Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intermittent All-Out Wingate Tests
2.4. Blood LA Measurement
2.5. DNA Sampling and Isolation
2.6. Genotyping Analyses
2.7. Statistical Analyses
3. Results
3.1. Minor Allele Frequencies and Hardy–Weinberg Equilibrium
3.2. Maximal LA Accumulation
3.3. LA Accumulation Capacity
3.4. Post-Exercise LA Clearance
MCT1 SNP | Genotype | All | Physically Active | Sub-Elite | Elite | Model | All p-Value | Physically Active p-Value | sub-Elite p-Value | Elite p-Value | All Effect (η2, d); (95% CI) | Physically Active Effect (η2, d); (95% CI) | Sub-Elite Effect (η2, d); (95% CI) | Elite Effect (η2, d); (95% CI); Post Hoc Power |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs4301628 | CT | 14.16 | 12.82 | 15.25 | 17.01 | codominant | 0.16 | 0.91 | 0.67 | 0.08 | <0.001; (0.00 0.01) | 0.001; (0.00 0.01) | 0.02; (0.00 0.09) | 0.16; (0.00 0.35) |
CC | 14.15 | 12.90 | 15.69 | 15.94 | dominant | 0.09 | 0.94 | 0.49 | 0.03/0.09 * | 0.01; (−0.20 0.23) | 0.01; (−0.27 0.30) | 0.19; (−0.20 0.58) | −0.85; (−1.47 −0.21); 0.87 | |
TT | 13.97 | 13.02 | 15.92 | 17.67 | recessive | 0.79 | 0.71 | 0.68 | 0.20 | 0.07; (−0.27 0.41) | −0.08; (−0.48 0.33) | −0.30; (−1.07 0.47) | −0.53; (−1.71 0.65) | |
rs12028967 | GT | 14.17 | 12.80 | 15.25 | 17.01 | codominant | 0.55 | 0.89 | 0.67 | 0.08 | <0.001; (0.00 0.01) | 0.001; (0.00 0.02) | 0.02; (0.00 0.09) | 0.16; (0.00 0.35) |
TT | 14.15 | 12.91 | 15.69 | 15.94 | dominant | 0.80 | 0.88 | 0.49 | 0.03/0.09 * | −0.01; (−0.22 0.21) | −0.02; (−0.31 0.26) | −0.19; (−0.58 0.20) | 0.85; (0.21 1.47); 0.87 | |
GG | 13.97 | 13.02 | 15.92 | 17.67 | recessive | 0.41 | 0.71 | 0.68 | 0.20 | −0.07; (−0.41 0.27) | 0.08; (−0.33 0.48) | 0.30; (−0.47 1.07) | 0.53; (−0.65 1.71) | |
rs10857983 | CT | 14.16 | 12.82 | 15.25 | 17.01 | codominant | 0.09 | 0.91 | 0.67 | 0.08 | <0.001; (0.00 0.01) | 0.001; (0.00 0.01) | 0.02; (0.00 0.09) | 0.16; (0.00 0.35) |
CC | 14.15 | 12.90 | 15.69 | 15.94 | dominant | 0.98 | 0.94 | 0.49 | 0.03/0.09 * | 0.01; (−0.20 0.23) | 0.01; (−0.27 0.30) | 0.19; (−0.20 0.58) | −0.85; (−1.47 −0.21); 0.87 | |
TT | 13.97 | 13.02 | 15.92 | 17.67 | recessive | 0.04/0.12 * | 0.71 | 0.68 | 0.20 | 0.07; (−0.27 0.41) | −0.08; (−0.48 0.33) | −0.30; (−1.07 0.47) | −0.53; (−1.71 0.65) | |
rs3789592 | AG | 14.36 | 13.01 | 15.80 | 16.38 | codominant | 0.10 | 0.48 | 0.24 | 0.54 | 0.01; (0.00 0.09) | 0.01; (0.00 0.04) | 0.02; (0.00 0.09) | 0.04; (0.00 0.20) |
GG | 14.14 | 12.91 | 15.41 | 16.86 | dominant | 0.96 | 0.88 | 0.85 | 0.31 | −0.004; (−0.22 0.21) | −0.02; (−0.31 0.27) | −0.03; (−0.44 0.38) | −0.19; (−0.80 0.42) | |
AA | 13.38 | 12.43 | 14.44 | 15.94 | recessive | 0.05 | 0.24 | 0.12 | 0.44 | −0.32; (0.63 −0.01) | −0.24; (−0.64 0.16) | −0.39; (−0.95 0.18) | −0.65; (−1.59 0.30) | |
rs7556664 | AT | 14.37 | 13.04 | 15.80 | 16.38 | codominant | 0.09 | 0.44 | 0.24 | 0.54 | 0.01; (0.00 0.09) | 0.01; (0.00 0.04) | 0.12; (0.00 0.09) | 0.04; (0.00 0.20) |
TT | 13.38 | 12.43 | 14.44 | 15.94 | dominant | 0.98 | 0.97 | 0.85 | 0.31 | −0.003; (−0.22 0.22) | −0.01; (−0.29 0.28) | 0.03; (−0.38 0.44) | 0.19; (−0.42 0.80) | |
AA | 14.13 | 12.88 | 15.41 | 16.86 | recessive | 0.04/0.12 * | 0.24 | 0.12 | 0.44 | 0.32; (0.01 0.63) | 0.24; (−0.16 0.64) | 0.39; (−0.18 0.95) | 0.65; (−0.30 1.59) | |
rs7169 | AG | 14.36 | 13.06 | 15.80 | 16.38 | codominant | 0.10 | 0.41 | 0.24 | 0.54 | 0.01; (0.00 0.09) | 0.01; (0.00 0.05) | 0.02; (0.00 0.09) | 0.04; (0.00 0.20) |
GG | 13.40 | 12.42 | 14.44 | 15.94 | dominant | 0.97 | 0.88 | 0.85 | 0.31 | −0.01; (−0.23 0.21) | −0.02; (−0.31 0.27) | 0.03; (−0.38 0.44) | 0.19; (−0.42 0.80) | |
AA | 14.13 | 12.85 | 15.41 | 16.86 | recessive | 0.04/0.12 * | 0.23 | 0.12 | 0.44 | 0.32; (0.006 0.62) | 0.25; (−0.16 0.65) | 0.39; (−0.18 0.95) | 0.65; (−0.30 1.59) | |
rs1049434 | AT | 14.37 | 13.04 | 15.80 | 16.38 | codominant | 0.92 | 0.44 | 0.24 | 0.54 | 0.01; (0.00 0.09) | 0.01; (0.00 0.04) | 0.02; (0.00 0.09) | 0.04; (0.00 0.20) |
TT | 14.13 | 12.88 | 15.41 | 16.86 | dominant | 0.93 | 0.97 | 0.85 | 0.31 | 0.003; (−0.22 0.22) | 0.01; (−0.28 0.29) | −0.03; (−0.44 0.38) | −0.19; (−0.80 0.42) | |
AA | 13.38 | 12.43 | 14.44 | 15.94 | recessive | 0.69 | 0.24 | 0.12 | 0.44 | −0.32; (−0.63 0.01) | −0.24; (−0.64 0.16) | −0.39; (−0.95 0.18) | −0.65; (−1.59 0.30) | |
rs10776763 | TC | 14.26 | 12.95 | 15.27 | 17.08 | codominant | 0.92 | 0.81 | 0.77 | 0.06 | 0.003; (0.00 0.04) | 0.001; (0.00 0.01) | 0.02; (0.00 0.09) | 0.20; (0.01 0.40) |
CC | 13.81 | 12.91 | 15.44 | 17.67 | dominant | 0.93 | 0.94 | 0.96 | 0.20 | 0.03; (−0.19 0.24) | 0.06; (−0.23 0.35) | −0.24; (−0.64 0.15) | 0.99; (0.34 162) | |
TT | 14.09 | 12.80 | 15.78 | 15.82 | recessive | 0.69 | 0.67 | 0.37 | 0.01/0.03 * | −0.14; (−0.46 0.19) | 0.01; (−0.38 0.40) | 0.11; (−0.61 0.83) | −0.76; (−1.94 0.44); 0.76 | |
rs6537765 | AG | 14.36 | 13.07 | 15.65 | 16.47 | codominant | 0.92 | 0.39 | 0.57 | 0.65 | 0.01; (0.00 0.08) | 0.01; (0.00 0.05) | 0.01; (0.00 0.05) | 0.04; (0.00 0.20) |
GG | 14.09 | 12.84 | 15.49 | 16.78 | dominant | 0.93 | 0.23 | 0.30 | 0.44 | 0.03; (−0.19 0.25) | 0.03; (−0.25 0.32) | −0.07; (−0.48 0.34) | −0.09; (−0.71 0.52) | |
AA | 13.50 | 12.42 | 14.79 | 15.94 | recessive | 0.69 | 0.82 | 0.99 | 0.46 | −0.27; (−0.58 0.04) | −0.25; (−0.65 0.16) | −0.23; (−0.79 0.33) | −0.65; (−1.59 0.30) |
MCT1 SNP | Genotype | All | Physically Active | Sub-Elite | Elite | Model | All p-Value | Physically Active p-Value | Sub-Elite p-Value | Elite p-Value | All Effect (η2, d); (95% CI) | Physically Active Effect (η2, d); (95% CI) | Sub-Elite Effect (η2, d); (95% CI) | Elite Effect (η2, d); (95% CI); Post Hoc Power |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs4301628 | CT | 8.14 | 7.64 | 8.70 | 8.78 | codominant | 0.51 | 0.42 | 0.58 | 0.14 | 0.01; (0.00 0.09) | 0.01; (0.00 0.05) | 0.004; (0.00 0.04) | 0.04; (0.00 0.18) |
CC | 8.07 | 7.63 | 8.22 | 9.51 | dominant | 0.54 | 0.65 | 0.31 | 0.15 | 0.05; (−0.17 0.26) | 0.07; (−0.22 0.35) | −0.07; (−0.46 0.32) | 0.17; (−0.44 0.77) | |
TT | 7.26 | 7.05 | 8.41 | 7.03 | recessive | 0.47 | 0.19 | 0.95 | 0.08 | 0.37; (0.03 0.71) | 0.27; (−0.13 0.67) | 0.18; (−0.59 0.95) | 0.76; (−0.44 1.94) | |
rs12028967 | GT | 8.14 | 7.64 | 8.70 | 8.78 | codominant | 0.02/0.03 * | 0.42 | 0.58 | 0.14 | 0.01; (0.00 0.09) | 0.01; (0.00 0.05) | 0.004; (0.00 0.04) | 0.04; (0.00 0.18) |
TT | 8.07 | 7.64 | 8.22 | 9.51 | dominant | 0.35 | 0.63 | 0.31 | 0.15 | −0.05; (−0.26 0.17) | −0.07; (−0.36 0.21) | 0.07; (−0.32 0.46) | −0.17; (−0.77 0.44) | |
GG | 7.26 | 7.05 | 8.41 | 7.03 | recessive | 0.02/0.03 * | 0.19 | 0.95 | 0.08 | −0.37; (−0.71 −0.03) | −0.27; (−0.67 0.13) | −0.18; (−0.95 0.59) | −0.76; (−1.94 0.44) | |
rs10857983 | CT | 8.14 | 7.64 | 8.70 | 8.78 | codominant | 0.50 | 0.42 | 0.58 | 0.14 | 0.01; (0.00 0.09) | 0.01; (0.00 0.05) | 0.004; (0.00 0.04) | 0.04; (0.00 0.18) |
CC | 8.07 | 7.63 | 8.22 | 9.51 | dominant | 0.67 | 0.65 | 0.31 | 0.15 | 0.05; (−0.17 0.26) | 0.07; (−0.22 0.35) | −0.07; (−0.46 0.32) | 0.17; (−0.44 0.77) | |
TT | 7.26 | 7.05 | 8.41 | 7.03 | recessive | 0.37 | 0.19 | 0.95 | 0.08 | 0.07; (0.03 0.71) | 0.27; (−0.13 0.67) | 0.18; (−0.59 0.95) | 0.76; (−0.44 1.94) | |
rs3789592 | AG | 8.16 | 7.47 | 8.85 | 9.30 | codominant | 0.51 | 0.74 | 0.06 | 0.04/0.04 * | 0.005; (0.00 0.05) | 0.003; (0.00 0.03) | 0.02; (0.00 0.10) | 0.05; (0.00 0.21); 0.80 |
GG | 7.93 | 7.69 | 8.34 | 8.17 | dominant | 0.71 | 0.45 | 0.69 | 0.04/0.04 * | 0.06; (−0.16 0.28) | −0.11; (−0.40 0.18) | 0.15; (−0.26 0.56) | 0.46; (−0.16 1.07); 0.74 | |
AA | 7.74 | 7.39 | 7.29 | 10.99 | recessive | 0.36 | 0.67 | 0.03/0.09 * | 0.04/0.04 * | −0.14; (−0.45 0.17) | −0.09; (−0.48 0.31) | −0.31; (−0.88 0.25) | −0.16; (−1.78 0.12); 0.25 | |
rs7556664 | AT | 8.15 | 7.46 | 8.85 | 9.30 | codominant | 0.50 | 0.70 | 0.06 | 0.04/0.04 * | 0.004; (0.00 0.05) | 0.004; (0.00 0.03) | 0.02; (0.00 0.10) | 0.05; (0.00 0.21); 0.80 |
TT | 7.74 | 7.39 | 7.29 | 10.99 | dominant | 0.67 | 0.41 | 0.69 | 0.04/0.04 * | −0.05; (−0.27 0.17) | 0.12; (−0.17 0.41) | −0.15; (−0.56 0.26) | −0.46; (−1.07 0.16); 0.74 | |
AA | 7.94 | 7.71 | 8.34 | 8.17 | recessive | 0.37 | 0.67 | 0.03/0.09 * | 0.04/0.04 * | 0.14; (−0.17 0.45) | 0.09; (−0.31 0.48) | 0.31; (−0.25 0.88) | −0.16; (−1.09 0.78); 0.25 | |
rs7169 | AG | 8.14 | 7.46 | 8.85 | 9.30 | codominant | 0.46 | 0.66 | 0.06 | 0.04/0.04 * | 0.004; (0.00 0.05) | 0.004; (0.00 0.03) | 0.02; (0.00 0.10) | 0.05; (0.00 0.21), 0.80 |
GG | 7.73 | 7.36 | 7.29 | 10.99 | dominant | 0.61 | 0.37 | 0.69 | 0.04/0.04 * | −0.04; (−0.26 0.18) | 0.13; (−0.16 0.42) | −0.15; (−0.56 0.26) | −0.46; (−1.07 0.16); 0.74 | |
AA | 7.95 | 7.72 | 8.34 | 8.17 | recessive | 0.37 | 0.62 | 0.03/0.09 * | 0.04/0.04 * | 0.15; (−0.16 0.45) | 0.10; (−0.30 0.50) | 0.31; (−0.25 0.88) | −0.16; (−1.09 0.78); 0.25 | |
rs1049434 | AT | 8.15 | 7.46 | 8.85 | 9.30 | codominant | 0.09 | 0.70 | 0.06 | 0.04/0.04 * | 0.004; (0.00 0.05) | 0.003; (0.00 0.03) | 0.02; (0.00 0.10) | 0.05; (0.00 0.21), 0.80 |
TT | 7.94 | 7.71 | 8.34 | 8.17 | dominant | 0.67 | 0.41 | 0.69 | 0.04/0.04 * | 0.05; (−0.17 0.27) | −0.12; (−0.41 0.17) | 0.15; (−0.26 056) | 0.46; (−0.16 1.07); 0.74 | |
AA | 7.74 | 7.39 | 7.29 | 10.99 | recessive | 0.03/0.09 * | 0.67 | 0.03/0.09 * | 0.04/0.04 * | −0.14; (−0.45 0.17) | −0.09; (−0.48 0.31) | −0.31; (−0.88 0.25) | 0.16; (−0.78 1.10); 0.25 | |
rs10776763 | TC | 8.10 | 7.68 | 8.49 | 8.77 | codominant | 0.09 | 0.11 | 0.91 | 0.03/0.09 * | 0.01; (0.00 0.10) | 0.02; (0.00 0.06) | 0.003; (0.00 0.04) | 0.04; (0.00 0.19),0.65 |
CC | 7.21 | 6,93 | 8.53 | 7.03 | dominant | 0.68 | 0.09 | 0.94 | 0.08 | −0.10; (−0.32 0.11) | −0.08; (−0.37 0.21) | −0.11; (−0.50 0.29) | −0.18; (−0.78 0.43) | |
TT | 8.15 | 7.65 | 8.42 | 9.56 | recessive | 0.03/0.09 * | 0.58 | 0.86 | 0.13 | −0.40; (−0.73 −0.08) | −0.34; (−0.73 0.05) | −0.11; (−0.84 0.61) | −0.76; (−1.94 0.44) | |
rs6537765 | AG | 8.16 | 7.48 | 8.83 | 9.28 | codominant | 0.09 | 0.73 | 0.14 | 0.04/0.04 * | 0.004; (0.00 0.05) | 0.003; (0.00 0.03) | 0.02; (0.00 0.09) | 0.05; (0.00 0.21), 0.80 |
GG | 7.90 | 7.69 | 8.23 | 8.14 | dominant | 0.67 | 0.62 | 0.12 | 0.04/0.04 * | 0.08; (−0.14 0.30) | −0.11; (−0.40 0.18) | 0.22; (−0.19 0.64) | 0.47; (−0.16 1.08); 0.74 | |
AA | 7.82 | 7.36 | 7.61 | 10.99 | recessive | 0.03/0.09 * | 0.45 | 0.45 | 0.04/0.04 * | −0.10; (−0.41 0.21) | −0.10; (−0.50 0.30) | −0.14; (−0.71 0.42) | 0.16; (−0.78 1.09); 0.25 |
3.5. Final LA Concentration
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mastalerz, A.; Johne, M.; Mróz, A.; Bojarczuk, A.; Stastny, P.; Petr, M.; Kolinger, D.; Pisz, A.; Vostatkova, P.; Maculewicz, E. Changes of Anaerobic Power and Lactate Concentration Following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters. J. Hum. Kinet. 2024, 91, 165–174. [Google Scholar] [CrossRef]
- Maculewicz, E.; Mastalerz, A.; Garbacz, A.; Mróz, A.; Stastny, P.; Petr, M.; Kolinger, D.; Vostatková, P.; Bojarczuk, A. The interactions between monocarboxylate transporter genes MCT1, MCT2, and MCT4 and the kinetics of blood lactate production and removal after high-intensity efforts in elite males: A cross-sectional study. BMC Genom. 2025, 26, 133. [Google Scholar] [CrossRef]
- Menzies, P.; Menzies, C.; McIntyre, L.; Paterson, P.; Wilson, J.; Kemi, O.J. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 2010, 28, 975–982. [Google Scholar] [CrossRef]
- Devlin, J.; Paton, B.; Poole, L.; Sun, W.; Ferguson, C.; Wilson, J.; Kemi, O.J. Blood lactate clearance after maximal exercise depends on active recovery intensity. J. Sports Med. Phys. Fitness. 2014, 54, 271–278. [Google Scholar]
- Thomas, C.; Perrey, S.; Lambert, K.; Hugon, G.; Mornet, D.; Mercier, J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J. Appl. Physiol. 2005, 98, 804–809. [Google Scholar] [CrossRef]
- Huang, T.; Liang, Z.; Wang, K.; Miao, X.; Zheng, L. Novel insights into athlete physical recovery concerning lactate metabolism, lactate clearance and fatigue monitoring: A comprehensive review. Front. Physiol. 2025, 16, 1459717. [Google Scholar] [CrossRef] [PubMed]
- Gurovich, A.N.; Heiser, B.; Hayes, C.; Marshall, E.; Roath, S.; Kabous, N.G. Clinical Markers of Exercise Intensity as a Surrogate for Blood Lactate Levels Only During Low-Intensity Exercise in Patients with Coronary Artery Disease. Cardiopulm. Phys. Ther. J. 2018, 29, 144–151. [Google Scholar] [CrossRef]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sport Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Fedotovskaya, O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar]
- Sawczuk, M.; Banting, L.K.; Cieszczyk, P.; Maciejewska-Karłowska, A.; Zarebska, A.; Leońska-Duniec, A.; Jastrzębski, Z.; Bishop, D.J.; Eynon, N. MCT1 A1470T: A novel polymorphism for sprint performance? J. Sci. Med. Sport 2015, 18, 114–118. [Google Scholar] [CrossRef]
- Kikuchi, N.; Fuku, N.; Matsumoto, R.; Matsumoto, S.; Murakami, H.; Miyachi, M.; Nakazato, K. The Association Between MCT1 T1470A Polymorphism and Power-Oriented Athletic Performance. Int. J. Sport Med. 2017, 38, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Felmlee, M.A.; Jones, R.S.; Rodriguez-Cruz, V.; Follman, K.E.; Morris, M.E. Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol. Rev. 2020, 72, 466–485. [Google Scholar] [CrossRef] [PubMed]
- Halestrap, A.P. The SLC16 gene family-Structure, role and regulation in health and disease. Mol. Asp. Med. 2013, 34, 337–349. [Google Scholar] [CrossRef]
- Jones, R.S.; Morris, M.E. Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin. Pharmacol. Ther. 2016, 100, 454–463. [Google Scholar] [CrossRef]
- Dzitkowska-Zabielska, M.; Bojarczuk, A.; Borczyk, M.; Piechota, M.; Korostyński, M.; Adamczyk, J.G.; Trybek, G.; Massidda, M.; Cięszczyk, P. Transmission Distortion of MCT1 rs1049434 Among Polish Elite Athletes. Genes 2022, 13, 870. [Google Scholar] [CrossRef]
- Cupeiro, R.; González-Lamuño, D.; Amigo, T.; Peinado, A.B.; Ruiz, J.R.; Ortega, F.B.; Benito, P.J. Influence of the MCT1-T1470A polymorphism (rs1049434) on blood lactate accumulation during different circuit weight trainings in men and women. J. Sci. Med. Sport 2012, 15, 541–547. [Google Scholar] [CrossRef]
- Cupeiro, R.; Benito, P.J.; Maffulli, N.; Calderón, F.J.; González-Lamuño, D. MCT1 genetic polymorphism influence in high intensity circuit training: A pilot study. J. Sci. Med. Sport 2010, 13, 526–530. [Google Scholar] [CrossRef]
- Massidda, M.; Mendez-Villanueva, A.; Ginevičienė, V.; Proia, P.; Drozdovska, S.B.; Dosenko, V.; Scorcu, M.; Stula, A.; Sawczuk, M.; Cięszczyk, P.; et al. Association of Monocarboxylate Transporter-1 (MCT1) A1470T Polymorphism (rs1049434) with Forward Football Player Status. Int. J. Sport Med. 2018, 39, 1028–1034. [Google Scholar]
- Massidda, M.; Flore, L.; Kikuchi, N.; Scorcu, M.; Piras, F.; Cugia, P.; Cięszczyk, P.; Tocco, F.; Calò, C.M. Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: A pilot study. Eur. J. Appl. Physiol. 2021, 121, 3399–3408. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Rabinovich, M.; Kassem, E.; Meckel, Y. Differences in MCT1 A1470T polymorphism prevalence between runners and swimmers. Scand. J. Med. Sci. Sport 2015, 25, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Cupeiro, R.; Pérez-Prieto, R.; Amigo, T.; Gortázar, P.; Redondo, C.; González-Lamuño, D. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery. Eur. J. Appl. Physiol. 2016, 116, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- González-Haro, C.; Soria, M.; Vicente, J.; Fanlo, A.J.; Sinués, B.; Escanero, J.F. Variants of the Solute Carrier SLC16A1 Gene (MCT1) Associated with Metabolic Responses During a Long-Graded Test in Road Cyclists. J. Strength Cond. Res. 2015, 29, 3494–3505. [Google Scholar] [CrossRef]
- Fedotovskaya, O.N.; Mustafina, L.J.; Popov, D.V.; Vinogradova, O.L.; Ahmetov, I.I. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sport Physiol. Perform. 2014, 9, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.; Zhang, H.; Wang, Q.; Villamarin, R.; Hefferon, T.; Ramanathan, A.; Kattman, B. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025, 53, D925–D931. [Google Scholar] [CrossRef]
- Łacina, P.; Butrym, A.; Mazur, G.; Bogunia-Kubik, K. BSG and MCT1 genetic variants influence survival in multiple myeloma patients. Genes 2018, 9, 226. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Bosnyák, E.; Semenova, E.A.; Szmodis, M.; Griff, A.; Móra, Á.; Almási, G.; Trájer, E.; Udvardy, A.; Kostryukova, E.; et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport 2021, 38, 465–474. [Google Scholar] [CrossRef]
- Piscina-Viúdez XRde la Álvarez-Herms, J.; Bonilla, D.A.; Castañeda-Babarro, A.; Larruskain, J.; Díaz-Ramírez, J.; Ahmetov, I.I.; Martínez-Ascensión, A.; Kreider, R.B.; Odriozola-Martínez, A. Putative role of mct1 rs1049434 polymorphism in high-intensity endurance performance: Concept and basis to understand possible individualization stimulus. Sports 2021, 9, 143. [Google Scholar] [CrossRef]
- Yvert, T.; Miyamoto-Mikami, E.; Murakami, H.; Miyachi, M.; Kawahara, T.; Fuku, N. Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiol. Rep. 2016, 4, e13003. [Google Scholar] [CrossRef]
- Maculewicz, E.; Bojarczuk, A.; Mastalerz, A.; Johne, M.; Mróz, A.; Garbacz, A.; Stastny, P. Associations Between Genetic Variants in MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) with Blood Lactate Kinetics Before and After Supramaximal Exercise. Int. J. Mol. Sci. 2025, 26, 7865. [Google Scholar] [CrossRef]
- Jorfeldt, L.; Juhlin-Dannfelt, A.; Karlsson, J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. Respir. Env. Exerc. Physiol. 1978, 44, 350–352. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef]
- Emhoff, C.A.W.; Messonnier, L.A. Concepts of Lactate Metabolic Clearance Rate and Lactate Clamp for Metabolic Inquiry: A Mini-Review. Nutrients 2023, 15, 3213. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Inaba, T.; van Rassel, C.R.; MacInnis, M.J.; Kakinoki, K.; Hatta, H. Identifying physiological determinants of 800 m running performance using post-exercise blood lactate kinetics. Eur. J. Appl. Physiol. 2024, 124, 2951–2964. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Hellsten, Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol. Scand. 1998, 162, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.W.; Van Nostrand, E.L.; Liang, T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 2007, 3, e85. [Google Scholar]
- Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell. Biol. 2017, 91, 145–155. [Google Scholar] [CrossRef]
- GTEx Consortium. GTEx Portal. 2025. Available online: https://gtexportal.org/home/ (accessed on 1 September 2025).
- Zhao, W.; Blagev, D.; Pollack, J.L.; Erle, D.J. Toward a systematic understanding of mRNA 3′ untranslated regions. Proc. Am. Thorac. Soc. 2011, 8, 163–166. [Google Scholar] [CrossRef]
- Zhang, Z.; Miteva, M.A.; Wang, L.; Alexov, E. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012, 2012, 805827. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef]
- Pan, L.; Ai, S.; Shi, X.; Tong, X.; Spanos, M.; Li, G.; Cretoiu, D.; Gao, J.; Zhou, Q.; Xiao, J. ExerGeneDB: A physical exercise-regulated differential gene expression database. J. Sport Health Sci. 2025, 14, 101027. [Google Scholar] [CrossRef]
- Struchalin, M.V.; Dehghan, A.; Witteman, J.C.M.; van Duijn, C.; Aulchenko, Y.S. Variance heterogeneity analysis for detection of potentially interacting genetic loci: Method and its limitations. BMC Genet. 2010, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Muñoz, J.A.; Cupeiro, R.; Rubio-Arias, J.; Amigo, T.; González-Lamuño, D. Exercise influence on monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in the skeletal muscle: A systematic review. Acta Physiol. 2024, 240, e14083. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.S.; McKay, A.K.A.; Kuikman, M.; Ackerman, K.E.; Harris, R.; Stellingwerff, T.; Burke, L.M. Auditing the Representation of Female Versus Male Athletes in Sports Science and Sports Medicine Research: Evidence-Based Performance Supplements. Nutrients 2022, 14, 953. [Google Scholar] [CrossRef]
- Costello, J.T.; Bieuzen, F.; Bleakley, C.M. Where are all the female participants in Sports and Exercise Medicine research? Eur. J. Sport Sci. 2014, 14, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Taipale, R.S. Sport Science on Women, Women in Sport Science. Int. J. Sport Physiol. Perform. 2019, 14, 1013–1014. [Google Scholar] [CrossRef]
- Noordhof, D.A.; de Jonge, X.A.J.; Hackney, A.C.; de Koning, J.J.; Sandbakk, Ø. Sport-Science Research on Female Athletes: Dealing with the Paradox of Concurrent Increases in Quantity and Quality. Int. J. Sports Physiol. Perform. 2022, 17, 993–994. [Google Scholar] [CrossRef]
- Seldin, M.F.; Shigeta, R.; Villoslada, P.; Selmi, C.; Tuomilehto, J.; Silva, G.; Belmont, J.W.; Klareskog, L.; Gregersen, P.K. European population substructure: Clustering of northern and southern populations. PLoS Genet. 2006, 2, e143. [Google Scholar] [CrossRef]
- Metcalfe, R.S.; Babraj, J.A.; Fawkner, S.G.; Vollaard, N.B.J. Towards the minimal amount of exercise for improving metabolic health: Beneficial effects of reduced-exertion high-intensity interval training. Eur. J. Appl. Physiol. 2012, 112, 2767–2775. [Google Scholar] [CrossRef]
- Esbjörnsson-Liljedahl, M.; Bodin, K.; Jansson, E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J. Appl. Physiol. 2002, 93, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Esbjörnsson-Liljedahl, M.; Sundberg, C.J.; Norman, B.; Jansson, E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J. Appl. Physiol. 1999, 87, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; McGee, S.L.; Garnham, A.P.; Howlett, K.F.; Snow, R.J.; Hargreaves, M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J. Appl. Physiol. 2009, 106, 929–934. [Google Scholar] [CrossRef]
- Parolin, M.L.; Chesley, A.; Matsos, M.P.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 1999, 277, E890–E900. [Google Scholar] [CrossRef] [PubMed]
MCT1 SNP | AA (%) | Aa (%) | aa (%) | HWE p-Values | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | a | MAF (%) | All | Elite | Sub-Elite | Physically Active | All | Elite | Sub-Elite | Physically Active | All | Elite | Sub-Elite | Physically Active | All | Elite | Sub-Elite | Physically Active | |
rs4301628 | C | T | 33.23 | 43.26 | 50.00 | 43.69 | 43.36 | 45.39 | 42.86 | 49.51 | 38.94 | 11.35 | 7.14 | 6.80 | 17.70 | 0.90 | 1.00 | 0.18 | 0.07 |
rs12028967 | T | G | 33.09 | 42.91 | 50.00 | 43.69 | 42.48 | 45.74 | 42.86 | 49.51 | 39.82 | 11.35 | 7.14 | 6.80 | 17.70 | 0.89 | 1.00 | 0.18 | 0.11 |
rs10857983 | C | T | 33.23 | 43.26 | 50.00 | 43.69 | 43.36 | 45.39 | 42.86 | 49.51 | 38.94 | 11.34 | 7.14 | 6.80 | 17.70 | 0.90 | 1.00 | 0.18 | 0.07 |
rs3789592 | G | A | 37.39 | 39.36 | 45.24 | 33.98 | 43.36 | 46.45 | 42.86 | 52.43 | 39.82 | 14.18 | 11.90 | 13.59 | 16.81 | 0.90 | 1.00 | 0.41 | 0.16 |
rs7556664 | A | T | 37.54 | 39.36 | 45.24 | 33.98 | 43.36 | 46.45 | 42.86 | 52.43 | 39.82 | 14.18 | 11.90 | 13.59 | 16.81 | 0.90 | 1.00 | 0.41 | 0.16 |
rs7169 | A | G | 37.54 | 39.01 | 45.24 | 33.98 | 42.48 | 47.16 | 42.86 | 52.43 | 41.59 | 13.83 | 11.90 | 13.59 | 15.92 | 1.00 | 1.00 | 0.41 | 0.31 |
rs1049434 | T | A | 37.54 | 39.36 | 45.24 | 33.98 | 43.36 | 46.45 | 42.86 | 52.43 | 39.82 | 14.18 | 11.90 | 13.59 | 16.81 | 0.90 | 1.00 | 0.41 | 0.16 |
rs10776763 | T | C | 35.46 | 40.78 | 47.62 | 38.83 | 42.48 | 47.16 | 45.24 | 53.4 | 38.05 | 12.06 | 7.14 | 7.77 | 19.47 | 0.70 | 0.73 | 0.08 | 0.05 |
rs6537765 | G | A | 37.69 | 38.30 | 42.86 | 33.01 | 42.48 | 47.52 | 45.24 | 53.4 | 39.82 | 14.18 | 11.90 | 13.59 | 17.70 | 1.00 | 1.00 | 0.31 | 0.11 |
MCT1 SNP | Genotype | All | Physically Active | Sub-Elite | Elite | Model | All p-Value | Physically Active p-Value | Sub-Elite p-Value | Elite p-Value | All Effect (η2, d); (95% CI) | Physically Active Effect (η2, d); (95% CI) | Sub-Elite Effect (η2, d); (95% CI) | Elite Effect (η2, d); (95% CI); Post Hoc Power |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs4301628 | CT | 16.40 | 15.09 | 17.46 | 19.14 | codominant | 0.07 | 0.62 | 0.82 | 0.16 | 0.002; (0.00 0.03) | 0.01; (0.00 0.03) | 0.01; (0.00 0.07) | 0.09; (0.00 0.27) |
CC | 16.53 | 15.43 | 17.82 | 18.24 | dominant | 0.07 | 0.36 | 0.54 | 0.08 | 0.07; (−0.15 0.28) | 0.13; (−0.15 0.42) | 0.16; (−0.22 0.56) | −0.61; (−1.23 0.01) | |
TT | 16.14 | 15.26 | 17.64 | 20.05 | recessive | 0.48 | 1.00 | 0.99 | 0.19 | 0.12; (−0.22 0.46) | <0.001; (−0.40 0.40) | −0.17; (−0.93 0.60) | −0.53; (−1.71 0.65) | |
rs12028967 | GT | 16.40 | 15.08 | 17.46 | 19.14 | codominant | 0.28 | 0.59 | 0.82 | 0.16 | 0.002; (0.00 0.03) | 0.01; (0.00 0.04) | 0.01; (0.00 0.07) | 0.09; (0.00 0.27) |
TT | 16.53 | 15.43 | 17.82 | 18.24 | dominant | 0.75 | 0.34 | 0.54 | 0.08 | −0.07; (−0.28 0.15) | −0.14; (−0.42 0.15) | −0.17; (−0.56 0.22) | 0.61; (−0.01 1.23) | |
GG | 16.14 | 15.26 | 17.64 | 20.05 | recessive | 0.25 | 1.00 | 0.99 | 0.19 | −0.12; (−0.46 0.22) | <0.001; (−0.40 0.40) | 0.17; (−0.60 0.93) | 0.53; (−0.65 1.71) | |
rs10857983 | CT | 16.40 | 15.09 | 17.46 | 19.14 | codominant | 0.04/0.06 * | 0.62 | 0.82 | 0.16 | 0.002; (0.00 0.03) | 0.01; (0.00 0.03) | 0.01; (0.00 0.07) | 0.09; (0.00 0.27) |
CC | 16.53 | 15.43 | 17.82 | 18.24 | dominant | 0.60 | 0.36 | 0.54 | 0.08 | 0.07; (−0.15 0.28) | 0.13; (−0.15 0.42) | 0.17; (−0.22 0.56) | −0.61; (−1.23 0.01) | |
TT | 16.14 | 15.26 | 17.64 | 20.05 | recessive | 0.03/0.06 * | 1.00 | 0.99 | 0.19 | 0.12; (−0.22 0.45) | <0.001; (−0.40 0.40) | −0.17; (−0.93 0.60) | −0.53; (−1.71 0.65) | |
rs3789592 | AG | 16.74 | 15.48 | 18.01 | 18.84 | codominant | 0.05 | 0.42 | 0.14 | 0.62 | 0.02 (0.00 0.10) | 0.01; (0.00 0.05) | 0.02; (0.00 0.10) | 0.07; (0.00 0.24) |
GG | 16.34 | 15.17 | 17.54 | 18.94 | dominant | 0.61 | 0.63 | 0.81 | 0.64 | 0.05; (−0.17 0.27) | 0.07; (−0.22 0.36) | −0.04; (−0.45 0.37) | 0.003; (−0.61 0.61) | |
AA | 15.64 | 14.89 | 16.39 | 17.95 | recessive | 0.03/0.08 * | 0.32 | 0.07 | 0.33 | −0.34; (−0.64 −0.03) | −0.20; (−0.60 0.20) | −0.44; (−1.01 0.13) | −0.78; (−1.72 0.18) | |
rs7556664 | AT | 16.75 | 15.51 | 18.01 | 18.84 | codominant | 0.04/0.06 * | 0.34 | 0.14 | 0.62 | 0.02 (0.00 0.10) | 0.01; (0.00 0.05) | 0.02; (0.00 0.10) | 0.07; (0.00 0.24) |
TT | 15.64 | 14.89 | 16.39 | 17.95 | dominant | 0.60 | 0.50 | 0.81 | 0.64 | −0.06; (−0.28 0.16) | −0.10; (−0.39 0.19) | 0.04; (−0.37 0.45) | −0.003; (−0.61 0.61) | |
AA | 16.33 | 15.13 | 17.54 | 18.94 | recessive | 0.03/0.06 * | 0.32 | 0.07 | 0.33 | 0.34; (0.03 0.64) | 0.20; (−0.20 0.60) | 0.44; (−0.13 1.01) | 0.78; (−0.18 1.72) | |
rs7169 | AG | 16.74 | 15.52 | 18.01 | 18.84 | codominant | 0.05 | 0.31 | 0.14 | 0.62 | 0.02 (0.00 0.10) | 0.01; (0.00 0.05) | 0.02; (0.00 0.10) | 0.07; (0.00 0.24) |
GG | 13.40 | 14.86 | 16.39 | 17.95 | dominant | 0.65 | 0.47 | 0.81 | 0.64 | −0.06; (−0.28 0.16) | −0.11; (−0.40 0.18) | 0.04; (−0.37 0.45) | −0.003; (−0.61 0.61) | |
AA | 16.33 | 15.12 | 17.54 | 18.94 | recessive | 0.03/0.08 * | 0.31 | 0.07 | 0.33 | 0.33; (0.02 0.64) | 0.21; (−0.19 0.61) | 0.44; (−0.13 1.01) | 0.78; (−0.18 1.72) | |
rs1049434 | AT | 16.75 | 15.51 | 18.01 | 18.84 | codominant | 0.73 | 0.34 | 0.14 | 0.62 | 0.02 (0.00 0.10) | 0.01; (0.00 0.05) | 0.02; (0.00 0.10) | 0.07; (0.00 0.24) |
TT | 16.33 | 15.13 | 17.54 | 18.94 | dominant | 0.54 | 0.50 | 0.81 | 0.64 | 0.06; (−0.16 0.28) | 0.10; (−0.19 0.39) | −0.04; (−0.45 0.37) | 0.003; (−0.61 0.61) | |
AA | 15.64 | 14.89 | 16.39 | 17.95 | recessive | 0.50 | 0.32 | 0.07 | 0.33 | −0.34 (−0.64 0.03) | −0.20; (−0.60 0.20) | −0.44; (−1.01 0.13) | −0.78; (−1.72 0.18) | |
rs10776763 | TC | 16.50 | 15.21 | 17.50 | 19.24 | codominant | 0.73 | 0.52 | 0.71 | 0.08 | 0.004; (0.00 0.05) | 0.002; (0.00 0.02) | 0.01; (0.00 0.07) | 0.13; (0.00 0.32) |
CC | 15.97 | 15.10 | 17.39 | 20.05 | dominant | 0.55 | 0.66 | 0.81 | 0.19 | −0.03; (−0.25 0.18) | −0.09; (−0.38 0.19) | −0.19; (−0.59 0.21) | 0.75; (0.12 1.38) | |
TT | 16.48 | 15.39 | 17.85 | 18.10 | recessive | 0.50 | 0.52 | 0.52 | 0.03/0.09 * | −0.19; (−0.52 0.14) | −0.09; (−0.48 0.30) | 0.05; (−0.67 0.77) | 0.53; (−0.65 1.71); 0.75 | |
rs6537765 | AG | 16.74 | 15.54 | 17.85 | 18.92 | codominant | 0.73 | 0.26 | 0.40 | 0.63 | 0.02; (0.00 0.09) | 0.01; (0.00 0.06) | 0.01; (0.00 0.07) | 0.08; (0.00 0.25) |
GG | 16.30 | 15.10 | 17.64 | 18.87 | dominant | 0.54 | 0.31 | 0.19 | 0.33 | 0.08; (−0.14 0.30) | 0.13; (−0.16 0.41) | −0.10; (−0.52 0.31) | 0.09; (−0.53 0.70) | |
AA | 15.75 | 14.86 | 16.74 | 17.95 | recessive | 0.50 | 0.39 | 0.97 | 0.81 | −0.29; (−0.60 0.02) | −0.21; (−0.61 0.19) | −0.29; (−0.86 0.28) | −0.78; (−1.72 0.18) |
MCT1 SNP | Genotype | All | Physically Active | Sub-Elite | Elite | Model | All p-Value | Physically Active p-Value | Sub-Elite p-Value | Elite p-Value | All Effect (η2, d); (95% CI) | Physically Active Effect (η2, d); (95% CI) | Sub-Elite Effect (η2, d); (95% CI) | Elite Effect (η2, d); (95% CI); Post Hoc Power |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs4301628 | CT | 8.25 | 7.44 | 8.77 | 10.35 | codominant | 0.40 | 0.37 | 0.42 | 0.004/0.01 * | 0.005; (0.00 0.05) | 0.01; (0.00 0.05) | 0.02; (0.00 0.09) | 0.16; (0.00 0.36); 0.95 |
CC | 8.46 | 7.80 | 9.60 | 8.73 | dominant | 0.21 | 0.69 | 0.21 | 0.01/0.01 * | 0.03; (−0.19 0.24) | 0.06; (−0.23 0.34) | 0.19; (−0.20 0.59) | −0.71; (−1.32 −0.08); 0.80 | |
TT | 8.88 | 8.22 | 9.23 | 13.02 | recessive | 0.92 | 0.26 | 0.95 | 0.01/0.01 * | −0.18; (−0.52 0.16) | −0.23; (−0.63 0.17) | −0.27; (−1.04 0.50) | −1.21; (−2.4 −0.002); 0.82 | |
rs12028967 | GT | 8.26 | 7.44 | 8.77 | 10.35 | codominant | 0.40 | 0.36 | 0.42 | 0.004/0.01 * | 0.004; (0.00 0.05) | 0.01; (0.00 0.05) | 0.02; (0.00 0.09) | 0.16; (0.00 0.36); 0.95 |
TT | 8.46 | 7.80 | 9.60 | 8.73 | dominant | 0.66 | 0.68 | 0.21 | 0.01/0.01 * | −0.03; (−0.24 0.19) | −0.06; (−0.34 0.23) | −0.19; (−0.59 0.20) | 0.71; (0.08 1.33); 0.80 | |
GG | 8.88 | 8.22 | 9.23 | 13.02 | recessive | 0.42 | 0.26 | 0.95 | 0.01/0.01 * | 0.18; (−0.16 0.52) | <0.001; (−0.40 0.40) | 0.27; (−0.50 1.04) | 1.21; (0.00 2.41); 0.82 | |
rs10857983 | CT | 8.25 | 7.44 | 8.77 | 10.35 | codominant | 0.34 | 0.37 | 0.42 | 0.004/0.01 * | 0.005; (0.00 0.05) | 0.01; (0.00 0.05) | 0.02; (0.00 0.09) | 0.16; (0.00 0.36); 0.95 |
CC | 8.46 | 7.80 | 9.60 | 8.73 | dominant | 0.87 | 0.69 | 0.21 | 0.01/0.01 * | 0.03; (−0.19 0.24) | 0.06; (−0.23 0.34) | 0.20; (−0.20 0.59) | −0.71; (−1.32 −0.08); 0.80 | |
TT | 8.88 | 8.22 | 9.23 | 13.02 | recessive | 0.18 | 0.26 | 0.95 | 0.01/0.01 * | −0.18; (−0.52 0.16) | −0.23; (−0.63 0.17) | −0.27; (−1.04 0.50) | −1.21; (−2.41 −0.002); 0.82 | |
rs3789592 | AG | 8.58 | 8.01 | 9.16 | 9.54 | codominant | 0.36 | 0.38 | 0.99 | 0.01/0.02 * | 0.006; (0.00 0.06) | 0.01; (0.00 0.05) | 0.01; (0.00 0.52) | 0.09; (0.00 0.27); 0.90 |
GG | 8.41 | 7.48 | 9.20 | 10.77 | dominant | 0.84 | 0.29 | 0.94 | 0.03/0.03 * | 0.004; (−0.22 0.22) | 0.15; (−0.13 0.44) | −0.14; (−0.55 0.27) | −0.43; (−1.04 0.19); 0.54 | |
AA | 7.91 | 7.50 | 9.09 | 6.96 | recessive | 0.20 | 0.63 | 0.93 | 0.01/0.02 * | −0.21; (−0.51 0.10) | −0.10; (−0.49 0.30) | −0.16; (−0.73 0.40) | −0.83; (−1.78 0.12); 0.54 | |
rs7556664 | AT | 8.60 | 8.05 | 9.16 | 9.54 | codominant | 0.34 | 0.26 | 0.99 | 0.01/0.02 * | 0.007; (0.00 0.06) | 0.01; (0.00 0.06) | 0.01; (0.00 0.52) | 0.09; (0.00 0.27); 0.90 |
TT | 7.91 | 7.50 | 9.09 | 6.96 | dominant | 0.87 | 0.20 | 0.94 | 0.03/0.03 * | −0.02; (−0.24 0.20) | −0.19; (−0.48 0.10) | 0.14; (−0.27 0.55) | 0.43; (−0.19 1.04); 0.54 | |
AA | 8.39 | 7.42 | 9.20 | 10.77 | recessive | 0.18 | 0.63 | 0.93 | 0.01/0.02 * | 0.21; (−0.10 0.51) | 0.10; (−0.30 0.49) | 0.16; (−0.40 0.73) | 0.83; (−0.12 1.78); 0.54 | |
rs7169 | AG | 8.60 | 8.06 | 9.16 | 9.54 | codominant | 0.36 | 0.23 | 0.99 | 0.01/0.02 * | 0.006; (0.00 0.06) | 0.02; (0.00 0.06) | 0.01; (0.00 0.05) | 0.09; (0.00 0.27); 0.90 |
GG | 7.92 | 7.51 | 9.09 | 6.96 | dominant | 0.97 | 0.17 | 0.94 | 0.03/0.03 * | −0.02; (−0.24 0.20) | −0.20; (−0.49 0.08) | 0.14; (−0.27 0.55) | 0.43; (−0.19 1.04); 0.54 | |
AA | 8.38 | 7.40 | 9.20 | 10.77 | recessive | 0.18 | 0.65 | 0.93 | 0.01/0.02 * | 0.20; (−0.11 0.51) | 0.21; (−0.19 0.61) | 0.16; (−0.40 0.73) | 0.83; (−0.12 1.78); 0.54 | |
rs1049434 | AT | 8.60 | 8.05 | 9.16 | 9.54 | codominant | 0.47 | 0.26 | 0.99 | 0.01/0.02 * | 0.007; (0.00 0.06) | 0.01; (0.00 0.06) | 0.01; (0.00 0.05) | 0.09; (0.00 0.27); 0.90 |
TT | 8.39 | 7.42 | 9.20 | 10.77 | dominant | 0.80 | 0.20 | 0.94 | 0.03/0.03 * | 0.02; (−0.20 0.24) | 0.19; (−0.10 0.48) | −0.14; (−0.55 0.27) | −0.43; (−1.04 0.19); 0.54 | |
AA | 7.91 | 7.50 | 9.09 | 6.96 | recessive | 0.29 | 0.63 | 0.93 | 0.01/0.02 * | −0.21; (−0.51 0.10) | −0.10; (−0.49 0.30) | −0.16; (−0.73 0.40) | −0.83; (−1.78 0.12); 0.54 | |
rs10776763 | TC | 8.40 | 7.53 | 9.00 | 10.48 | codominant | 0.47 | 0.42 | 0.66 | 0.003/0.01 * | 0.002; (0.00 0.03) | 0.01; (0.00 0.04) | 0.004; (0.00 0.04) | 0.20; (0.01 0.40); 0.99 |
CC | 8.76 | 8.17 | 8.85 | 13.02 | dominant | 0.81 | 0.29 | 0.79 | 0.01/0.01 * | 0.05; (−0.17 0.27) | −0.01; (−0.30 0.28) | −0.09; (−0.49 0.31) | 0.85; (0.21 1.48); 0.91 | |
TT | 8.34 | 7.73 | 9.43 | 8.54 | recessive | 0.29 | 0.93 | 0.49 | 0.002/0.01 * | 0.14; (−0.19 0.46) | 0.21; (−0.18 0.60) | 0.12; (−0.60 0.85) | 1.21; (0.002 2.41); 0.82 | |
rs6537765 | AG | 8.58 | 8.06 | 9.02 | 9.64 | codominant | 0.47 | 0.24 | 0.84 | 0.01/0.02 * | 0.006; (0.00 0.06) | 0.02; (0.00 0.06) | 0.01; (0.00 0.08) | 0.08; (0.00 0.26); 0.89 |
GG | 8.40 | 7.40 | 9.41 | 10.73 | dominant | 0.80 | 0.65 | 0.96 | 0.01/0.02 * | 0.01; (−0.21 0.23) | 0.20; (−0.09 0.49) | −0.25; (−0.66 −0.17) | −0.36; (−0.97 0.26); 0.40 | |
AA | 7.93 | 7.51 | 9.13 | 6.96 | recessive | 0.29 | 0.17 | 0.57 | 0.04/0.04 * | −0.20; (−0.51 0.11) | −0.09; (−0.50 0.31) | −0.15; (−0.71 0.41) | −0.83; (−1.78 0.12); 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maculewicz, E.; Mastalerz, A.; Mróz, A.; Johne, M.; Krawczak-Wójcik, K.; Pabin, A.; Garbacz, A.; Komar, K.; Massidda, M.; Stastny, P.; et al. Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study. Genes 2025, 16, 1160. https://doi.org/10.3390/genes16101160
Maculewicz E, Mastalerz A, Mróz A, Johne M, Krawczak-Wójcik K, Pabin A, Garbacz A, Komar K, Massidda M, Stastny P, et al. Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study. Genes. 2025; 16(10):1160. https://doi.org/10.3390/genes16101160
Chicago/Turabian StyleMaculewicz, Ewelina, Andrzej Mastalerz, Anna Mróz, Monika Johne, Katarzyna Krawczak-Wójcik, Agata Pabin, Aleksandra Garbacz, Katarzyna Komar, Myosotis Massidda, Petr Stastny, and et al. 2025. "Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study" Genes 16, no. 10: 1160. https://doi.org/10.3390/genes16101160
APA StyleMaculewicz, E., Mastalerz, A., Mróz, A., Johne, M., Krawczak-Wójcik, K., Pabin, A., Garbacz, A., Komar, K., Massidda, M., Stastny, P., & Bojarczuk, A. (2025). Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study. Genes, 16(10), 1160. https://doi.org/10.3390/genes16101160