Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Genomic Analysis
2.2. Phylogeographic Model Analysis
2.3. Codon Usage Indices
2.3.1. Nucleotide Analysis
2.3.2. Synonymous Codon Bias Analysis Based on Effective Number of Codons (ENC)
2.3.3. Analysis of Synonymous Codon Usage Bias Using Relative Synonymous Codon Usage (RSCU)
2.3.4. Genome-Wide Codon Adaptation Analysis Using Codon Adaptation Index (CAI)
2.3.5. Frequency of Optimal Codons (FOP) Analysis
2.3.6. Genome-Wide Codon Usage Profiling via ENC-GC3 Scatter Plot Analysis
3. Results
3.1. Phylogenetic Analysis of the gB Gene
3.2. Bayesian MCMC-Based Evolutionary Tree
3.3. RSCU Analysis
3.4. Nucleotide Bias in PRV Genotypes
3.5. Codon Bias Measurement
3.6. Synonymous and Optimal Codon Analysis
3.7. ENC-GC3 Plot Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pomeranz, L.E.; Reynolds, A.E.; Hengartner, C.J. Molecular biology of pseudorabies virus: Impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 2005, 69, 462–500. [Google Scholar] [CrossRef]
- Ai, J.W.; Weng, S.S.; Cheng, Q.; Cui, P.; Li, Y.J.; Wu, H.L.; Zhu, Y.M.; Xu, B.; Zhang, W.H. Human Endophthalmitis Caused By Pseudorabies Virus Infection, China, 2017. Emerg. Infect. Dis. 2018, 24, 1087–1090. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Xie, C.; Ding, S.; Yang, H.; Guo, S.; Li, J.; Qin, L.; Ban, F.; Wang, D.; et al. Erratum to: A Novel Human Acute Encephalitis Caused by Pseudorabies Virus Variant Strain. Clin. Infect. Dis. 2022, 74, 756. [Google Scholar] [CrossRef]
- Yu, Z.; Tong, W.; Zheng, H.; Li, L.; Li, G.; Gao, F.; Wang, T.; Liang, C.; Ye, C.; Wu, J.; et al. Variations in glycoprotein B contribute to immunogenic difference betw een PRV variant JS-2012 and Bartha-K61. Vet. Microbiol. 2017, 208, 97–105. [Google Scholar] [CrossRef]
- Yao, J.; Li, J.; Gao, L.; He, Y.; Xie, J.; Zhu, P.; Zhang, Y.; Zhang, X.; Duan, L.; Yang, S.; et al. Epidemiological Investigation and Genetic Analysis of Pseudorabies Vir us in Yunnan Province of China from 2017 to 2021. Viruses 2022, 14, 895. [Google Scholar] [CrossRef]
- Avitabile, E.; Lombardi, G.; Gianni, T.; Capri, M.; Campadelli-Fiume, G. Coexpression of UL20p and gK inhibits cell-cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wild-type gB or an endocytosis-defective gB mutant and downmodulates their cell surface expression. J. Virol. 2004, 78, 8015–8025. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, L.; Zhai, X.; Chang, H.; Liu, H. Evasion of the Antiviral Innate Immunity by PRV. Int. J. Mol. Sci. 2024, 25, 13140. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, H.; Xuan, X.; Shibata, I.; Mori, M. Protective immunity of bovine herpesvirus-1 (BHV-1) recombinants which express pseudorabies virus (PRV) glycoproteins gB, gC, gD and gE. J. Vet. Med. Sci. 1996, 58, 819–824. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, K.; Zhang, H.; Zhang, H.; Yu, Y.; Yin, D.; Shan, H.; Qin, Z. Efficacy of a gB + gD-based subunit vaccine and the adjuvant granulocy te-macrophage colony stimulating factor for pseudorabies virus in rabb its. Front. Microbiol. 2022, 13, 965997. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef]
- Grantham, R.; Gautier, C.; Gouy, M.; Mercier, R.; Pavé, A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980, 8, r49–r62. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Bao, Z.; Mou, C.; Chen, Z.; Zhao, J. Comprehensive Analysis of Codon Usage on Porcine Astrovirus. Viruses 2020, 12, 991. [Google Scholar] [CrossRef]
- Wu, X.M.; Wu, S.F.; Ren, D.M.; Zhu, Y.P.; He, F.C. The analysis method and progress in the study of codon bias. Yi Chuan 2007, 29, 420–426. [Google Scholar] [CrossRef]
- Sharp, P.M.; Matassi, G. Codon usage and genome evolution. Curr. Opin. Genet. Dev. 1994, 4, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Robbins, A.K.; Dorney, D.J.; Wathen, M.W.; Whealy, M.E.; Gold, C.; Watson, R.J.; Holland, L.E.; Weed, S.D.; Levine, M.; Glorioso, J.C.; et al. The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. J. Virol. 1987, 61, 2691–2701. [Google Scholar] [CrossRef]
- Xie, C.; Tao, Y.; Zhang, Y.; Zhang, P.; Zhu, X.; Ha, Z.; Zhang, H.; Xie, Y.; Xia, X.; Jin, N.; et al. Codon Usage for Genetic Diversity, and Evolutionary Dynamics of Novel Porcine Parvoviruses 2 through 7 (PPV2-PPV7). Viruses 2022, 14, 170. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed]
- PuigBò, P.; Bravo, I.G.; Garcia-Vallve, S. CAIcal: A combined set of tools to assess codon usage adaptation. Biol. Direct 2008, 3, 38. [Google Scholar] [CrossRef]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Sharp, P.M.; Tuohy, T.M.; Mosurski, K.R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986, 14, 5125–5143. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Chi, X.; Wang, S.; Ma, Y.; Chen, J. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus. PLoS ONE 2017, 12, e183646. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.F. Analysis of synonymous codon usage patterns in duck hepatitis A virus: A comparison on the roles of mutual pressure and natural selection. Virusdisease 2014, 25, 285–293. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Y.; Deng, H.; Gu, T.; Xu, J.; Ou, J.; Jiang, Z.; Jiao, Y.; Zou, T.; Wang, C. Characterization of the porcine epidemic diarrhea virus codon usage bias. Infect. Genet. Evol. 2014, 28, 95–100. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Majeed, A.; Kaur, H.; Bhardwaj, P. Selection constraints determine preference for A/U-ending codons in Taxus contorta. Genome 2020, 63, 215–224. [Google Scholar] [CrossRef]
- Butt, A.M.; Nasrullah, I.; Qamar, R.; Tong, Y. Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg. Microbes Infect. 2016, 5, e107. [Google Scholar] [CrossRef] [PubMed]
- Vicario, S.; Moriyama, E.N.; Powell, J.R. Codon usage in twelve species of Drosophila. Bmc Evol. Biol. 2007, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Cowe, E.; Higgins, D.G.; Shields, D.C.; Wolfe, K.H.; Wright, F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 1988, 16, 8207–8211. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, Y.; Liu, Y.; Chen, S.; Zhu, L.; Tong, L.; Zheng, Y.; Osterrieder, N.; Zhang, C.; Wang, J. A Novel Strategy of US3 Codon De-Optimization for Construction of an Attenuated Pseudorabies Virus against High Virulent Chinese Pseudorabies Virus Variant. Vaccines 2023, 11, 1288. [Google Scholar] [CrossRef]
- Arella, D.; Dilucca, M.; Giansanti, A. Codon usage bias and environmental adaptation in microbial organisms. Mol. Genet. Genom. 2021, 296, 751–762. [Google Scholar] [CrossRef]
- Presnyak, V.; Alhusaini, N.; Chen, Y.; Martin, S.; Morris, N.; Kline, N.; Olson, S.; Weinberg, D.; Baker, K.E.; Graveley, B.R.; et al. Codon optimality is a major determinant of mRNA stability. Cell 2015, 160, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, P.; Binti Othman, R.; Mebus, K.; Ramakrishnan, N.; Ann Harikrishna, J. Codon usage and codon pair patterns in non-grass monocot genomes. Ann. Bot. 2017, 120, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, L.; Ge, A.; Liu, Y.; Chen, S.; Wei, Z.; Zheng, Y.; Tong, L.; Wang, Z.; Fei, R.; et al. Construction of pseudorabies virus variant attenuated vaccine: Codon deoptimization of US3 and UL56 genes based on PRV gE/TK deletion strain. Front. Microbiol. 2023, 14, 1248573. [Google Scholar] [CrossRef]
- Ma, X.R.; Xiao, S.B.; Fang, L.R.; Chen, H.C. Bias of base composition and codon usage in pseudorabies virus genes. Yi Chuan Xue Bao 2005, 32, 616–624. [Google Scholar]
- Wu, X.; Shan, K.J.; Zan, F.; Tang, X.; Qian, Z.; Lu, J. Optimization and Deoptimization of Codons in SARS-CoV-2 and Related Implications for Vaccine Development. Adv. Sci. 2023, 10, e2205445. [Google Scholar] [CrossRef] [PubMed]
Sequence Name | GenBank Accession NO. | Year | Area |
---|---|---|---|
CQ2/CH/2022 | PQ232112.1 | 2024 | China |
CQ1/CH/2022 | PQ232108.1 | 2024 | China |
DML-5 | PQ094473.1 | 2024 | China |
YJ | PQ082940.1 | 2024 | China |
QX2 | PQ082939.1 | 2024 | China |
HN2021 | PQ082938.1 | 2021 | China |
HN19 | PQ082937.1 | 2024 | China |
HN4 | PQ082935.1 | 2024 | China |
HN2 | PQ082934.1 | 2024 | China |
G22 | PQ082933.1 | 2024 | China |
MS | OR338846.1 | 2023 | China |
JL-21 | OR228534.1 | 2023 | China |
SD1401 | OR161205.1 | 2023 | China |
PRVYL-2020 | OR137576.1 | 2024 | China |
GXNN2204-2014 | OP879621.1 | 2023 | China |
GXNN3176-2017 | OP879620.1 | 2023 | China |
GXNN3175-2017 | OP879619.1 | 2023 | China |
GXNN2020-2014 | OP879618.1 | 2023 | China |
GXQZ3227-2018 | OP879617.1 | 2023 | China |
GXNN3167-2017 | OP879615.1 | 2023 | China |
GXSB2001-2014 | OP879614.1 | 2023 | China |
GXQZ3228-2018 | OP879613.1 | 2023 | China |
GXYL2480-2015 | OP879612.1 | 2023 | China |
GXYL2396-2015 | OP879611.1 | 2023 | China |
GXWM1884-2013 | OP879610.1 | 2023 | China |
GXNN3107-2017 | OP879609.1 | 2023 | China |
GXNN3102-2017 | OP879608.1 | 2023 | China |
GXNN3100-2017 | OP879607.1 | 2023 | China |
GXNN3055-2017 | OP879606.1 | 2023 | China |
GXNN2657-2016 | OP879605.1 | 2023 | China |
GXNN2340-2015 | OP879604.1 | 2023 | China |
GXNN2225-2014 | OP879603.1 | 2023 | China |
GXNN2110-2014 | OP879602.1 | 2023 | China |
GXNN2089-2014 | OP879601.1 | 2023 | China |
GXNN1996-2013 | OP879600.1 | 2023 | China |
GXNN1987-2013 | OP879599.1 | 2023 | China |
GXNN1923-2013 | OP879598.1 | 2023 | China |
GXHP2037-2014 | OP879597.1 | 2023 | China |
GXGL2170-2014 | OP879596.1 | 2023 | China |
GXGG1909-2013 | OP879595.1 | 2023 | China |
GXGG1903-2013 | OP879594.1 | 2023 | China |
GXGG1901-2013 | OP879593.1 | 2023 | China |
GXLB1918-2013 | OP879592.1 | 2023 | China |
GXBS2632-2016 | OP879591.1 | 2023 | China |
GXBB2017-2014 | OP879590.1 | 2023 | China |
GXBB1938-2013 | OP879589.1 | 2023 | China |
GXBB1776-2013 | OP879588.1 | 2023 | China |
FJ/tiger/2018-2 | OP727804.1 | 2024 | China |
FJ/tiger/2018-1 | OP727803.1 | 2024 | China |
FJ/tiger/2016 | OP727802.1 | 2024 | China |
FJ/tiger/2015 | OP727801.1 | 2024 | China |
FJ/porcupine/2018 | OP727800.1 | 2024 | China |
GXGG-2016 | OP605538.1 | 2023 | China |
GXLB-2015 | OP589231.1 | 2023 | China |
JS-XJ5 | OP512542.1 | 2023 | China |
SX1911 | OP376823.1 | 2023 | China |
FB | ON005002.1 | 2023 | China |
FA | ON005001.1 | 2023 | China |
DCD-1 | OL639029.1 | 2022 | China |
SX1910 | OL606749.1 | 2022 | China |
PRV-JM | OK338077.1 | 2022 | China |
PRV-GD | OK338076.1 | 2022 | China |
Kaplan | NC_075689.1 | 2023 | Hungary |
CH/GX/PRV/2408/2018 | MZ219273.1 | 2022 | China |
XJ | MW893682.1 | 2022 | China |
_JS2019 | MW805231.1 | 2021 | China |
FJ | MW286330.1 | 2022 | China |
YJ | MW250652.1 | 2022 | China |
JZ-1 | MW055924.1 | 2022 | China |
XC | MW055923.1 | 2022 | China |
SX-2 | MW055922.1 | 2022 | China |
SX-1 | MW055921.1 | 2022 | China |
PY-1 | MW055920.1 | 2022 | China |
HuB17 | MT949537.1 | 2020 | China |
GD1802 | MT949535.1 | 2020 | China |
hSD-1/2019 | MT468550.1 | 2020 | China |
JSY13 | MT157263.1 | 2020 | China |
JSY7 | MT150583.1 | 2020 | China |
JSSQ2013 | MN718167.1 | 2020 | China |
JX/CH/2016 | MK806387.1 | 2020 | China |
AnH1/CHN2015 | MK618718.1 | 2020 | China |
HBXT-2018 | MK532276.1 | 2019 | China |
HLJ-2013 | MK080279.1 | 2019 | China |
GD0304 | MH582511.1 | 2019 | China |
PRV-MdBio | LT934125.1 | 2018 | Hungary |
RC1 | LC342744.1 | 2019 | Japan |
Ea(Hubei) | KX423960.1 | 2017 | China |
NIA3 | KU900059.1 | 2016 | United Kingdom |
LA | KU552118.1 | 2017 | China |
DL14/08 | KU360259.1 | 2016 | China |
Ea | KU315430.1 | 2016 | China |
HB1201 | KU057086.1 | 2016 | China |
Kolchis | KT983811.1 | 2016 | Greece |
Hercules | KT983810.1 | 2016 | Greece |
HLJ8 | KT824771.1 | 2016 | China |
SC | KT809429.1 | 2016 | China |
JS2011 | KR605319.1 | 2011 | China |
HN1201 | KP722022.1 | 2016 | China |
JS-2012 | KP257591.1 | 2015 | China |
Fa | KM189913.1 | 2016 | China |
HNX | KM189912.1 | 2016 | China |
ZJ01 | KM061380.1 | 2015 | China |
TJ | KJ789182.1 | 2014 | China |
Kaplan | KJ717942.1 | 2014 | Hungary |
DUL34Pass | JQ809330.1 | 2016 | Germany |
Kaplan | JQ809328.1 | 2012 | Germany |
Becker | JF797219.1 | 2011 | USA |
Kaplan | JF797218.1 | 2011 | Hungary |
Bartha | JF797217.1 | 2011 | Hungary |
MY-1 | AP018925.1 | 2015 | Japan |
Categories | PRV | Sus Scrofa | Bos Taurus |
---|---|---|---|
TTT(Phe) | 0.2 | 0.79 | 0.87 |
TTC(Phe) | 1.8 | 1.21 | 1.13 |
TTA(Leu) | 0.01 | 0.32 | 1.71 |
TTG(Leu) | 0.05 | 0.67 | 1.35 |
CTT(Leu) | 0.69 | 1.35 | 0.73 |
CTC(Leu) | 1.93 | 1.35 | 0.93 |
CTA(Leu) | 0.42 | 0.33 | 0.58 |
CTG(Leu) | 2.9 | 2.68 | 1.69 |
ATT(Ile) | 0.07 | 0.91 | 0.92 |
ATC(Ile) | 2.93 | 1.67 | 1.01 |
ATA(Ile) | 0 | 0.42 | 1.07 |
GTT(Val) | 0.09 | 0.57 | 0.69 |
GTC(Val) | 1.13 | 1.07 | 0.82 |
GTA(Val) | 0.15 | 0.34 | 0.72 |
GTG(Val) | 2.62 | 2.03 | 1.76 |
TCT(Ser) | 0.37 | 0.99 | 0.95 |
TCC(Ser) | 1.39 | 1.5 | 1.06 |
TCA(Ser) | 0.66 | 0.73 | 1.4 |
TCG(Ser) | 1.88 | 0.39 | 0.43 |
AGT(Ser) | 0.17 | 0.77 | 0.8 |
AGC(Ser) | 1.53 | 1.62 | 1.53 |
CCT(Pro) | 0.74 | 1.05 | 0.94 |
CCC(Pro) | 1.52 | 1.46 | 1.01 |
CCA(Pro) | 0.53 | 0.94 | 1.45 |
CCG(Pro) | 1.21 | 0.56 | 0.59 |
ACT(Thr) | 0.21 | 0.83 | 0.87 |
ACC(Thr) | 1.14 | 1.68 | 1.09 |
ACA(Thr) | 0.49 | 0.92 | 1.44 |
ACG(Thr) | 2.16 | 0.57 | 0.6 |
GCT(Ala) | 0.62 | 0.96 | 0.97 |
GCC(Ala) | 1.63 | 1.8 | 1.13 |
GCA(Ala) | 0.42 | 0.74 | 1.3 |
GCG(Ala) | 1.33 | 0.5 | 0.6 |
TAT(Tyr) | 0 | 0.73 | 0.9 |
TAC(Tyr) | 2 | 1.27 | 1.1 |
CAT(His) | 0.44 | 0.7 | 0.88 |
CAC(His) | 1.56 | 1.3 | 1.12 |
CAA(Gln) | 0.76 | 0.44 | 0.71 |
CAG(Gln) | 1.24 | 1.56 | 1.29 |
AAT(Asn) | 0 | 0.79 | 0.87 |
AAC(Asn) | 2 | 1.21 | 1.13 |
AAA(Lys) | 0 | 0.76 | 0.89 |
AAG(Lys) | 2 | 1.24 | 1.11 |
GAT(Asp) | 0.2 | 0.8 | 0.85 |
GAC(Asp) | 1.8 | 1.2 | 1.15 |
GAA(Glu) | 0.15 | 0.72 | 0.92 |
GAG(Glu) | 1.85 | 1.28 | 1.08 |
TGT(Cys) | 0.51 | 0.79 | 0.78 |
TGC(Cys) | 1.49 | 1.21 | 1.22 |
CGT(Arg) | 0.65 | 0.44 | 0.26 |
CGC(Arg) | 2.63 | 1.31 | 0.52 |
CGA(Arg) | 0.76 | 0.6 | 0.27 |
CGG(Arg) | 1.46 | 1.29 | 0.73 |
AGA(Arg) | 0.21 | 1.12 | 2.16 |
AGG(Arg) | 0.28 | 1.23 | 2.07 |
GGT(Gly) | 0.46 | 0.57 | 1.51 |
GGC(Gly) | 1.9 | 1.46 | 1.01 |
GGA(Gly) | 0.49 | 0.91 | 1.25 |
GGG(Gly) | 1.15 | 1.05 | 1.23 |
Categories | LSDV |
---|---|
%A | 15.1 ± 0.31 |
%C | 37.4 ± 0.19 |
%T | 13.6 ± 0.08 |
%G | 33.8 ± 0.47 |
A-3 | 10.4 ± 7.86 |
C-3 | 43.1 ± 11.52 |
T-3 | 10 ± 6.5 |
G-3 | 36.5 ± 3.07 |
A3S | 0.01 ± 0.0013 |
C3S | 0.67 ± 0.0027 |
T3S | 0.02 ± 0.0011 |
G3S | 0.50 ± 0.0022 |
%G + C | 0.71± 0.0005 |
GC3S | 0.97 ± 0.0016 |
ENC | 27.94 ± 0.1528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, A.; Li, K.; Liu, X.; Ren, Y.; Zhang, F.; Li, X.; Yuan, Z.; Bie, J.; Li, J.; Xie, C. Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus. Genes 2025, 16, 1155. https://doi.org/10.3390/genes16101155
Xiong A, Li K, Liu X, Ren Y, Zhang F, Li X, Yuan Z, Bie J, Li J, Xie C. Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus. Genes. 2025; 16(10):1155. https://doi.org/10.3390/genes16101155
Chicago/Turabian StyleXiong, Aolong, Kai Li, Xiaodong Liu, Yunxin Ren, Fuchao Zhang, Xiaoqi Li, Ziqing Yuan, Junhong Bie, Jinxiang Li, and Changzhan Xie. 2025. "Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus" Genes 16, no. 10: 1155. https://doi.org/10.3390/genes16101155
APA StyleXiong, A., Li, K., Liu, X., Ren, Y., Zhang, F., Li, X., Yuan, Z., Bie, J., Li, J., & Xie, C. (2025). Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus. Genes, 16(10), 1155. https://doi.org/10.3390/genes16101155