Genetic and Molecular Insights into Transforming Growth Factor-Beta Signaling in Periodontitis: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Risk of Bias Assessment
2.4. Data Extraction and Synthesis (Added)
3. Results
3.1. Study Selection
Risk of Bias (Updated)
3.2. Characteristics of the Included Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AgP | Aggressive Periodontitis |
BSP | Bone Sialoprotein |
CAL | Clinical Attachment Level |
CBCT | Cone-Beam Computed Tomography |
CCL4 | C-C Motif Chemokine Ligand 4 |
CCL20 | C-C Motif Chemokine Ligand 20 |
CKD | Chronic Kidney Disease |
COL I | Collagen Type I |
CP | Chronic Periodontitis |
CRP | C-Reactive Protein |
CTGF/CCN2 | Connective Tissue Growth Factor/Cellular Communication Network Factor 2 |
EBV | Epstein-Barr Virus |
eGFR | Estimated Glomerular Filtration Rate |
ELISA | Enzyme-Linked Immunosorbent Assay |
FDR | False Discovery Rate |
GAP | Generalized Aggressive Periodontitis |
GCF | Gingival Crevicular Fluid |
GI | Gingival Index |
GTR | Guided Tissue Regeneration |
HCMV | Human Cytomegalovirus |
HP | Healthy Patients |
HtrA1 | High Temperature Requirement A Serine Peptidase 1 |
IHC | Immunohistochemistry |
IFN-γ | Interferon Gamma |
IL | Interleukin |
IL-1β | Interleukin-1 Beta |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
IL-10 | Interleukin-10 |
IL-17 | Interleukin-17 |
LAP TGF-β1 | Latency-Associated Peptide of TGF-β1 |
MAPK | Mitogen-Activated Protein Kinase |
MMP | Matrix Metalloproteinase |
MMP-8 | Matrix Metalloproteinase-8 |
MMP13 | Matrix Metalloproteinase-13 |
NSPT | Non-Surgical Periodontal Treatment |
OC | Osteocalcin |
OPG | Osteoprotegerin |
OR | Odds Ratio |
PD | Periodontal Disease |
PEA | Proximity Extension Assay |
PI | Plaque Index/Peri-implantitis |
PPD | Probing Pocket Depth |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
qRT-PCR | Quantitative Real-Time Polymerase Chain Reaction |
RA | Rheumatoid Arthritis |
RANKL | Receptor Activator of Nuclear Factor κB Ligand |
RCT | Randomized Controlled Trial |
SMAD | Mothers Against Decapentaplegic Homolog (signaling proteins) |
SRP | Scaling and Root Planing |
TGFB | Transforming Growth Factor Beta Gene |
TGFB3 | Transforming Growth Factor Beta 3 Gene |
TGF-β | Transforming Growth Factor Beta |
TGF-β1 | Transforming Growth Factor Beta 1 |
TGF-β3 | Transforming Growth Factor Beta 3 |
Th17 | T Helper 17 Cells |
TIMP2 | Tissue Inhibitor of Metalloproteinases-2 |
TNF-α | Tumor Necrosis Factor Alpha |
Treg | Regulatory T Cells |
References
- Isola, G.; Polizzi, A.; Serra, S.; Boato, M.; Sculean, A. Relationship between Periodontitis and Systemic Diseases: A Bibliometric and Visual Study. Periodontology 2000 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.R. Periodontitis: An Oral Disease with Severe Consequences. Appl. Biochem. Biotechnol. 2023, 195, 17–32. [Google Scholar] [CrossRef]
- Di Stefano, M.; Polizzi, A.; Santonocito, S.; Romano, A.; Lombardi, T.; Isola, G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 5142. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.G.; Alves-Costa, S.; Romandini, M. Burden of Severe Periodontitis and Edentulism in 2021, with Projections up to 2050: The Global Burden of Disease 2021 Study. J. Periodontal Res. 2024, 59, 823–867. [Google Scholar] [CrossRef]
- Liu, X.; Li, H. A Systematic Review and Meta-Analysis on Multiple Cytokine Gene Polymorphisms in the Pathogenesis of Periodontitis. Front. Immunol. 2021, 12, 713198. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and Grading of Periodontitis: Framework and Proposal of a New Classification and Case Definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172. [Google Scholar] [CrossRef]
- Braczkowski, M.J.; Kufel, K.M.; Kulińska, J.; Czyż, D.Ł.; Dittmann, A.; Wiertelak, M.; Młodzik, M.S.; Braczkowski, R.; Soszyński, D. Pleiotropic Action of TGF-Beta in Physiological and Pathological Liver Conditions. Biomedicines 2024, 12, 925. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Ni, Q.; Wang, T.; Bao, C.; Geng, Y.; Lu, Y.; Cao, Y.; Li, Y.; Li, L.; et al. B-Cell-Derived TGF-Β1 Inhibits Osteogenesis and Contributes to Bone Loss in Periodontitis. J. Dent. Res. 2023, 102, 767–776. [Google Scholar] [CrossRef]
- Giarratana, A.O.; Prendergast, C.M.; Salvatore, M.M.; Capaccione, K.M. TGF-β Signaling: Critical Nexus of Fibrogenesis and Cancer. J. Transl. Med. 2024, 22, 594. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Tang, F.; Peng, D.; Zhang, Y.; Shi, H. TGF-Beta Signal Transduction: Biology, Function and Therapy for Diseases. Mol. Biomed. 2022, 3, 45. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Fujita, T.; Kajiya, M.; Matsuda, S.; Ouhara, K.; Shiba, H.; Kurihara, H. Involvement of Smad2 and Erk/Akt Cascade in TGF-Β1-Induced Apoptosis in Human Gingival Epithelial Cells. Cytokine 2015, 75, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, S.; Chen, W.; Li, Y.-P. The Roles and Regulatory Mechanisms of TGF-β and BMP Signaling in Bone and Cartilage Development, Homeostasis and Disease. Cell Res. 2024, 34, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Rizkalla, A.S.; Hamilton, D.W. FGF and TGF-β Growth Factor Isoform Modulation of Human Gingival and Periodontal Ligament Fibroblast Wound Healing Phenotype. Matrix Biol. 2025, 136, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Banlue, A.; Kaewmuangmoon, J.; Janebodin, K.; Tansriratanawong, K. Induction of Migration and Collagen Synthesis in Human Gingival Fibroblasts Using Periodontal Ligament Stem Cell Conditioned Medium. Eur. J. Dent. 2024, 18, 219–227. [Google Scholar] [CrossRef]
- Han, N.; Liu, Y.; Du, J.; Xu, J.; Guo, L.; Liu, Y. Regulation of the Host Immune Microenvironment in Periodontitis and Periodontal Bone Remodeling. Int. J. Mol. Sci. 2023, 24, 3158. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, Y.; Zhang, R.; Wu, X.; Yan, L.; Chen, X.; Wu, Q.; Chen, Y.; Lv, Y.; Su, Y. Role of Periodontal Ligament Fibroblasts in Periodontitis: Pathological Mechanisms and Therapeutic Potential. J. Transl. Med. 2024, 22, 1136. [Google Scholar] [CrossRef]
- Mallick, S.; Duttaroy, A.K.; Bose, B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J. Cell Biochem. 2025, 126, e30680. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Tan, L.; Zhang, C.; Li, X.; Wang, P.; Gao, L.; Zhao, C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023, 46, 1871–1886. [Google Scholar] [CrossRef]
- Li, B.; Li, W.; Liao, Y.; Weng, Z.; Chen, Y.; Ouchi, T.; Fan, Y.; Zhao, Z.; Li, L. Multi-Omics Approach Reveals TGF-β Signaling-Driven Senescence in Periodontium Stem Cells. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Plemmenos, G.; Evangeliou, E.; Polizogopoulos, N.; Chalazias, A.; Deligianni, M.; Piperi, C. Central Regulatory Role of Cytokines in Periodontitis and Targeting Options. Curr. Med. Chem. 2021, 28, 3032–3058. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Norris, J.M.; Simpson, B.S.; Ball, R.; Freeman, A.; Kirkham, A.; Parry, M.A.; Moore, C.M.; Whitaker, H.C.; Emberton, M. A Modified Newcastle-Ottawa Scale for Assessment of Study Quality in Genetic Urological Research. Eur. Urol. 2021, 79, 325–326. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Seydanur Dengizek, E.; Serkan, D.; Abubekir, E.; Aysun Bay, K.; Onder, O.; Arife, C. Evaluating Clinical and Laboratory Effects of Ozone in Non-Surgical Periodontal Treatment: A Randomized Controlled Trial. J. Appl. Oral Sci. 2019, 27, e20180108. [Google Scholar] [CrossRef]
- Liang, Y.; Zou, J.; Meng, X. Clinical Efficacy Analysis of Guided Tissue Regeneration Combined with Microscrew Implant Anchorage Technique in the Treatment of Periodontitis with Malocclusion. J. Investig. Surg. 2025, 38, 2507233. [Google Scholar] [CrossRef]
- Cirano, F.R.; Pimentel, S.P.; Ribeiro, F.V.; Casati, M.Z.; Casarin, R.C.; Gallafassi, D.F.; Nishii, D.; Corrêa, M.G. Impact of History of Periodontitis on Gene Expression of Bone-Related Factors in Young Patients. Braz Oral Res 2020, 34, e014. [Google Scholar] [CrossRef]
- Lorenz, T.; Niţulescu, E.A.; Zizzi, A.; Lorenzi, M.; Paolinelli, F.; Aspriello, S.D.; Baniţă, M.; Crăiţoiu, S.; Goteri, G.; Barbatelli, G.; et al. The Novel Role of HtrA1 in Gingivitis, Chronic and Aggressive Periodontitis. PLoS ONE 2014, 9, e96978. [Google Scholar] [CrossRef]
- Panezai, J.; Ghaffar, A.; Altamash, M.; Sundqvist, K.-G.; Engström, P.-E.; Larsson, A. Correlation of Serum Cytokines, Chemokines, Growth Factors and Enzymes with Periodontal Disease Parameters. PLoS ONE 2017, 12, e0188945. [Google Scholar] [CrossRef] [PubMed]
- Popović, J.; Cvetković, T.; Džopalić, T.; Stanković, A.; Nikolić, M.; Mitić, A.; Todorović, K.; Stošić, N.; Barac, R.; Milasin, J. Effects of Herpesviruses on Proinflammatory Cytokines in Chronic Periapical Lesions. Med. Sci. Monit. 2025, 31, e946843. [Google Scholar] [CrossRef]
- Rajaratinam, H.; Abdul Rahman, N.A.; Hanafi, M.H.; Zainuddin, S.L.A.; Ibrahim, H.A.; Kamarudin, M.I.; Wan Zain, W.M.S.; Kuttulebbai Nainamohamed Salam, S.; Isa, S.; Kassim, N.K. Exploring the Outcomes of Non-Surgical Periodontal Therapy in Modulating Periodontal Parameters, Renal Function, and Inflammatory Biomarkers in Chronic Kidney Disease Patients with Periodontitis. PeerJ 2025, 13, e19492. [Google Scholar] [CrossRef]
- Dessaune Neto, N.; Porpino, M.T.M.; Antunes, H.D.S.; Rodrigues, R.C.V.; Perez, A.R.; Pires, F.R.; Siqueira, J.F.; Armada, L. Pro-Inflammatory and Anti-Inflammatory Cytokine Expression in Post-Treatment Apical Periodontitis. J. Appl. Oral Sci. 2018, 26, e20170455. [Google Scholar] [CrossRef]
- Escobar, G.F.; Abdalla, D.R.; Beghini, M.; Gotti, V.B.; Rodrigues Junior, V.; Napimoga, M.H.; Ribeiro, B.M.; Rodrigues, D.B.R.; Nogueira, R.D.; Pereira, S.A.d.L. Levels of Pro and Anti-Inflammatory Citokynes and C-Reactive Protein in Patients with Chronic Periodontitis Submitted to Nonsurgical Periodontal Treatment. Asian Pac. J. Cancer Prev. 2018, 19, 1927–1933. [Google Scholar] [CrossRef]
- Gonçalves Junior, R.; Pinheiro, A.d.R.; Schoichet, J.J.; Nunes, C.H.R.; Gonçalves, R.; Bonato, L.L.; Quinelato, V.; Antunes, L.S.; Küchler, E.C.; Lobo, J.; et al. MMP13, TIMP2 and TGFB3 Gene Polymorphisms in Brazilian Chronic Periodontitis and Periimplantitis Subjects. Braz. Dent. J. 2016, 27, 128–134. [Google Scholar] [CrossRef]
- Honda, T.; Domon, H.; Okui, T.; Kajita, K.; Amanuma, R.; Yamazaki, K. Balance of Inflammatory Response in Stable Gingivitis and Progressive Periodontitis Lesions. Clin. Exp. Immunol. 2006, 144, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Mize, T.W.; Sundararaj, K.P.; Leite, R.S.; Huang, Y. Increased and Correlated Expression of Connective Tissue Growth Factor and Transforming Growth Factor Beta 1 in Surgically Removed Periodontal Tissues with Chronic Periodontitis. J. Periodontal Res. 2015, 50, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Sattari, M.; Fathiyeh, A.; Gholami, F.; Darbandi Tamijani, H.; Ghatreh Samani, M. Effect of Surgical Flap on IL-1β and TGF-β Concentrations in the Gingival Crevicular Fluid of Patients with Moderate to Severe Chronic Periodontitis. Iran. J. Immunol. 2011, 8, 20–26. [Google Scholar]
- Toledo, A.O.N.d.; Couto, A.M.d.; Madeira, M.F.M.; Caldeira, P.C.; Queiroz-Junior, C.M.; de Aguiar, M.C.F. Cytokines and Chemokines Associated with Treg/Th17 Response in Chronic Inflammatory Periapical Disease. Braz. Oral Res. 2019, 33, e093. [Google Scholar] [CrossRef]
- da Costa, T.A.; Silva, M.J.B.; Alves, P.M.; Chica, J.E.L.; Barcelos, E.Z.; Giani, M.A.A.; Garlet, G.P.; da Silva, J.S.; Rodrigues Júnior, V.; Rodrigues, D.B.R.; et al. Inflammation Biomarkers of Advanced Disease in Nongingival Tissues of Chronic Periodontitis Patients. Mediat. Inflamm. 2015, 2015, 983782. [Google Scholar] [CrossRef] [PubMed]
- Elebyary, O.; Barbour, A.; Fine, N.; Tenenbaum, H.C.; Glogauer, M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. Front. Oral Health 2020, 1, 584705. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Katsoulieris, E.; Afratis, N.A. Matrix Dynamics and Microbiome Crosstalk: Matrix Metalloproteinases as Key Players in Disease and Therapy. Int. J. Mol. Sci. 2025, 26, 3621. [Google Scholar] [CrossRef]
- Dereka, X.E.; Markopoulou, C.E.; Vrotsos, I.A. Role of Growth Factors on Periodontal Repair. Growth Factors 2006, 24, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Katsuno, Y.; Derynck, R. Epithelial Plasticity, Epithelial-Mesenchymal Transition, and the TGF-β Family. Dev. Cell 2021, 56, 726–746. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Chen, R.; Lin, B.; Deng, R.; Liang, Y.; Zeng, J.; Ma, S.; Qiu, X. Cross-Talk between the TGF-β and Cell Adhesion Signaling Pathways in Cancer. Int. J. Med. Sci. 2024, 21, 1307–1320. [Google Scholar] [CrossRef]
- Moore, A.L.; Marshall, C.D.; Barnes, L.A.; Murphy, M.P.; Ransom, R.C.; Longaker, M.T. Scarless Wound Healing: Transitioning from Fetal Research to Regenerative Healing. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e309. [Google Scholar] [CrossRef]
- Chang, Z.; Kishimoto, Y.; Hasan, A.; Welham, N.V. TGF-Β3 Modulates the Inflammatory Environment and Reduces Scar Formation Following Vocal Fold Mucosal Injury in Rats. Dis. Model. Mech. 2014, 7, 83–91. [Google Scholar] [CrossRef]
- Urban, L.; Čoma, M.; Lacina, L.; Szabo, P.; Sabová, J.; Urban, T.; Šuca, H.; Lukačín, Š.; Zajíček, R.; Smetana, K.; et al. Heterogeneous Response to TGF-Β1/3 Isoforms in Fibroblasts of Different Origins: Implications for Wound Healing and Tumorigenesis. Histochem. Cell Biol. 2023, 160, 541–554. [Google Scholar] [CrossRef]
- Boothe, D.L.; Coplowitz, S.; Greenwood, E.; Barney, C.L.; Christos, P.J.; Parashar, B.; Nori, D.; Chao, K.S.C.; Wernicke, A.G. Transforming Growth Factor β-1 (TGF-Β1) Is a Serum Biomarker of Radiation Induced Fibrosis in Patients Treated with Intracavitary Accelerated Partial Breast Irradiation: Preliminary Results of a Prospective Study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 1030–1036. [Google Scholar] [CrossRef]
- Khalaf, H.; Lönn, J.; Bengtsson, T. Cytokines and Chemokines Are Differentially Expressed in Patients with Periodontitis: Possible Role for TGF-Β1 as a Marker for Disease Progression. Cytokine 2014, 67, 29–35. [Google Scholar] [CrossRef]
- Danielpour, D. Advances and Challenges in Targeting Tgf-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals 2024, 17, 533. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, J.; Gan, D.; Ling, K.; He, M.; Li, J.; Lu, Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. Nanomicro Lett. 2024, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Luan, J.; Dong, S. Hydrogels Promote Periodontal Regeneration. Front. Bioeng. Biotechnol. 2024, 12, 1411494. [Google Scholar] [CrossRef]
- Thielen, N.G.M.; van Caam, A.P.M.; Beuningen, H.M.V.; Vitters, E.L.; van den Bosch, M.H.J.; Koenders, M.I.; van de Loo, F.A.J.; Blaney Davidson, E.N.; van der Kraan, P.M. Separating Friend from Foe: Inhibition of TGF-β-Induced Detrimental SMAD1/5/9 Phosphorylation While Maintaining Protective SMAD2/3 Signaling in OA Chondrocytes. Osteoarthr. Cartil. 2023, 31, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Mo, K.; Wang, Y.; Lu, C.; Li, Z. Insight into the Role of Macrophages in Periodontitis Restoration and Development. Virulence 2024, 15, 2427234. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, U.K.; Oikonomou, I.; Yilmaz, M.; Gürsoy, M. Advances in Periodontal Healing Biomarkers. Adv. Clin. Chem. 2025, 125, 143–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Pang, X.; Li, Z.; Chen, Z.; Wang, Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front. Immunol. 2021, 12, 781378. [Google Scholar] [CrossRef]
Study (Year) | Design | D1 Randomization | D2 Deviations | D3 Missing Data | D4 Outcome Measurement | D5 Reported Result | Overall RoB 2 |
---|---|---|---|---|---|---|---|
Dengizek et al. (2019) [24] | Randomized, double-blind, placebo-controlled RCT | Low | Low | Low | Low | Low | Low risk |
Liang et al. (2025) [25] | Randomized parallel-group surgical RCT | Low | Some concerns | Low | Low | Some concerns | Some concerns |
Study (Year) | Design | Biological Matrix | TGF-β Isoform | NOS (0–9) | NOS Category | Key Limitations/Notes |
---|---|---|---|---|---|---|
Cirano et al. (2020) [26] | Cross-sectional (GAP on SPT vs. healthy) | Alveolar bone biopsies (qRT-PCR) | TGF-β (mRNA) | 7 | good | Examiner-blind; rigorous inclusion/exclusion; smokers excluded; matched demographics; no multivariable models |
Lorenzi et al. (2014) [27] | Cross-sectional (healthy/gingivitis/CP/AgP) | Gingival tissue (IHC + RT-PCR) | Indirect (HtrA1 inhibits TGF-β) | 7 | good | Rigorous inclusion/exclusion; clear phenotypes; indirect readout; no multivariable adjustment |
Panezai et al. (2017) [28] | Cross-sectional (RA, PD, healthy) | Serum (Olink PEA 92-plex) | LAP TGF-β1 (latent complex) | 7 | good | Standardized acquisition; multiplicity control (FDR); convenience sampling; limited confounder adjustment |
Popović et al. (2025) [29] | Cross-sectional (symptomatic vs. asymptomatic lesions) | Periapical lesion tissue (ELISA + PCR for viruses) | TGF-β1 | 7 | good | Clear case definition; blinded lab assays implied; limited adjustment for confounders |
Rajaratinam et al. (2025) [30] | Prospective controlled (CKD-P vs. P vs. healthy) | Serum (TGF-β1, IL-6) + clinical + eGFR | TGF-β1 | 7 | good | Prospective with pre/post; nonrandomized; standardized measures; confounding by indication possible |
Dessaune Neto et al. (2018) [31] | Cross-sectional (post-treatment apical periodontitis) | Periapical lesion tissue (IHC) | TGF-β (unspecified) | 6 | moderate | Standardized IHC scoring; two blinded evaluators; convenience surgical sample; limited confounder control |
Escobar et al. (2018) [32] | Controlled before–after (NSPT) + healthy controls | Serum (cytokines/CRP) | TGF-β (reported) | 6 | moderate | Pre/post within CP; nonrandomized; potential selection bias; standard assays |
Gonçalves Junior et al. (2016) [33] | Cross-sectional genetic association (CP and/or PI) | Genotyping (buccal epithelial cells) | TGF-β3 polymorphism (rs2268626) | 6 | moderate | Well-defined groups; blinded lab workflow; no multivariable adjustment; cross-sectional design |
Honda et al. (2006) [34] | Case–control (gingivitis vs. periodontitis) | Gingival biopsies (qRT-PCR) | TGF-β1 mRNA | 6 | moderate | Clear case definitions; age imbalance; no adjustment for confounding; blinded lab methods not stated |
Mize et al. (2015) [35] | Case–control (periodontitis vs. non-periodontitis) | Gingival tissue (qRT-PCR) | TGF-β1 mRNA | 6 | moderate | Clear criteria; small sample; non-matched controls; no multivariable adjustment |
Sattari et al. (2011) [36] | Case–control (PD vs healthy); IHC | Alveolar bone/tissues (IHC) | TGF-β (unspecified) | 6 | moderate | Convenience surgical samples; no matching; standard IHC; potential age/smoking imbalance |
Toledo et al. (2019) [37] | Cross-sectional (periapical lesions vs. necrotic pulp vs. control) | Periapical tissue homogenates (ELISA) | TGF-β (unspecified) | 6 | moderate | Clear group definitions; histopathology confirmation; standardized ELISA; limited confounder control |
da Costa et al. (2015) [38] | Case–control (advanced CP vs. controls) | Alveolar bone and adjacent tissues (IHC for TGF-β/IL-17; qRT-PCR) | TGF-β (protein by IHC) | 6 | moderate | Clear criteria; surgical bone biopsies; smokers present; age imbalance; no multivariable adjustment; standardized IHC/qPCR |
First Author (Year) | Country | Population | Biological Material | TGF-β Isoform(s) | Main Outcomes | Key Findings |
---|---|---|---|---|---|---|
Mize et al. (2015) [35] | USA | 21 individuals (7 healthy, 14 with chronic periodontitis) | Gingival tissue | TGF-β1 | To assess expression of TGF-β1 and CTGF/CCN2 in gingiva of patients with periodontitis | TGF-β1 and CTGF/CCN2 mRNA expression levels were significantly increased and positively correlated in periodontitis tissues. |
Panezai et al. (2017) [28] | Sweden | 90 individuals (38 with RA, 38 with PD, 14 healthy controls) | Serum | TGF-β1 (LAP TGF-β1) | To investigate serum cytokines, chemokines, growth factors, and enzymes in relation to periodontal disease parameters | LAP TGF-β1 was positively associated with the number of teeth and inversely associated with shallow pockets; systemic inflammatory markers including TGF-β1 correlate with periodontal status in PD and RA patients. |
Gonçalves Junior et al. (2016) [33] | Brazil | 163 individuals with or without history of chronic periodontitis and/or peri-implantitis | Buccal epithelial cells (for genotyping) | TGF-β3 | To evaluate the relationship between CP, PI, and gene polymorphisms in MMP13, TIMP2, and TGFB3 | CP significantly increased risk of PI (OR = 3.2), but no significant association was found between TGFB3 (rs2268626) polymorphism and CP or PI. |
Dessaune Neto et al. (2018) [31] | Brazil | 27 patients with apical periodontitis undergoing periradicular surgery | Apical lesion tissue (granulomas and cysts) | TGF-β (unspecified isoform) GF-β | To compare pro- and anti-inflammatory cytokine expression and correlate with clinical/CBCT data | TGF-β expression was weak/moderate most often, significantly associated with cyst lesions treated ≤4 years earlier (p = 0.045); overall cytokine expression showed balance between pro- and anti-inflammatory mediators. |
Cirano et al. (2020) [26] | Brazil | 33 young adults (16 with generalized aggressive periodontitis (GAP), 17 healthy controls) | Alveolar bone biopsies | TGF-β (unspecified) | To compare gene expression of bone turnover markers including TGF-β in alveolar bone between GAP and healthy individuals | Patients with GAP exhibited significantly lower TGF-β and OPG mRNA levels compared to healthy controls (p ≤ 0.05); no differences in TNF-α, RANKL, OC, BSP, COL-I expression. |
Toledo et al. (2019) [37] | Brazil | 86 human teeth: necrotic pulp with lesion (n = 26), necrotic pulp without lesion (n = 30), healthy (n = 30) | Periapical tissue homogenates (ELISA) | TGF-β (isoform not specified) | To investigate the role of Treg (TGF-β, IL-10, CCL4) and Th17 (IL-17, CCL20) cytokines in periapical lesions | I TGF-β and CCL4 were significantly elevated in periapical lesions vs. necrotic pulp without lesion. Weak positive correlation observed between IL-17/TGF-β, indicating co-stimulation. TGF-β may help stabilize chronic periapical inflammation. |
da Costa et al. (2015) [38] | Brazil | Chronic periodontitis patients (n not stated) | Non-gingival affected tissues | TGF-β (unspecified) | To identify inflammatory biomarkers in tissues affected by chronic periodontitis | elevated levels of TGF-β observed in advanced non-gingival affected tissues of chronic periodontitis patients, suggesting involvement in local inflammatory response and tissue remodeling. |
Sattari et al. (2011) [36] | Iran | 10 patients with moderate to severe chronic periodontitis undergoing flap surgery | Gingival crevicular fluid (GCF | TGF-β1 | To evaluate the effect of flap surgery on IL-1β and TGF-β1 concentrations in GCF | GF-β1 and IL-1β levels significantly decreased from baseline to 12 weeks post-surgery (p < 0.05); TGF-β1 levels correlated with plaque index and PPD; reduction attributed to resolution of inflammation. |
Escobar et al. (2018) [32] | Brazil | 40 individuals: 20 healthy patients, 20 with chronic periodontitis | Gingival crevicular fluid (GCF), serum | TGF-β (unspecified) | To compare IFN-γ, TGF-β and CRP levels in HP vs. CP before and after non-surgical periodontal treatment (NSPT) | TGF-β levels in GCF were significantly higher in CP before treatment than in HP; TGF-β levels decreased post-NSPT; early immune response was marked by decreased TGF-β and increased IFN-γ. |
Dengizek et al. (2019) [24] | Turkey | 40 patients with chronic periodontitis (20 SRP + ozone, 20 SRP + placebo) | Whole saliva (pre- and 1 month post-treatment) | TGF-β (unspecified) | To evaluate effects of SRP + ozone vs. SRP + placebo on clinical parameters and salivary biochemical markers | TGF-β levels significantly increased only in the ozone group post-treatment (p < 0.05), suggesting enhanced tissue regenerative response. However, clinical recovery parameters (PI, GI, PD, CAL) showed no significant intergroup difference. |
Lorenzi et al. (2014) [27] | Italy | 56 subjects (healthy, gingivitis, CP, AgP) | Gingival biopsies | Implicit (via HtrA1) | Expression of HtrA1 and its role in inflammation and matrix degradation | HtrA1 inhibits TGF-β, promoting MMPs, IL-1β, and TNF-α; strongest expression seen in aggressive periodontitis. |
Popović et al. (2025) [29] | Serbia | 79 patients with chronic apical periodontitis (43 symptomatic, 36 asymptomatic) | Periapical lesion tissue | TGF-β1 | Evaluate the presence of HCMV and EBV in symptomatic vs. asymptomatic lesions and assess IL-6, IL-8, TNF-α, and TGF-β1 levels via ELISA | HCMV and dual HCMV/EBV infection were significantly more frequent in symptomatic lesions. TGF-β1 was higher in virus-positive vs. virus-negative lesions but significantly so only in dual HCMV/EBV infections. IL-6, IL-8, and TNF-α were elevated in all virus-positive lesions, especially in dual infections. TGF-β1’s role may be limited in this setting. |
Rajaratinam et al. (2025) [30] | Malaysia | CKD-stage 3–4 with periodontitis (n = 20), periodontitis only (n = 20), healthy (n = 20) | Serum | TGF-β1 | Effects of NSPT on periodontal health, renal function (eGFR), IL-6, and TGF-β1 levels | CKD-P group had highest baseline TGF-β1. After NSPT, TGF-β1 significantly decreased only in CKD-P group (p < 0.001). IL-6 dropped in both CKD-P and P groups; eGFR improved in CKD-P (p < 0.0001). |
Honda et al. (2006) [34] | Japan | Patients with stable gingivitis and progressive periodontitis | Gingival tissue/fluid | TGF-β1 | Compare cytokine balance—including TGF-β—in stable vs. progressive periodontal lesions | TGF-β1 is part of the regulatory cytokine network governing stability; progressive lesions show altered pro-/anti-inflammatory balance with dysregulated TGF-β expression. |
Liang et al. (2025) [25] | China | Patients undergoing GTR + microscrew anchorage for periodontitis with malocclusion | Gingival crevicular fluid (GCF) | TGF-β (presumably TGF-β1) | Effects of GTR + anchorage on GCF biomarkers including IL-6, MMP-8, and TGF-β post-treatment | Six weeks post-treatment, IL-6 and MMP-8 levels decreased significantly, while TGF-β levels increased compared to controls. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawłaszek, T.; Grabarek, B.O. Genetic and Molecular Insights into Transforming Growth Factor-Beta Signaling in Periodontitis: A Systematic Review. Genes 2025, 16, 1165. https://doi.org/10.3390/genes16101165
Pawłaszek T, Grabarek BO. Genetic and Molecular Insights into Transforming Growth Factor-Beta Signaling in Periodontitis: A Systematic Review. Genes. 2025; 16(10):1165. https://doi.org/10.3390/genes16101165
Chicago/Turabian StylePawłaszek, Tomasz, and Beniamin Oskar Grabarek. 2025. "Genetic and Molecular Insights into Transforming Growth Factor-Beta Signaling in Periodontitis: A Systematic Review" Genes 16, no. 10: 1165. https://doi.org/10.3390/genes16101165
APA StylePawłaszek, T., & Grabarek, B. O. (2025). Genetic and Molecular Insights into Transforming Growth Factor-Beta Signaling in Periodontitis: A Systematic Review. Genes, 16(10), 1165. https://doi.org/10.3390/genes16101165