Evidence of Mixed Selection Acting on the MHC Class II DQA Gene in Captive Thai Elephant Populations
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Polymerase Chain Reaction and IlluminaTM Short-Read Sequencing
2.3. Sequence Quality Control and Processing
2.4. Genetic Diversity and Selection Analysis
2.5. Phylogenetic Analysis of the Elephant MHC Class II DQA Gene
2.6. Multiple Sequence Alignment of Elephant MHC Class II DQA and Secondary Structure Prediction
3. Results
3.1. Polymorphism and Phylogenetics of the Partial Fragment of DQA Exon 2 in Captive Elephants
3.2. Pattern of Selection Within Partial DQA Gene Exon 2 Sequences in Captive Elephants
3.3. Secondary Structure and Sequence Homology of DQA Alleles
4. Discussion
4.1. Demographic History and Pathogen Dynamics Drive DQA Polymorphism
4.2. Pattern of Selection and Evidence of Trans-Species Polymorphism in the Partial Fragment of DQA Exon 2 in Captive Thai Elephants
4.3. Implications for Thai Elephant Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MHC | Major histocompatibility complex |
IUCN | International Union for Conservation of Nature and Natural Resources |
EEHV | Elephant endotheliotropic herpesvirus |
MEP | Maetaeng Elephant Park |
BCEP | Baan Chang Elephant Park |
NEI | National Elephant Institute of Thailand |
DOC | Degree of change |
FUBAR | Fast Unconstrained Bayesian AppRoximation |
FEL | Fixed effect likelihood |
MEME | Mixed Effects Model of Evolution |
ABR | Antigen-binding-region |
References
- Adegboro, B.; Kolawole, O.M.; Lawani, O.; Folahan, F.; Seriki, A.A. A Review of the Roles of Major Histocompatibility Complex (MHC) Molecules in Infections. Afr. J. Clin. Exp. Microbiol. 2022, 23, 120–130. [Google Scholar] [CrossRef]
- Gaudieri, S.; Dawkins, R.L.; Habara, K.; Kulski, J.K.; Gojobori, T. SNP Profile within the Human Major Histocompatibility Complex Reveals an Extreme and Interrupted Level of Nucleotide Diversity. Genome Res. 2000, 10, 1579–1586. [Google Scholar] [CrossRef]
- Garrigan, D.; Hedrick, P.W. Perspective: Detecting Adaptive Molecular Polymorphism: Lessons from the MHC. Evolution 2003, 57, 1707–1722. [Google Scholar] [CrossRef]
- Westerdahl, H.; Waldenström, J.; Hansson, B.; Hasselquist, D.; von Schantz, T.; Bensch, S. Associations between Malaria and MHC Genes in a Migratory Songbird. Proc. Biol. Sci. 2005, 272, 1511–1518. [Google Scholar] [CrossRef]
- Radwan, J.; Biedrzycka, A.; Babik, W. Does Reduced MHC Diversity Decrease Viability of Vertebrate Populations? Biol. Conserv. 2010, 143, 537–544. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, H.; Rong, M.; Meng, D.; Yu, Z.; Jiang, L.; Jiang, P. Molecular Cloning and Bioinformatics Analysis of DQA Gene from Mink (Neovison vison). Int. J. Mol. Sci. 2019, 20, 1037. [Google Scholar] [CrossRef]
- Aguilar, A.; Roemer, G.; Debenham, S.; Binns, M.; Garcelon, D.; Wayne, R.K. High MHC Diversity Maintained by Balancing Selection in an Otherwise Genetically Monomorphic Mammal. Proc. Natl. Acad. Sci. USA 2004, 101, 3490–3494. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.K.; Piertney, S.B. Selection Maintains MHC Diversity through a Natural Population Bottleneck. Mol. Biol. Evol. 2012, 29, 1713–1720. [Google Scholar] [CrossRef]
- Klein, J.; Sato, A.; Nagl, S.; O’hUigín, C. Molecular Trans-Species Polymorphism. Annu. Rev. Ecol. Syst. 1998, 29, 1–21. [Google Scholar] [CrossRef]
- Těšický, M.; Vinkler, M. Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J. Immunol. Res. 2015, 2015, 838035. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L.; Nei, M. Nucleotide Substitution at Major Histocompatibility Complex Class II Loci: Evidence for Over dominant Selection. Proc. Natl. Acad. Sci. USA 1989, 86, 958–962. [Google Scholar] [CrossRef]
- Ujvari, B.; Belov, K. Major Histocompatibility Complex (MHC) Markers in Conservation Biology. Int. J. Mol. Sci. 2011, 12, 5168–5186. [Google Scholar] [CrossRef]
- Sommer, S. The Importance of Immune Gene Variability (MHC) in Evolutionary Ecology and Conservation. Front. Zool. 2005, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Tiwari, S.K.; Goswami, V.R.; de Silva, S.; Kumar, A.; Baskaran, N.; Yoganand, K.; Menon, V. Elephas maximus. The IUCN Red List of Threatened Species 2020: E.T7140A45818198; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Thitaram, C.; Thongtip, N.; Somgird, C.; Colenbrander, B.; van Boxtel, D.C.J.; van Steenbeek, F.; Lenstra, J.A. Evaluation and Selection of Microsatellite Markers for an Identification and Parentage Test of Asian Elephants (Elephas maximus). Conserv. Genet. 2008, 9, 921–925. [Google Scholar] [CrossRef]
- Suksavate, W.; Duengkae, P.; Chaiyes, A. Quantifying Landscape Connectivity for Wild Asian Elephant Populations among Fragmented Habitats in Thailand. Glob. Ecol. Conserv. 2019, 19, e00685. [Google Scholar] [CrossRef]
- Pla-Ard, M.; Khioesree, N.; Sungkalak, B.; Nathalang, A.; Thomas, W.; Uthairatsamee, S.; Paansri, P.; Chanachai, Y.; Sukmasuang, R. Population Characteristics and Habitat Suitability of Khao Yai National Park, Thailand for Asian Elephant and Five Ungulate Species. Biodiversitas 2021, 23, 231–243. [Google Scholar] [CrossRef]
- Kochprapa, P.; Savini, C.; Ngoprasert, D.; Savini, T.; Gale, G.A. Spatio-temporal Dynamics of Human–elephant Conflict in a Valley of Pineapple Plantations. Integr. Conserv. 2023, 2, 95–107. [Google Scholar] [CrossRef]
- Doyle, C.; Rally, H.; O’Brien, L.; Tennison, M.; Marino, L.; Jacobs, B. Continuing Challenges of Elephant Captivity: The Captive Environment, Health Issues, and Welfare Implications. PeerJ 2024, 12, e18161. [Google Scholar] [CrossRef]
- Lynsdale, C.L.; Mumby, H.S.; Hayward, A.D.; Mar, K.U.; Lummaa, V. Parasite-Associated Mortality in a Long-Lived Mammal: Variation with Host Age, Sex, and Reproduction. Ecol. Evol. 2017, 7, 10904–10915. [Google Scholar] [CrossRef]
- Bansiddhi, P.; Brown, J.L.; Thitaram, C. Welfare Assessment and Activities of Captive Elephants in Thailand. Animals 2020, 10, 919. [Google Scholar] [CrossRef]
- Schmidt-Burbach, J.; Ronfot, D.; Srisangiam, R. Asian Elephant (Elephas maximus), Pig-Tailed Macaque (Macaca nemestrina) and Tiger (Panthera tigris) Populations at Tourism Venues in Thailand and Aspects of Their Welfare. PLoS ONE 2015, 10, e0139092. [Google Scholar] [CrossRef]
- Brown, J.L.; Bansiddhi, P.; Khonmee, J.; Thitaram, A.C. Commonalities in Management and Husbandry Factors Important for Health and Welfare of Captive Elephants in North America and Thailand. Animals 2020, 10, 737. [Google Scholar] [CrossRef] [PubMed]
- Sripiboon, S.; Jackson, B.; Ditcham, W.; Holyoake, C.; Robertson, I.; Thitaram, C.; Tankaew, P.; Letwatcharasarakul, P.; Warren, K. Molecular Characterisation and Genetic Variation of Elephant Endotheliotropic Herpesvirus Infection in Captive Young Asian Elephants in Thailand. Infect. Genet. Evol. 2016, 44, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Sripiboon, S.; Ditcham, W.; Vaughan-Higgins, R.; Jackson, B.; Robertson, I.; Thitaram, C.; Angkawanish, T.; Phatthanakunanan, S.; Lertwatcharasarakul, P.; Warren, K. Subclinical Infection of Captive Asian Elephants (Elephas maximus) in Thailand with Elephant Endotheliotropic Herpesvirus. Arch. Virol. 2020, 165, 397–401. [Google Scholar] [CrossRef]
- Foggin, C.M.; Rosen, L.E.; Henton, M.M.; Buys, A.; Floyd, T.; Turner, A.D.; Tarbin, J.; Lloyd, A.S.; Chaitezvi, C.; Ellis, R.J.; et al. Pasteurella sp. Associated with Fatal Septicaemia in Six African Elephants. Nat. Commun. 2023, 14, 6398. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.; Corpa, J.M.; Orden, J.A.; Blanco, J.; Carbonell, M.D.; Gerique, A.C.; Latimer, E.; Hayward, G.S.; Roemmelt, A.; Kraemer, T.; et al. Acute Death Associated with Citrobacter freundii Infection in an African Elephant (Loxodonta africana). J. Vet. Diagn. Investig. 2015, 27, 632–636. [Google Scholar] [CrossRef]
- Sarad, P.; Tsubota, T. Tuberculosis in Elephants: A Zoonotic Disease at the Human-Elephant Interface. J. Jpn. Soc. Wildl. Med. 2016, 21, 65–69. [Google Scholar] [CrossRef]
- Michel, A.L.; Bengis, R.G.; Keet, D.F.; Hofmeyr, M.; de Klerk, L.M.; Cross, P.C.; Jolles, A.E.; Cooper, D.; Whyte, I.J.; Buss, P.; et al. Wildlife Tuberculosis in South African Conservation Areas: Implications and Challenges. Vet. Microbiol. 2006, 112, 91–100. [Google Scholar] [CrossRef]
- Sripiboon, S. Elephant Endotheliotropic Herpesvirus Infection in Captive Asian Elephants (Elephas maximus) in Thailand: Implications for Conservation and Health Management. Ph.D. Thesis, Murdoch University, Murdoch, WA, Australia, 2016. [Google Scholar]
- Castillo, S.; Srithayakumar, V.; Meunier, V.; Kyle, C.J. Characterization of Major Histocompatibility Complex (MHC) DRB Exon 2 and DRA Exon 3 Fragments in a Primary Terrestrial Rabies Vector (Procyon lotor). PLoS ONE 2010, 5, e12066. [Google Scholar] [CrossRef]
- White, R.J.; Razgour, O. Emerging Zoonotic Diseases Originating in Mammals: A Systematic Review of Effects of Anthropogenic Land-Use Change. Mamm. Rev. 2020, 50, 336–352. [Google Scholar] [CrossRef]
- Perfecto, I.; Chaves, L.F.; Fitch, G.M.; Hajian-Forooshani, Z.; Iuliano, B.; Li, K.; Medina, N.; Morris, J.; Jiménez, B.O.; Rivera-Salinas, I.S.; et al. Looking beyond Land-Use and Land-Cover Change: Zoonoses Emerge in the Agricultural Matrix. One Earth 2023, 6, 1131–1142. [Google Scholar] [CrossRef]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate Change Increases Cross-Species Viral Transmission Risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef]
- Thitaram, C.; Dejchaisri, S.; Somgird, C.; Angkawanish, T.; Brown, J.; Phumphuay, R.; Chomdech, S.; Kangwanpong, D. Social Group Formation and Genetic Relatedness in Reintroduced Asian Elephants (Elephas maximus) in Thailand. Appl. Anim. Behav. Sci. 2015, 172, 52–57. [Google Scholar] [CrossRef]
- Kriangwanich, W.; Nganvongpanit, K.; Buddhachat, K.; Brown, J.L.; Siengdee, P.; Chomdej, S.; Bansiddhi, P.; Thitaram, C. Genetic Diversity and Variation in Captive Asian Elephants (Elephas maximus) in Thailand. Trop. Conserv. Sci. 2018, 11, 194008291881687. [Google Scholar] [CrossRef]
- Ariyaraphong, N.; Ho My Nguyen, D.; Singchat, W.; Suksavate, W.; Panthum, T.; Langkaphin, W.; Chansitthiwet, S.; Angkawanish, T.; Promking, A.; Kaewtip, K.; et al. Standard Identification Certificate for Legal Legislation of a Unique Gene Pool of Thai Domestic Elephants Originating from a Male Elephant Contribution to Breeding. Sustainability 2022, 14, 15355. [Google Scholar] [CrossRef]
- Quainoo, D.K.; Chalermwong, P.; Muangsuk, P.; Nguyen, T.H.D.; Panthum, T.; Singchat, W.; Budi, T.; Duengkae, P.; Suksavate, W.; Chaiyes, A.; et al. Genetic Insights for Enhancing Conservation Strategies in Captive and Wild Asian Elephants through Improved Non-Invasive DNA-Based Individual Identification. PLoS ONE 2025, 20, e0320480. [Google Scholar] [CrossRef]
- Srikulnath, K.; Matsubara, K.; Uno, Y.; Thongpan, A.; Suputtitada, S.; Nishida, C.; Matsuda, Y.; Apisitwanich, S. Genetic relationship of three butterfly lizard species (Leiolepis reevesii rubritaeniata, Leiolepis belliana belliana, Leiolepis boehmei, Agamidae, Squamata) inferred from nuclear gene sequence analyses. Agri. Nat. Resour. 2010, 44, 424–435. [Google Scholar]
- Pečnerová, P.; Díez-Del-Molino, D.; Vartanyan, S.; Dalén, L. Changes in Variation at the MHC Class II DQA Locus during the Final Demise of the Woolly Mammoth. Sci. Rep. 2016, 6, 25274. [Google Scholar] [CrossRef] [PubMed]
- Archie, E.A.; Henry, T.; Maldonado, J.E.; Moss, C.J.; Poole, J.H.; Pearson, V.R.; Murray, S.; Alberts, S.C.; Fleischer, R.C. Major Histocompatibility Complex Variation and Evolution at a Single, Expressed DQA Locus in Two Genera of Elephants. Immunogenetics 2010, 62, 85–100. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 September 2025).
- Sebastian, A.; Herdegen, M.; Migalska, M.; Radwan, J. AMPLISAS: A Web Server for Multilocus Genotyping Using next-Generation Amplicon Sequencing Data. Mol. Ecol. Resour. 2016, 16, 498–510. [Google Scholar] [CrossRef]
- Flajnik, M.F.; Kasahara, M. Comparative Genomics of the MHC: Glimpses into the Evolution of the Adaptive Immune System. Immunity 2001, 15, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Lighten, J.; van Oosterhout, C.; Bentzen, P. Critical Review of NGS Analyses for de Novo Genotyping Multigene Families. Mol. Ecol. 2014, 23, 3957–3972. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Nei, M.; Gojobori, T. Simple Methods for Estimating the Numbers of Synonymous and Nonsynonymous Nucleotide Substitutions. Mol. Biol. Evol. 1986, 3, 418–426. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Kosakovsky Pond, S.L.; Scheffler, K. FUBAR: A Fast, Unconstrained Bayesian Approximation for Inferring Selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Not so Different after All: A Comparison of Methods for Detecting Amino Acid Sites under Selection. Mol. Biol. Evol. 2005, 22, 1208–1222. [Google Scholar] [CrossRef]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Pearson, W.R. An Introduction to Sequence Similarity (“homology”) Searching. Curr. Protoc. Bioinform. 2013, 42, 3.1.1–3.1.8. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, K.A.; Damaso, N.; Robertson, J.M. Assessment of BOLD and GenBank—Their Accuracy and Reliability for the Identification of Biological Materials. PLoS ONE 2019, 14, e0217084. [Google Scholar] [CrossRef]
- Caballero, S.; Heimeier, D.; Trujillo, F.; Vianna, J.A.; Barrios-Garrido, H.; Montiel, M.G.; Beltrán-Pedreros, S.; Marmontel, M.; Santos, M.C.O.; Rossi-Santos, M.R.; et al. Initial Description of Major Histocompatibility Complex Variation at Two Class II Loci (DQA-DQB) in Sotalia fluviatilis and Sotalia guianensis. Lat. Am. J. Aquat. Mamm. 2010, 8, 81–95. [Google Scholar] [CrossRef]
- Heimeier, D.; Alexander, A.; Hamner, R.M.; Pichler, F.; Baker, C.S. The Influence of Selection on MHC DQA and DQB Haplotypes in the Endemic New Zealand Hector’s and Māui Dolphins. J. Hered. 2018, 109, 744–756. [Google Scholar] [CrossRef]
- Lian, X.-D.; Zhang, X.-H.; Dai, Z.-X.; Zheng, Y.-T. Characterization of Classical Major Histocompatibility Complex (MHC) Class II Genes in Northern Pig-Tailed Macaques (Macaca leonina). Infect. Genet. Evol. 2017, 56, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Awadi, A.; Ben Slimen, H.; Smith, S.; Knauer, F.; Makni, M.; Suchentrunk, F. Positive Selection and Climatic Effects on MHC Class II Gene Diversity in Hares (Lepus capensis) from a Steep Ecological Gradient. Sci. Rep. 2018, 8, 11514. [Google Scholar] [CrossRef] [PubMed]
- Awadi, A.; Ben Slimen, H.; Smith, S.; Makni, M.; Suchentrunk, F. Patterns of Evolution in MHC Class II DQA and DQB Exon 2 Genes of Alpine Mountain Hares, Lepus timidus varronis, and Sympatric and Parapatric Brown Hares, L. europaeus, from Switzerland. Immunogenetics 2024, 76, 37–50. [Google Scholar] [CrossRef]
- Lewis, M.J.; Lee, P.; Ng, H.L.; Yang, O.O. Immune Selection in Vitro Reveals Human Immunodeficiency Virus Type 1 Nef Sequence Motifs Important for Its Immune Evasion Function in Vivo. J. Virol. 2012, 86, 7126–7135. [Google Scholar] [CrossRef]
- Lighten, J.; Papadopulos, A.S.T.; Mohammed, R.S.; Ward, B.J.; G Paterson, I.; Baillie, L.; Bradbury, I.R.; Hendry, A.P.; Bentzen, P.; van Oosterhout, C. Evolutionary Genetics of Immunological Supertypes Reveals Two Faces of the Red Queen. Nat. Commun. 2017, 8, 1294. [Google Scholar] [CrossRef]
- Thai, K.T.D.; Anders, K.L. The Role of Climate Variability and Change in the Transmission Dynamics and Geographic Distribution of Dengue. Exp. Biol. Med. 2011, 236, 944–954. [Google Scholar] [CrossRef]
- Takhampunya, R.; Korkusol, A.; Pongpichit, C.; Yodin, K.; Rungrojn, A.; Chanarat, N.; Promsathaporn, S.; Monkanna, T.; Thaloengsok, S.; Tippayachai, B.; et al. Metagenomic Approach to Characterizing Disease Epidemiology in a Disease-Endemic Environment in Northern Thailand. Front. Microbiol. 2019, 10, 319. [Google Scholar] [CrossRef]
- Blackwood, J.C.; Cummings, D.A.T.; Broutin, H.; Iamsirithaworn, S.; Rohani, P. The Population Ecology of Infectious Diseases: Pertussis in Thailand as a Case Study. Parasitology 2012, 139, 1888–1898. [Google Scholar] [CrossRef]
- Cammen, K.; Hoffman, J.I.; Knapp, L.A.; Harwood, J.; Amos, W. Geographic Variation of the Major Histocompatibility Complex in Eastern Atlantic Grey Seals (Halichoerus grypus). Mol. Ecol. 2011, 20, 740–752. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shen, H.; Wang, H.; Zhao, M.; Luo, Z.; Wu, H. Diversifying Selection Is the Dominant Factor Affecting the Geographical Variation of MHC Class II Genes in the Omei Tree Frog. J. Zool. 2016, 300, 197–204. [Google Scholar] [CrossRef]
- Eizaguirre, C.; Lenz, T.L.; Kalbe, M.; Milinski, M. Divergent Selection on Locally Adapted Major Histocompatibility Complex Immune Genes Experimentally Proven in the Field. Ecol. Lett. 2012, 15, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Soriano, A.; Ramos-Onsins, S.E.; Rozas, J.; Calafell, F.; Navarro, A. Statistical Power Analysis of Neutrality Tests under Demographic Expansions, Contractions and Bottlenecks with Recombination. Genetics 2008, 179, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Chamary, J.V.; Parmley, J.L.; Hurst, L.D. Hearing Silence: Non-Neutral Evolution at Synonymous Sites in Mammals. Nat. Rev. Genet. 2006, 7, 98–108. [Google Scholar] [CrossRef]
- Froeschke, G.; Sommer, S. Role of Selection versus Neutral Processes Determining Genetic Variation in a Small Mammal along a Climatic Gradient in Southern Africa. Evol. Ecol. 2014, 28, 1169–1190. [Google Scholar] [CrossRef]
- Slade, J.W.G.; Watson, M.J.; MacDougall-Shackleton, E.A. “Balancing” Balancing Selection? Assortative Mating at the Major Histocompatibility Complex despite Molecular Signatures of Balancing Selection. Ecol. Evol. 2019, 9, 5146–5157. [Google Scholar] [CrossRef]
- Velová, H.; Gutowska-Ding, M.W.; Burt, D.W.; Vinkler, M. Toll-like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol. Biol. Evol. 2018, 35, 2170–2184. [Google Scholar] [CrossRef]
- Arora, J.; Pierini, F.; McLaren, P.J.; Carrington, M.; Fellay, J.; Lenz, T.L. HLA Heterozygote Advantage against HIV-1 Is Driven by Quantitative and Qualitative Differences in HLA Allele-Specific Peptide Presentation. Mol. Biol. Evol. 2020, 37, 639–650. [Google Scholar] [CrossRef]
- Nandakumar, M.; Lundberg, M.; Carlsson, F.; Råberg, L. Positive Selection on Mammalian Immune Genes—Effects of Gene Function and Selective Constraint. Mol. Biol. Evol. 2025, 42, msaf016. [Google Scholar] [CrossRef] [PubMed]
- Knafler, G.J.; Clark, J.A.; Boersma, P.D.; Bouzat, J.L. MHC Diversity and Mate Choice in the Magellanic Penguin, Spheniscus magellanicus. J. Hered. 2012, 103, 759–768. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Kim, T.J.; Parker, K.M. Parasite Resistance and Genetic Variation in the Endangered Gila Topminnow. Anim. Conserv. 2001, 4, 103–109. [Google Scholar] [CrossRef]
- Kamath, P.L.; Getz, W.M. Adaptive Molecular Evolution of the Major Histocompatibility Complex Genes, DRA and DQA, in the Genus Equus. BMC Evol. Biol. 2011, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, H.; Feng, X.; Chen, Q.; Shi, S.; Wu, C.-I.; He, Z. Two Decades of Suspect Evidence for Adaptive Molecular Evolution-Negative Selection Confounding Positive-Selection Signals. Natl. Sci. Rev. 2022, 9, nwab217. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Shen, H.; Li, C.; Chen, C.; Luo, Z.; Wu, H. Evolution by Selection, Recombination, and Gene Duplication in MHC Class I Genes of Two Rhacophoridae Species. BMC Evol. Biol. 2013, 13, 113. [Google Scholar] [CrossRef]
- Radwan, J.; Babik, W.; Kaufman, J.; Lenz, T.L.; Winternitz, J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet. 2020, 36, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, T.; Li, A.; Xiao, Y.; Sun, K.; Feng, J. Diversifying Selection and Climatic Effects on Major Histocompatibility Complex Class II Gene Diversity in the Greater Horseshoe Bat. Evol. Appl. 2023, 16, 688–704. [Google Scholar] [CrossRef]
- Lam, D.K.; Frantz, A.C.; Burke, T.; Geffen, E.; Sin, S.Y.W. Both Selection and Drift Drive the Spatial Pattern of Adaptive Genetic Variation in a Wild Mammal. Evolution 2023, 77, 221–238. [Google Scholar] [CrossRef]
- Minias, P.; Vinkler, M. Selection Balancing at Innate Immune Genes: Adaptive Polymorphism Maintenance in Toll-like Receptors. Mol. Biol. Evol. 2022, 39, msac102. [Google Scholar] [CrossRef] [PubMed]
- Ben Slimen, H.; Awadi, A.; Tolesa, Z.G.; Knauer, F.; Alves, P.C.; Makni, M.; Suchentrunk, F. Positive Selection on the MitochondrialATP Synthase 6 and the NADH Dehydrogenase 2 Genes across 22 Hare Species (Genus Lepus). J. Zoolog. Syst. Evol. Res. 2018, 56, 428–443. [Google Scholar] [CrossRef]
- Wegner, K.M. Historical and Contemporary Selection of Teleost MHC Genes: Did We Leave the Past Behind? J. Fish. Biol. 2008, 73, 2110–2132. [Google Scholar] [CrossRef]
- Paul, K.; Restoux, G.; Phocas, F. Genome-Wide Detection of Positive and Balancing Signatures of Selection Shared by Four Domesticated Rainbow Trout Populations (Oncorhynchus mykiss). Genet. Sel. Evol. 2024, 56, 13. [Google Scholar] [CrossRef]
- Sukmasuang, R.; Thongtip, N.; Bhumpakphan, N. The Studies of Ecology, Population, Distribution and Health to Solve Elephant Problems in Thailand. In Research and Development Projects to Enhance Integrated Competitiveness Agricultural Research Project; Kasetsart University Research and Development Institute: Bangkok, Thailand, 2013. [Google Scholar]
- Hedrick, P.W. Pathogen Resistance and Genetic Variation at MHC Loci. Evolution 2002, 56, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
Population | N 1 | Na 2 | AR 3 | π 4 |
---|---|---|---|---|
NEI a | 39 | 8 | 0.805 ± 0.015 | 0.032 ± 0.00083 |
BCEP b | 41 | 5 | 0.746 ± 0.013 | 0.027 ± 0.00092 |
MEP c | 40 | 6 | 0.799 ± 0.015 | 0.029 ± 0.00144 |
Overall | 123 | 8 | 0.786 ± 0.007 | 0.030 ± 0.00064 |
Population | Tajima’s D | Fu and Li D | Fu and Li F | Nei–Gojobori’s Method | Li–Wu–Luo’s Method | ||||
---|---|---|---|---|---|---|---|---|---|
dN | dS | dN/dS (ω) | dN | dS | dN/dS (ω) | ||||
NEI a | 1.432 ns | 0.936 ns | 1.321 ns | 0.033 | 0.006 | 5.5 | 0.015 | 0.032 | 2.1 |
BCEP b | 1.631 ns | 1.404 ns | 1.773 * | 0.032 | 0.008 | 3.9 | 0.008 | 0.032 | 4.0 |
MEP c | 1.299 ns | 0.872 ns | 1.212 ns | 0.033 | 0.008 | 4.1 | 0.015 | 0.034 | 2.3 |
Overall | 1.794 ns | 1.454 ns | 1.909 * | 0.030 | 0.008 | 3.8 | 0.013 | 0.033 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budi, T.; Enguito, M.R.; Singchat, W.; Panthum, T.; Nguyen, T.H.D.; Chaiyes, A.; Muangmai, N.; Griffin, D.K.; Duengkae, P.; Srikulnath, K. Evidence of Mixed Selection Acting on the MHC Class II DQA Gene in Captive Thai Elephant Populations. Genes 2025, 16, 1180. https://doi.org/10.3390/genes16101180
Budi T, Enguito MR, Singchat W, Panthum T, Nguyen THD, Chaiyes A, Muangmai N, Griffin DK, Duengkae P, Srikulnath K. Evidence of Mixed Selection Acting on the MHC Class II DQA Gene in Captive Thai Elephant Populations. Genes. 2025; 16(10):1180. https://doi.org/10.3390/genes16101180
Chicago/Turabian StyleBudi, Trifan, Marie Roselle Enguito, Worapong Singchat, Thitipong Panthum, Ton Huu Duc Nguyen, Aingorn Chaiyes, Narongrit Muangmai, Darren K. Griffin, Prateep Duengkae, and Kornsorn Srikulnath. 2025. "Evidence of Mixed Selection Acting on the MHC Class II DQA Gene in Captive Thai Elephant Populations" Genes 16, no. 10: 1180. https://doi.org/10.3390/genes16101180
APA StyleBudi, T., Enguito, M. R., Singchat, W., Panthum, T., Nguyen, T. H. D., Chaiyes, A., Muangmai, N., Griffin, D. K., Duengkae, P., & Srikulnath, K. (2025). Evidence of Mixed Selection Acting on the MHC Class II DQA Gene in Captive Thai Elephant Populations. Genes, 16(10), 1180. https://doi.org/10.3390/genes16101180