CRYAB Missense Mutation Reveals Shared Pathogenesis of Familial Cardiomyopathy and Arrhythmia
Abstract
1. Introduction
2. Methods
2.1. Exome Sequencing
2.2. Data Processing and Variant Calling
2.3. Bioinformatic Tools
2.4. Sanger Sequencing and Co-Segregation Analysis
2.5. Protein Modeling and Evolutionary Conservation
2.6. Network-Based Analysis
3. Results
3.1. Clinical Manifestations
3.2. Characterization and In Silico Modeling of CRYAB Variant
3.3. Tissue-Specific Expression Analysis
3.4. Cardiomyopathy Gene Expression and Pathway Enrichment Analysis
3.5. Protein–Protein Interaction Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiter, J.S.; Berkenbosch-Nieuwhof, K.; Van Den Berg, M.P.; Van Dijk, R.; Middel, B.; Van Tintelen, J.P. The Importance of the Family History in Caring for Families with Long QT Syndrome and Dilated Cardiomyopathy. Am. J. Med. Genet. A 2010, 152A, 607–612. [Google Scholar] [CrossRef]
- Schultheiss, H.P.; Fairweather, D.L.; Caforio, A.L.P.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated Cardiomyopathy. Nat. Rev. Dis. Primers 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, P.; Li, C.; Tan, L.; Xu, J.; Wang, H.; Sun, Y.; Wang, Y.; Zhao, C.; Link, M.S.; et al. Genetic Arrhythmias Complicating Patients with Dilated Cardiomyopathy. Heart Rhythm. 2020, 17, 305–312. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Crotti, L.; Insolia, R. Long-QT Syndrome: From Genetics to Management. Circ. Arrhythm. Electrophysiol. 2012, 5, 868–877. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K. Inflammation in Myocardial Disease: From Myocarditis to Dilated Cardiomyopathy. Pathol. Int. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Kallergis, E.M.; Goudis, C.A.; Simantirakis, E.N.; Kochiadakis, G.E.; Vardas, P.E. Mechanisms, Risk Factors, and Management of Acquired Long QT Syndrome: A Comprehensive Review. Sci. World J. 2012, 2012, 212178. [Google Scholar] [CrossRef]
- Kwon, H.W.; Lee, S.Y.; Kwon, B.S.; Kim, G.B.; Bae, E.J.; Kim, W.H.; Noh, C.I.; Cho, S.I.; Park, S.S. Long QT Syndrome and Dilated Cardiomyopathy with SCN5A p.R1193Q Polymorphism: Cardioverter-Defibrillator Implantation at 27 Months. Pacing Clin. Electrophysiol. 2012, 35, e243–e246. [Google Scholar] [CrossRef]
- Panicker, J.S.; Chiramel, S.J. Co-Existence of RBM20 and KCNQ1 Gene Mutations in a Patient with Long QT Syndrome and Dilated Cardiomyopathy. “Which Came First: Chicken or the Egg?”. Indian Pacing Electrophysiol. J. 2025, 25, 171–174. [Google Scholar] [CrossRef]
- Weissler-Snir, A.; Gollob, M.H.; Chauhan, V.; Care, M.; Spears, D.A. Evaluation of Prolonged QT Interval: Structural Heart Disease Mimicking Long QT Syndrome. Pacing Clin. Electrophysiol. 2017, 40, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Dimauro, I.; Caporossi, D. Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. Molecules 2022, 27, 1147. [Google Scholar] [CrossRef] [PubMed]
- Neppl, R.L.; Kataok, M.; Wang, D.Z. Crystallin-AB Regulates Skeletal Muscle Homeostasis via Modulation of Argonaute2 Activity. J. Biol. Chem. 2014, 289, 17240–17248. [Google Scholar] [CrossRef] [PubMed]
- Sanbe, A. Molecular Mechanisms of α-Crystallinopathy and Its Therapeutic Strategy. Biol. Pharm. Bull. 2011, 34, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Gaertner-Rommel, A.; Klauke, B.; Grewe, S.A.; Schirmer, I.; Peterschröder, A.; Faber, L.; Vorgerd, M.; Gummert, J.; Anselmetti, D.; et al. The Novel AB-Crystallin (CRYAB) Mutation p.D109G Causes Restrictive Cardiomyopathy. Hum. Mutat. 2017, 38, 947–952. [Google Scholar] [CrossRef]
- Somee, L.R.; Barati, A.; Shahsavani, M.B.; Hoshino, M.; Hong, J.; Kumar, A.; Moosavi-Movahedi, A.A.; Amanlou, M.; Yousefi, R. Understanding the Structural and Functional Changes and Biochemical Pathomechanism of the Cardiomyopathy-Associated p.R123W Mutation in Human AB-Crystallin. Biochim. Biophys. Acta Gen. Subj. 2024, 1868, 130579. [Google Scholar] [CrossRef]
- Chou, C.; Martin, G.L.; Perera, G.; Awata, J.; Larson, A.; Blanton, R.; Chin, M.T. A Novel αB-Crystallin R123W Variant Drives Hypertrophic Cardiomyopathy by Promoting Maladaptive Calcium-Dependent Signal Transduction. Front. Cardiovasc. Med. 2023, 10, 1223244. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Inagaki, N.; Hayashi, T.; Arimura, T.; Koga, Y.; Takahashi, M.; Shibata, H.; Teraoka, K.; Chikamori, T.; Yamashina, A.; Kimura, A. Alpha B-Crystallin Mutation in Dilated Cardiomyopathy. Biochem. Biophys. Res. Commun. 2006, 342, 379–386. [Google Scholar] [CrossRef]
- Franaszczyk, M.; Truszkowska, G.; Chmielewski, P.; Rydzanicz, M.; Kosinska, J.; Rywik, T.; Biernacka, A.; Spiewak, M.; Kostrzewa, G.; Stepien-wojno, M.; et al. Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes. J. Clin. Med. 2020, 9, 370. [Google Scholar] [CrossRef]
- Fichna, J.P.; Potulska-Chromik, A.; Miszta, P.; Redowicz, M.J.; Kaminska, A.M.; Zekanowski, C.; Filipek, S. A Novel Dominant D109A CRYAB Mutation in a Family with Myofibrillar Myopathy Affects AB-Crystallin Structure. BBA Clin. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Marschall, C.; Moscu-Gregor, A.; Klein, H.G. Variant Panorama in 1,385 Index Patients and Sensitivity of Expanded next-Generation Sequencing Panels in Arrhythmogenic Disorders. Cardiovasc. Diagn. Ther. 2019, 9 (Suppl. 2), S292. [Google Scholar] [CrossRef]
- Sacconi, S.; Féasson, L.; Antoine, J.C.; Pécheux, C.; Bernard, R.; Cobo, A.M.; Casarin, A.; Salviati, L.; Desnuelle, C.; Urtizberea, A. A Novel CRYAB Mutation Resulting in Multisystemic Disease. Neuromuscul. Disord. 2012, 22, 66–72. [Google Scholar] [CrossRef]
- Tester, D.J.; Wong, L.C.H.; Chanana, P.; Jaye, A.; Evans, J.M.; FitzPatrick, D.R.; Evans, M.J.; Fleming, P.; Jeffrey, I.; Cohen, M.C.; et al. Cardiac Genetic Predisposition in Sudden Infant Death Syndrome. J. Am. Coll. Cardiol. 2018, 71, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Van der Smagt, J.J.; Vink, A.; Kirkels, J.H.; Nelen, M.; ter Heide, H.; Molenschot, M.M.C.; Weger, R.A.; Schellekens, P.A.W.; Hoogendijk, J.; Dooijes, D. Congenital Posterior Pole Cataract and Adult Onset Dilating Cardiomyopathy: Expanding the Phenotype of AB-Crystallinopathies. Clin. Genet. 2014, 85, 381–385. [Google Scholar] [CrossRef]
- Van Lint, F.H.M.; Mook, O.R.F.; Alders, M.; Bikker, H.; Lekanne dit Deprez, R.H.; Christiaans, I. Large Next-Generation Sequencing Gene Panels in Genetic Heart Disease: Yield of Pathogenic Variants and Variants of Unknown Significance. Neth. Heart J. 2019, 27, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.H.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian Gene Pathogenicity Using 7,855 Cardiomyopathy Cases and 60,706 Reference Samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, R.E.; Givertz, M.M.; Ho, C.Y.; Judge, D.P.; Kantor, P.F.; McBride, K.L.; Morales, A.; Taylor, M.R.G.; Vatta, M.; Ware, S.M. Genetic Evaluation of Cardiomyopathy: A Clinical Practice Resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2018, 20, 899–909. [Google Scholar] [CrossRef]
- Olivé, M.; Goldfarb, L.; Moreno, D.; Laforet, E.; Dagvadorj, A.; Sambuughin, N.; Martínez-Matos, J.A.; Martínez, F.; Alió, J.; Farrero, E.; et al. Desmin-Related Myopathy: Clinical, Electrophysiological, Radiological, Neuropathological and Genetic Studies. J. Neurol. Sci. 2004, 219, 125–137. [Google Scholar] [CrossRef]
- Thorkelsson, A.; Chin, M.T. Role of the Alpha-B-Crystallin Protein in Cardiomyopathic Disease. Int. J. Mol. Sci. 2024, 25, 2826. [Google Scholar] [CrossRef]
- Thorkelsson, A.; Chou, C.; Tripp, A.; Ali, S.A.; Galper, J.; Chin, M.T. Hypertrophic Cardiomyopathy-Associated CRYABR123W Activates Calcineurin, Reduces Calcium Sequestration, and Alters the CRYAB Interactome and the Proteomic Response to Pathological Hypertrophy. Int. J. Mol. Sci. 2025, 26, 2383. [Google Scholar] [CrossRef]
- Su, W.; van Wijk, S.W.; Brundel, B.J.J.M. Desmin Variants: Trigger for Cardiac Arrhythmias? Front. Cell Dev. Biol. 2022, 10, 986718. [Google Scholar] [CrossRef]
Family Member | Age (y/o) | Status | Clinical Summary |
---|---|---|---|
II-6, Proband (male) | 58 | Alive | Syncope, palpitations, dizziness; bradyarrhythmia managed with ICD |
I-1, Father | 62 | Deceased (SCD) | Sudden cardiac death (first-degree relative) |
II-10, Sibling 1 (male) | 33 | Deceased (SCD) | Sudden cardiac death |
II-9, Sibling 2 (male) | 39 | Deceased (SCD) | Sudden cardiac death |
II-8, Sibling 3 (male) | 56 | Deceased (SCD) | Sudden cardiac death |
II-8, Sibling 4 (male) | — | Alive | Survived cardiac event; treated with ICD |
III-1, III-2, III-3, III-4, (Offspring/Nephews} | — | Alive | Prophylactic propranolol initiated due to autosomal dominant pattern |
Variant | MT & | DANN | MetaLR | GenoCanyon | fitCons | gnomAD Frequency V4.0.0 (Het */Hom #) | ACMG Classification | Pathogenicity (ACMG) | Ref. |
---|---|---|---|---|---|---|---|---|---|
c.368G>A | D $ | D | D | D | D | 0.00001/0 | Likely Pathogenic | PP1, PP2, PP3, PP4, PM1, PM2, PM5 | [16] |
No. | cDNA Variant | Protein Change | Locus | Reference ID | CADD Score (v1.7) | Frequency gnomAD v4.0.0 | Variant | ACMG | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | c.368G>A | p.Arg123Gln | Exon 3 | rs782206421 | 28.9 | 0.00001 | Missense | Likely Pathogenic | Novel |
2 | c.326A>G | p.Asp109Gly | Exon 3 | rs1114167341 | 33 | NA | Missense | Pathogenic | [13] |
3 | c.119C>T | p.Thr40Met | Exon 1 | rs782122417 | 20.3 | 0.00005 | Missense | VUS | [17] |
4 | c.527A>G | p.*176Trpext*19 | Exon 3 | - | 19.6 | NA | Stop-loss | VUS | [18,19] |
5 | c.470G>A | p.Arg157His | Exon 3 | rs141638421 | 32 | 0.007 | Missense | VUS | [18] |
6 | c.326A>C | p.Asp109Ala | Exon 3 | - | 34 | NA | Missense | Likely Pathogenic | [20] |
7 | c.19C>T | p.His7Tyr | Exon 1 | rs1555165611 | 22.7 | 0.000005 | Missense | VUS | [21] |
8 | c.325G>C | p.Asp109His | Exon 3 | rs387907339 | 35 | NA | Missense | Likely Pathogenic | [22] |
9 | c.325-2A>G | - | Exon 3 | rs202024436 | 33 | 0.00003 | Splicing | Likely Pathogenic | [23] |
10 | c.277G>T | p.Val93Leu | Exon 2 | rs547282752 | 24 | 0.00001 | Missense | VUS | [24] |
11 | c.124A>G | p.Thr42Ala | Exon 1 | rs782547574 | 15.97 | 0.00002 | Missense | VUS | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nariman, A.; Nikoo, M.H.; Sarrafzadegan, N.; Zibanejad, M.J.; Jervekani, Z.T.; Daliri, K.; Tabatabaiefar, M.A. CRYAB Missense Mutation Reveals Shared Pathogenesis of Familial Cardiomyopathy and Arrhythmia. Genes 2025, 16, 1162. https://doi.org/10.3390/genes16101162
Nariman A, Nikoo MH, Sarrafzadegan N, Zibanejad MJ, Jervekani ZT, Daliri K, Tabatabaiefar MA. CRYAB Missense Mutation Reveals Shared Pathogenesis of Familial Cardiomyopathy and Arrhythmia. Genes. 2025; 16(10):1162. https://doi.org/10.3390/genes16101162
Chicago/Turabian StyleNariman, Ali, Mohammad Hossein Nikoo, Nizal Sarrafzadegan, Mohammad Javad Zibanejad, Zahra Teimouri Jervekani, Karim Daliri, and Mohammad Amin Tabatabaiefar. 2025. "CRYAB Missense Mutation Reveals Shared Pathogenesis of Familial Cardiomyopathy and Arrhythmia" Genes 16, no. 10: 1162. https://doi.org/10.3390/genes16101162
APA StyleNariman, A., Nikoo, M. H., Sarrafzadegan, N., Zibanejad, M. J., Jervekani, Z. T., Daliri, K., & Tabatabaiefar, M. A. (2025). CRYAB Missense Mutation Reveals Shared Pathogenesis of Familial Cardiomyopathy and Arrhythmia. Genes, 16(10), 1162. https://doi.org/10.3390/genes16101162