L.; Arslan, B.; Jonaitis, E.; Langhough, R.E.; Cody, K.; Wilson, R.; Carlsson, C.M.; et al. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol. 2024, 81, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortiz, F.; Turton, M.; Kac, P.R.; Smirnov, D.; Premi, E.; Ghidoni, R.; Benussi, L.; Cantoni, V.; Saraceno, C.; Rivolta, J.; et al. Brain-Derived Tau: A Novel Blood-Based Biomarker for Alzheimer’s Disease-Type Neurodegeneration. Brain 2023, 146, 1152–1165. [Google Scholar] [CrossRef]
- Therriault, J.; Brum, W.S.; Trudel, L.; Macedo, A.C.; Valentim Bitencourt, F.; Castro Martins-Pfeifer, C.; Nakouzi, M.; Pola, I.; Wong, M.; Kac, R.; et al. Articles 740 Blood Phosphorylated Tau for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Lancet Neurol. 2025, 24, 740–752. [Google Scholar] [CrossRef]
- Montoliu-Gaya, L.; Salvadó, G.; Therriault, J.; Nilsson, J.; Janelidze, S.; Weiner, S.; Ashton, N.J.; Benedet, A.L.; Rahmouni, N.; Lantero-Rodriguez, J.; et al. Plasma Tau Biomarkers for Biological Staging of Alzheimer’s Disease. Nat. Aging 2025, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barro, C.; Chitnis, T.; Weiner, H.L. Blood Neurofilament Light: A Critical Review of Its Application to Neurologic Disease. Ann. Clin. Transl. Neurol. 2020, 7, 2508–2523. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Nixon, R.A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front. Neurosci. 2021, 15, 689938. [Google Scholar] [CrossRef]
- Turner, M.R.; Thompson, A.G.; Teunissen, C.E. Blood Level of Neurofilament Light Chain as a Biomarker for Neurological Disorders. BMJ Med. 2025, 4, e000958. [Google Scholar] [CrossRef]
- Nihashi, T.; Sakurai, K.; Kato, T.; Kimura, Y.; Ito, K.; Nakamura, A.; Terasawa, T. Blood Levels of Glial Fibrillary Acidic Protein for Predicting Clinical Progression to Alzheimer’s Disease in Adults without Dementia: A Systematic Review and Meta-Analysis Protocol. Diagn. Progn. Res. 2024, 8, 4. [Google Scholar] [CrossRef]
- Abdelhak, A.; Foschi, M.; Abu-Rumeileh, S.; Yue, J.K.; D’Anna, L.; Huss, A.; Oeckl, P.; Ludolph, A.C.; Kuhle, J.; Petzold, A.; et al. Blood GFAP as an Emerging Biomarker in Brain and Spinal Cord Disorders. Nat. Rev. Neurol. 2022, 18, 158–172. [Google Scholar] [CrossRef]
- Kessler, C.; Ruschil, C.; Abdelhak, A.; Wilke, C.; Maleska, A.; Kuhle, J.; Krumbholz, M.; Kowarik, M.C.; Schüle, R. Serum Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Biomarkers in Primary Progressive Multiple Sclerosis and Hereditary Spastic Paraplegia Type 4. Int. J. Mol. Sci. 2022, 23, 13466. [Google Scholar] [CrossRef]
- Ferri, E.; Rossi, P.D.; Geraci, A.; Ciccone, S.; Cesari, M.; Arosio, B. The STREM2 Concentrations in the Blood: A Marker of Neurodegeneration? Front. Mol. Biosci. 2021, 7, 627931. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, E.H.; Kim, H.J.; Jo, S.; Lee, S.; Seo, S.W.; Park, H.H.; Koh, S.H.; Lee, J.H. The Relationship of Soluble TREM2 to Other Biomarkers of Sporadic Alzheimer’s Disease. Sci. Rep. 2021, 11, 13050. [Google Scholar] [CrossRef]
- Filipello, F.; Goldsbury, C.; You, S.F.; Locca, A.; Karch, C.M.; Piccio, L. Soluble TREM2: Innocent Bystander or Active Player in Neurological Diseases? Neurobiol. Dis. 2022, 165, 105630. [Google Scholar] [CrossRef] [PubMed]
- Karamian, A.; Farzaneh, H.; Khoshnoodi, M.; Maleki, N.; Rohatgi, S.; Ford, J.N.; Romero, J.M. Accuracy of GFAP and UCH-L1 in Predicting Brain Abnormalities on CT Scans after Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Eur. J. Trauma Emerg. Surg. 2025, 51, 13050. [Google Scholar] [CrossRef] [PubMed]
- Cordts, I.; Wachinger, A.; Scialo, C.; Lingor, P.; Polymenidou, M.; Buratti, E.; Feneberg, E. TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023, 12, 597. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zhao, Q. Advancements in TDP-43 Research: Towards Biomarkers and Therapeutic Targets for Amyotrophic Lateral Sclerosis. Aging Health Res. 2025, 5, 100215. [Google Scholar] [CrossRef]
- Matsuura, S.; Tatebe, H.; Higuchi, M.; Tokuda, T. Validation of a Newly Developed Immunoassay for TDP-43 in Human Plasma. Heliyon 2024, 10, e24672. [Google Scholar] [CrossRef]
- Kivisäkk, P.; Carlyle, B.C.; Sweeney, T.; Quinn, J.P.; Ramirez, C.E.; Trombetta, B.A.; Mendes, M.; Brock, M.; Rubel, C.; Czerkowicz, J.; et al. Increased Levels of the Synaptic Proteins PSD-95, SNAP-25, and Neurogranin in the Cerebrospinal Fluid of Patients with Alzheimer’s Disease. Alzheimers Res. Ther. 2022, 14, 58. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, S.; Malek, M. SNAP-25: A Biomarker of Synaptic Loss in Neurodegeneration. Clin. Chim. Acta 2025, 571, 120236. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Ashton, N.J.; Benedet, A.L.; Montoliu-Gaya, L.; Gobom, J.; Pascoal, T.A.; Chamoun, M.; Portelius, E.; Jeromin, A.; Mendes, M.; et al. Quantification of SNAP-25 with Mass Spectrometry and Simoa: A Method Comparison in Alzheimer’s Disease. Alzheimers Res. Ther. 2022, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Karran, E.; De Strooper, B. The Amyloid Hypothesis in Alzheimer Disease: New Insights from New Therapeutics. Nat. Rev. Drug Discov. 2022, 21, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Kepp, K.P.; Robakis, N.K.; Høilund-Carlsen, P.F.; Sensi, S.L.; Vissel, B. The Amyloid Cascade Hypothesis: An Updated Critical Review. Brain 2023, 146, 3969–3990. [Google Scholar] [CrossRef]
- Schöll, M.; Vrillon, A.; Ikeuchi, T.; Quevenco, F.C.; Iaccarino, L.; Vasileva-Metodiev, S.Z.; Burnham, S.C.; Hendrix, J.; Epelbaum, S.; Zetterberg, H.; et al. Cutting through the Noise: A Narrative Review of Alzheimer’s Disease Plasma Biomarkers for Routine Clinical Use. J. Prev. Alzheimers Dis. 2025, 12, 100056. [Google Scholar] [CrossRef]
- Rattay, T.W.; Völker, M.; Rautenberg, M.; Kessler, C.; Wurster, I.; Winter, N.; Haack, T.B.; Lindig, T.; Hengel, H.; Synofzik, M.; et al. The Prodromal Phase of Hereditary Spastic Paraplegia Type 4: The PreSPG4 Cohort Study. Brain 2023, 146, 1093–1102. [Google Scholar] [CrossRef]
- Chelban, V.; Breza, M.; Szaruga, M.; Vandrovcova, J.; Murphy, D.; Lee, C.J.; Alikhwan, S.; Bourinaris, T.; Vavougios, G.; Ilyas, M.; et al. Spastic Paraplegia Preceding Psen1-Related Familial Alzheimer’s Disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2021, 13, e12186. [Google Scholar] [CrossRef]
- Vázquez-Costa, J.F.; Payá-Montes, M.; Martínez-Molina, M.; Jaijo, T.; Szymanski, J.; Mazón, M.; Sopena-Novales, P.; Pérez-Tur, J.; Sevilla, T. Presenilin-1 Mutations Are a Cause of Primary Lateral Sclerosis-Like Syndrome. Front. Mol. Neurosci. 2021, 14, 721047. [Google Scholar] [CrossRef]
- Goedert, M.; Crowther, R.A.; Scheres, S.H.W.; Spillantini, M.G. Tau and Neurodegeneration. Cytoskeleton 2024, 81, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Holper, S.; Watson, R.; Yassi, N. Tau as a Biomarker of Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 7307. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, Z.; Ye, K. Tau in Neurodegenerative Diseases: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Transl. Neurodegener. 2024, 13, 40. [Google Scholar] [CrossRef]
- Jarek, D.J.; Mizerka, H.; Nuszkiewicz, J.; Szewczyk-Golec, K. Evaluating p-tau217 and p-tau231 as Biomarkers for Early Diagnosis and Differentiation of Alzheimer’s Disease: A Narrative Review. Biomedicines 2024, 12, 786. [Google Scholar] [CrossRef]
- Awuah, W.A.; Tan, J.K.; Shkodina, A.D.; Ferreira, T.; Adebusoye, F.T.; Mazzoleni, A.; Wellington, J.; David, L.; Chilcott, E.; Huang, H.; et al. Hereditary Spastic Paraplegia: Novel Insights into the Pathogenesis and Management. SAGE Open Med. 2024, 12, 20503121231221941. [Google Scholar] [CrossRef]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, Diagnostics, and Therapeutics for Alzheimer’s Disease: Breaking the Memory Barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef] [PubMed]
- Marotta, C.; Gonzalez-Ortiz, F.; Turton, M.; Zetterberg, H.; Harrison, P.; Hovens, C.M.; Sinclair, B.; O’Brien, T.J.; Blennow, K.; Vivash, L. Brain-Derived Tau to Measure Treatment Effect in Alzheimer’s Disease and Frontotemporal Dementia. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2025, 17, e70123. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Lehmann, S.; Otto, M.; Piehl, F.; Ziemssen, T.; Bittner, S.; Sormani, M.P.; Gattringer, T.; Abu-Rumeileh, S.; et al. Neurofilaments as Biomarkers in Neurological Disorders—Towards Clinical Application. Nat. Rev. Neurol. 2024, 20, 269–287. [Google Scholar] [CrossRef]
- Wilke, C.; Rattay, T.W.; Hengel, H.; Zimmermann, M.; Brockmann, K.; Schöls, L.; Kuhle, J.; Schüle, R.; Synofzik, M. Serum Neurofilament Light Chain Is Increased in Hereditary Spastic Paraplegias. Ann. Clin. Transl. Neurol. 2018, 5, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Kessler, C.; Serna-Higuita, L.M.; Rattay, T.W.; Maetzler, W.; Wurster, I.; Hayer, S.; Wilke, C.; Hengel, H.; Reichbauer, J.; Armbruster, M.; et al. Neurofilament Light Chain Is a Cerebrospinal Fluid Biomarker in Hereditary Spastic Paraplegia. Ann. Clin. Transl. Neurol. 2021, 8, 1122–1131. [Google Scholar] [CrossRef]
- Zubair, U.; Battaglia, N.; Alecu, J.E.; Tam, A.; Rong, J.; Quiroz, V.; Yang, K.; Kim, H.M.; Warren, K.; Mannix, R.; et al. Elevated Plasma Neurofilament Light Chain Levels in Children with Infantile-Onset Ascending Hereditary Spastic Paralysis. Mov. Disord. Clin. Pract. 2025. [Google Scholar] [CrossRef]
- Hol, E.M.; Pekny, M. Glial Fibrillary Acidic Protein (GFAP) and the Astrocyte Intermediate Filament System in Diseases of the Central Nervous System. Curr. Opin. Cell Biol. 2015, 32, 121–130. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.K.W. Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef]
- Leipp, F.; Vialaret, J.; Mohaupt, P.; Coppens, S.; Jaffuel, A.; Niehoff, A.C.; Lehmann, S.; Hirtz, C. Glial Fibrillary Acidic Protein in Alzheimer’s Disease: A Narrative Review. Brain Commun. 2024, 6, fcae396. [Google Scholar] [CrossRef]
- Qian, K.; Jiang, X.; Liu, Z.Q.; Zhang, J.; Fu, P.; Su, Y.; Brazhe, N.A.; Liu, D.; Zhu, L.Q. Revisiting the Critical Roles of Reactive Astrocytes in Neurodegeneration. Mol. Psychiatry 2023, 28, 2697–2706. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, I.D.; Lim, J.; Moon, J.S. Pathological Phenotypes of Astrocytes in Alzheimer’s Disease. Exp. Mol. Med. 2024, 56, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Liu, Y.; Zhang, M. The Diverse Roles of Reactive Astrocytes in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci. 2024, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, M.; Murali, S.P.; Thakur, G.; Li, X.J. Role of Glial Cells in Motor Neuron Degeneration in Hereditary Spastic Paraplegias. Front. Cell. Neurosci. 2025, 19, 1553658. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Dong, Y.; Chen, Z.; Denton, K.R.; Duff, M.O.; Blackstone, C.; Zhang, S.C.; Li, X.J. Impaired Lipid Metabolism in Astrocytes Underlies Degeneration of Cortical Projection Neurons in Hereditary Spastic Paraplegia. Acta Neuropathol. Commun. 2020, 8, 214. [Google Scholar] [CrossRef]
- Mero, S.; Satolli, S.; Galatolo, D.; Canto, F.D.; Armando, M.; Astrea, G.; Barghigiani, M.; Bruno, G.; Zanna, G.D.; De Micco, R.; et al. HPDL Biallelic Variants in Cerebral Palsy and Childhood-Onset Hereditary Spastic Paraplegia: Human and Zebrafish Insights. Mov. Disord. 2025. [Google Scholar] [CrossRef]
- Yang, H.; Kim, D.; Yang, Y.; Bagyinszky, E.; An, S.S.A. TREM2 in Neurodegenerative Disorders: Mutation Spectrum, Pathophysiology, and Therapeutic Targeting. Int. J. Mol. Sci. 2025, 26, 7057. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, X.; Li, Y.; Bu, G.; Chen, X.F. TREM2 and STREM2 in Alzheimer’s Disease: From Mechanisms to Therapies. Mol. Neurodegener. 2025, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 1–37. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Bennett, M.; Bennett, F.; Bessis, A.; Biber, K.; Bilbo, S.; Blurton-Jones, M.; Boddeke, E.; et al. Microglia States and Nomenclature: A Field at Its Crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef]
- Hörner, M.; Groh, J.; Klein, D.; Ilg, W.; Schöls, L.; Dos Santos, S.; Bergmann, A.; Klebe, S.; Cauhape, M.; Branchu, J.; et al. CNS-Associated T-Lymphocytes in a Mouse Model of Hereditary Spastic Paraplegia Type 11 (SPG11) Are Therapeutic Targets for Established Immunomodulators. Exp. Neurol. 2022, 355, 114119. [Google Scholar] [CrossRef]
- Krumm, L.; Pozner, T.; Zagha, N.; Coras, R.; Arnold, P.; Tsaktanis, T.; Scherpelz, K.; Davis, M.Y.; Kaindl, J.; Stolzer, I.; et al. Neuroinflammatory Disease Signatures in SPG11-Related Hereditary Spastic Paraplegia Patients. Acta Neuropathol. 2024, 147, 28. [Google Scholar] [CrossRef]
- Frolov, A.; Huang, H.; Schütz, D.; Köhne, M.; Blank-Stein, N.; Osei-Sarpong, C.; Büttner, M.; Elmzzahi, T.; Khundadze, M.; Zahid, M.; et al. Microglia and CD8+ T Cell Activation Precede Neuronal Loss in a Murine Model of Spastic Paraplegia 15. J. Exp. Med. 2025, 222, e20232357. [Google Scholar] [CrossRef] [PubMed]
- Mi, Z.; Graham, S.H. Role of UCHL1 in the Pathogenesis of Neurodegenerative Diseases and Brain Injury. Ageing Res. Rev. 2023, 86, 101856. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Gunnar Brolinson, P.; Büki, A.; Chen, J.Y.; Christenson, R.H.; et al. Serum GFAP and UCH-L1 for Prediction of Absence of Intracranial Injuries on Head CT (ALERT-TBI): A Multicentre Observational Study. Lancet Neurol. 2018, 17, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Irwin, K.E.; Sheth, U.; Wong, P.C.; Gendron, T.F. Fluid Biomarkers for Amyotrophic Lateral Sclerosis: A Review. Mol. Neurodegener. 2024, 19, 9. [Google Scholar] [CrossRef]
- López-Carbonero, J.I.; García-Toledo, I.; Fernández-Hernández, L.; Bascuñana, P.; Gil-Moreno, M.J.; Matías-Guiu, J.A.; Corrochano, S. In Vivo Diagnosis of TDP-43 Proteinopathies: In Search of Biomarkers of Clinical Use. Transl. Neurodegener. 2024, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lage, M.; Molina-Porcel, L.; Falcone, D.; McCluskey, L.; Lee, V.M.Y.; Van Deerlin, V.M.; Trojanowski, J.Q. TDP-43 Pathology in a Case of Hereditary Spastic Paraplegia with a NIPA1/SPG6 Mutation. Acta Neuropathol. 2012, 124, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Marrone, L.; Marchi, P.M.; Webster, C.P.; Marroccella, R.; Coldicott, I.; Reynolds, S.; Alves-Cruzeiro, J.; Yang, Z.L.; Higginbottom, A.; Khundadze, M.; et al. SPG15 Protein Deficits Are at the Crossroads between Lysosomal Abnormalities, Altered Lipid Metabolism and Synaptic Dysfunction. Hum. Mol. Genet. 2022, 31, 2693–2710. [Google Scholar] [CrossRef]
- Pérez-Brangulí, F.; Mishra, H.K.; Prots, I.; Havlicek, S.; Kohl, Z.; Saul, D.; Rummel, C.; Dorca-Arevalo, J.; Regensburger, M.; Graef, D.; et al. Dysfunction of Spatacsin Leads to Axonal Pathology in SPG11-Linked Hereditary Spastic Paraplegia. Hum. Mol. Genet. 2014, 23, 4859–4874. [Google Scholar] [CrossRef]
- Moianu, A.; Andone, S.; Stoian, A.; Bălașa, R.; Huțanu, A.; Sărmășan, E. A Potential Role of Interleukin-5 in the Pathogenesis and Progression of Amyotrophic Lateral Sclerosis: A New Molecular Perspective. Int. J. Mol. Sci. 2024, 25, 3782. [Google Scholar] [CrossRef]
- Sirkis, D.W.; Oddi, A.P.; Jonson, C.; Bonham, L.W.; Hoang, P.T.; Yokoyama, J.S. The Role of Interferon Signaling in Neurodegeneration and Neuropsychiatric Disorders. Front. Psychiatry 2024, 15, 1480438. [Google Scholar] [CrossRef]
- Delaby, C.; Ladang, A.; Martinez-Yriarte, J.; Zecca, C.; Logroscino, G.; Körtvelyessy, P.; Tumani, H.; Parchi, P.; Quadrio, I.; Hart, M.; et al. Clinical Use and Reporting of Neurofilament Quantification in Neurological Disorders: A Global Overview. Alzheimer’s Dement. 2025, 21, e70343. [Google Scholar] [CrossRef]
- Solís-Tarazona, L.; Raket, L.L.; Cabello-Murgui, J.; Reddam, S.; Navarro-Quevedo, S.; Gil-Perotin, S. Predictive Value of Individual Serum Neurofilament Light Chain Levels in Short-Term Disease Activity in Relapsing Multiple Sclerosis. Front. Neurol. 2024, 15, 1354431. [Google Scholar] [CrossRef]
- Fair, H.; Pavkovic, S.; Roccati, E.; Alty, J.; King, A.; Collins, J. Presymptomatic Blood Tests to Detect Neurodegeneration: Perceptions of Potential Consumers across the Life Course. Alzheimer’s Dement. Behav. Socioecon. Aging 2025, 1, e70022. [Google Scholar] [CrossRef]
- Baldacci, F.; Lista, S.; Manca, M.L.; Chiesa, P.A.; Cavedo, E.; Lemercier, P.; Zetterberg, H.; Blennow, K.; Habert, M.O.; Potier, M.C.; et al. Age and Sex Impact Plasma NFL and T-Tau Trajectories in Individuals with Subjective Memory Complaints: A 3-Year Follow-up Study. Alzheimer’s Res. Ther. 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Skillbäck, T.; Blennow, K.; Zetterberg, H.; Shams, S.; Machado, A.; Pereira, J.; Lindberg, O.; Mielke, M.M.; Zettergren, A.; Ryden, L.; et al. Sex Differences in Csf Biomarkers for Neurodegeneration and Blood-Brain Barrier Integrity. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2021, 13, e12141. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Gambino, C.M.; Ciaccio, A.M.; Giglio, R.V.; Scazzone, C.; Tamburello, M.; Candore, G.; Accardi, G.; Aiello, A.; Del Ben, F.; et al. Establishing Sex- and Age-Related Reference Intervals of Serum Glial Fibrillary Acid Protein Measured by the Fully Automated Lumipulse System. Clin. Chem. Lab. Med. 2025, 63, 1402–1408. [Google Scholar] [CrossRef]
- Van Waateringe, R.P.; Muller Kobold, A.C.; Van Vliet-Ostaptchouk, J.V.; Van Der Klauw, M.M.; Koerts, J.; Anton, G.; Peters, A.; Trischler, G.; Kvaløy, K.; Naess, M.; et al. Influence of Storage and Inter- and Intra-Assay Variability on the Measurement of Inflammatory Biomarkers in Population-Based Biobanking. Biopreserv. Biobank. 2017, 15, 512–518. [Google Scholar] [CrossRef]
- Trombetta, B.A.; Allen, S.W.; El-Mufti, L.H.; Riley, M.M.; Ramirez, C.E.; Weik, M.; Carlyle, B.C.; Kivisäkk, P.; Arnold, S.E. Evaluating the Biological Variability of Blood-based Biomarkers for Use in Clinical Trials. Alzheimer’s Dement. 2022, 18, e066629. [Google Scholar] [CrossRef]
- Mravinacová, S.; Bergström, S.; Olofsson, J.; de San José, N.G.; Anderl-Straub, S.; Diehl-Schmid, J.; Fassbender, K.; Fliessbach, K.; Jahn, H.; Kornhuber, J.; et al. Addressing Inter Individual Variability in CSF Levels of Brain Derived Proteins across Neurodegenerative Diseases. Sci. Rep. 2025, 15, 668. [Google Scholar] [CrossRef]
- Bouteloup, V.; Pellegrin, I.; Dubois, B.; Chene, G.; Planche, V.; Dufouil, C. Explaining the Variability of Alzheimer Disease Fluid Biomarker Concentrations in Memory Clinic Patients Without Dementia. Neurology 2024, 102, e209219. [Google Scholar] [CrossRef]
- Carapeto, A.P.; Marcuello, C.; Faísca, P.F.N.; Rodrigues, M.S. Morphological and Biophysical Study of S100A9 Protein Fibrils by Atomic Force Microscopy Imaging and Nanomechanical Analysis. Biomolecules 2024, 14, 1091. [Google Scholar] [CrossRef] [PubMed]
- Ziaunys, M.; Sakalauskas, A.; Mikalauskaite, K.; Smirnovas, V. Polymorphism of Alpha-Synuclein Amyloid Fibrils Depends on Ionic Strength and Protein Concentration. Int. J. Mol. Sci. 2021, 22, 12382. [Google Scholar] [CrossRef] [PubMed]
- Huber, H.; Blennow, K.; Zetterberg, H.; Boada, M.; Jeromin, A.; Weninger, H.; Nuñez-Llaves, R.; Aguilera, N.; Ramis, M.; Simrén, J.; et al. Biomarkers of Alzheimer’s Disease and Neurodegeneration in Dried Blood Spots—A New Collection Method for Remote Settings. Alzheimer’s Dement. 2024, 20, 2340–2352. [Google Scholar] [CrossRef]
- Randall, J.; Mörtberg, E.; Provuncher, G.K.; Fournier, D.R.; Duffy, D.C.; Rubertsson, S.; Blennow, K.; Zetterberg, H.; Wilson, D.H. Tau Proteins in Serum Predict Neurological Outcome after Hypoxic Brain Injury from Cardiac Arrest: Results of a Pilot Study. Resuscitation 2013, 84, 351–356. [Google Scholar] [CrossRef]
- Papa, L.; Brophy, G.M.; Welch, R.D.; Lewis, L.M.; Braga, C.F.; Tan, C.N.; Ameli, N.J.; Lopez, M.A.; Haeussler, C.A.; Mendez Giordano, D.I.; et al. Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients with and without Mild Traumatic Brain Injury. JAMA Neurol. 2016, 73, 551–560. [Google Scholar] [CrossRef]
- Brophy, G.M.; Mondello, S.; Papa, L.; Robicsek, S.A.; Gabrielli, A.; Tepas, J.; Buki, A.; Robertson, C.; Tortella, F.C.; Hayes, R.L.; et al. Biokinetic Analysis of Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in Severe Traumatic Brain Injury Patient Biofluids. J. Neurotrauma 2011, 28, 861–870. [Google Scholar] [CrossRef]
- Bergman, J.; Dring, A.; Zetterberg, H.; Blennow, K.; Norgren, N.; Gilthorpe, J.; Bergenheim, T.; Svenningsson, A. Neurofilament Light in CSF and Serum Is a Sensitive Marker for Axonal White Matter Injury in MS. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e271. [Google Scholar] [CrossRef]
- Plantone, D.; Stufano, A.; Righi, D.; Locci, S.; Iavicoli, I.; Lovreglio, P.; De Stefano, N. Neurofilament Light Chain and Glial Fibrillary Acid Protein Levels Are Elevated in Post-Mild COVID-19 or Asymptomatic SARS-CoV-2 Cases. Sci. Rep. 2024, 14, 6429. [Google Scholar] [CrossRef]
- Wellmann, S.; Geis, T.; Kuhle, J.; Lehnerer, V. Neurofilament Light Chain as Biomarker in Encephalitis. J. Clin. Med. 2024, 13, 5416. [Google Scholar] [CrossRef] [PubMed]
- Stervbo, U.; Bajda, S.; Wehler, P.; Rohn, B.J.; Streichhahn, M.; Temizsoy, S.; Kohut, E.; Roch, T.; Viebahn, R.; Westhoff, T.H.; et al. Stability of 12 T-Helper Cell-Associated Cytokines in Human Serum under Different Pre-Analytical Conditions. Cytokine 2020, 129, 155044. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, R.; Marshall, S.; Salois, P.; Li, Q.; Zhang, W. STREM2 Differentially Affects Cytokine Expression in Myeloid-Derived Cell Models via MAPK–JNK Signaling Pathway. Biology 2024, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef]
Mechanistic Category | Biomarker | Localization | Use in HSP | Strength of Evidence in HSP | Key References |
---|---|---|---|---|---|
Amyloid | Aβ40/Aβ42 | CNS, peripheral tissues | No utility; amyloid not involved | Preliminary in HSP | [23,24] |
Tau (neuronal soma/axonal) | t-tau, p-tau (181/217/231), BD-tau | Neuron soma and axons | Limited role in HSP; BD-tau may hold potential in complex/advanced subtypes | Preliminary in HSP (t-Tau and p-Tau); Speculative (BD-Tau) | [23,25,26,27,28] |
Axonal injury | Neurofilament light chain (NfL) | Large-caliber myelinated axons | Elevation in SPG4; correlates with progression | Established in HSP | [29,30,31,32] |
Glial/inflammatory | GFAP, sTREM2 | Astrocytes (GFAP)/Microglia (sTREM2) | Not relevant in pure HSP; possible in inflammatory/complex forms | Preliminary in HSP (GFAP); Speculative (sTREM2) | [32,33,34,35,36,37] |
Neuronal integrity/stress | UCH-L1, TDP-43 | Neurons and glia | Exploratory in HSP; potential in complex/overlapping phenotypes | Speculative | [38,39,40,41] |
Synaptic | SNAP-25, PSD-95 | Pre- and postsynaptic compartments | Not studied in HSP; theoretical interest | Speculative | [42,43,44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipriano, L.; Setola, N.; Barghigiani, M.; Santorelli, F.M. Fluid Biomarkers in Hereditary Spastic Paraplegia: A Narrative Review and Integrative Framework for Complex Neurodegenerative Mechanisms. Genes 2025, 16, 1189. https://doi.org/10.3390/genes16101189
Cipriano L, Setola N, Barghigiani M, Santorelli FM. Fluid Biomarkers in Hereditary Spastic Paraplegia: A Narrative Review and Integrative Framework for Complex Neurodegenerative Mechanisms. Genes. 2025; 16(10):1189. https://doi.org/10.3390/genes16101189
Chicago/Turabian StyleCipriano, Lorenzo, Nunzio Setola, Melissa Barghigiani, and Filippo Maria Santorelli. 2025. "Fluid Biomarkers in Hereditary Spastic Paraplegia: A Narrative Review and Integrative Framework for Complex Neurodegenerative Mechanisms" Genes 16, no. 10: 1189. https://doi.org/10.3390/genes16101189
APA StyleCipriano, L., Setola, N., Barghigiani, M., & Santorelli, F. M. (2025). Fluid Biomarkers in Hereditary Spastic Paraplegia: A Narrative Review and Integrative Framework for Complex Neurodegenerative Mechanisms. Genes, 16(10), 1189. https://doi.org/10.3390/genes16101189