Characteristic Gene Alterations During Fatty Acid Metabolism in the Goose Liver
Abstract
1. Introduction
2. Materials and Methodology
3. Liver Fatty Acid Composition and Genetic Response to Different Diet Supplementation Types
4. Genetic Response to Hepatic Steatosis
5. Epigenetic Regulation of Gene Expression Involved in Hepatic Lipid Biosynthesis in Geese
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsuzaka, T.; Shimano, H.; Yahagi, N.; Kato, T.; Atsumi, A.; Yamamoto, T.; Inoue, N.; Ishikawa, M.; Okada, S.; Ishigaki, N.; et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat. Med. 2007, 13, 1193–1202. [Google Scholar] [CrossRef]
- Wei, R.; Deng, D.; Teng, Y.; Lu, C.; Luo, Z.; Abdulai, M.; Liu, H.; Xu, H.; Li, L.; Hu, S.; et al. Study on the effect of different types of sugar on lipid deposition in goose fatty liver. Poult. Sci. 2022, 101, 101729. [Google Scholar] [CrossRef]
- Fournier, E.; Peresson, R.; Guy, G.; Hermier, D. Relationships between Storage and Secretion of Hepatic Lipids in Two Breeds of Geese with Different Susceptibility to Liver Steatosis. Poult. Sci. 1997, 76, 599–607. [Google Scholar] [CrossRef]
- Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510, 84–91. [Google Scholar] [CrossRef]
- Wang, G.; Jin, L.; Li, Y.; Tang, Q.; Hu, S.; Xu, H.; Gill, C.A.; Li, M.; Wang, J. Transcriptomic analysis between Normal and high-intake feeding geese provides insight into adipose deposition and susceptibility to fatty liver in migratory birds. BMC Genom. 2019, 20, 372. [Google Scholar] [CrossRef]
- Shi, M.; Sirard, M.A. Metabolism of fatty acids in follicular cells, oocytes, and blastocysts. Reprod. Fertil. 2022, 3, R96–R108. [Google Scholar] [CrossRef]
- Zhu, L.H.; Meng, H.; Duan, X.J.; Xu, G.Q.; Zhang, J.; Gong, D.Q. Gene expression profile in the liver tissue of geese after overfeeding. Poult. Sci. 2011, 90, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Orkusz, A.; Wereńska, M. Fatty acids profile of muscles and abdominal fat in geese of polish native varieties. Anim. Sci. Pap. Rep. 2014, 32, 239–249. [Google Scholar]
- Koseniuk, A.; Połtowicz, K.; Smołucha, G.; Kmita, B.; Nowak, J.; Kłos, K. The sequence study and expression profiles of ACSL1, ME1, and ELOVL6 genes in Kielecka, Landes and White Koluda®geese livers. Anim. Sci. Pap. Rep. 2025, 43, 103–111. [Google Scholar] [CrossRef]
- Orkusz, A.; Woloszyn, J.; Haraf, G.; Okruszek, A.; Grajeta, H. Changes in the fatty acid profile of intramuscular fat in goose meat packed in different atmospheres. Eur. Poult. Sci. 2015, 79, 1–10. [Google Scholar] [CrossRef]
- An, R.; Wang, Y.; Ren, Q. Impacts of feeding different lipid sources on serum biochemical indices, dietary fatty acid metabolism, raw foie gras quality characteristics and gene expression related to fat deposition in the Landes goose. Anim. Nutr. 2025, 21, 462–471. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Cheng, H.; Deng, Y.; Xiong, X.; Qu, X. Comparison of performance, fatty acid composition, enzymes and gene expression between overfed Xupu geese with large and small liver. Ital. J. Anim. Sci. 2021, 20, 102–111. [Google Scholar] [CrossRef]
- Wei, R.; Han, C.; Wei, S.; Teng, Y.; Li, L.; Liu, H.; Hu, S.; Kang, B.; Xu, H. Integrative analysis of transcriptome and lipidome reveals fructose pro-steatosis mechanism in goose fatty liver. Front. Nutr. 2023, 9, 1052600. [Google Scholar] [CrossRef]
- Wei, R.; Teng, Y.; Han, C.; Wei, S.; Li, L.; Liu, H.; Hu, S.; Kang, B.; Xu, H. Multi-omics reveals goose fatty liver formation from metabolic reprogramming. Front. Vet. Sci. 2024, 11, 1122904. [Google Scholar] [CrossRef]
- Lv, M.; Mu, J.; Xing, Y.; Zhou, X.; Ge, J.; Gong, D.; Geng, T.; Zhao, M. Glucose inhibits the inflammatory response in goose fatty liver by increasing the ubiquitination level of PKA. J. Anim. Sci. 2024, 102, skae239. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Fang, Q.; Shao, R.; Shen, J.; He, J.; Niu, D.; Lu, L. Digital gene-expression profiling analysis of the fatty liver of Landes geese fed different supplemental oils. Gene 2018, 673, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, H.; Li, J.; Tian, Y.; Xu, J.; Chen, L.; Wei, J.; Zhao, N.; Yang, X.; Zhang, W.; et al. Identification of differentially expressed miRNAs in the fatty liver of Landes goose (Anser anser). Sci. Rep. 2017, 7, 16296. [Google Scholar] [CrossRef]
- Kong, J.; Yao, Z.; Chen, J.; Zhao, Q.; Li, T.; Dong, M.; Bai, Y.; Liu, Y.; Lin, Z.; Xie, Q.; et al. Comparative Transcriptome Analysis Unveils Regulatory Factors Influencing Fatty Liver Development in Lion-Head Geese under High-Intake Feeding Compared to Normal Feeding. Vet. Sci. 2024, 11, 366. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Wang, Q.; Zhao, X.; Zhao, P.; Geng, T.; Gong, D. Role of miR29c in goose fatty liver is mediated by its target genes that are involved in energy homeostasis and cell growth. BMC Vet. Res. 2018, 14, 325. [Google Scholar] [CrossRef]
- Liu, S.; Li, C.; Hu, X.; Mao, H.; Liu, S.; Chen, B. Molecular Mechanisms of circRNA–miRNA–mRNA Interactions in the Regulation of Goose Liver Development. Animals 2024, 14, 839. [Google Scholar] [CrossRef] [PubMed]
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Orkusz, A.; Wereńska, M. Nutritional value of proteins and lipids in breast muscle of geese from four different Polish genotypes. Eur. Poult. Sci. 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Basaranoglu, M.; Basaranoglu, G.; Bugianesi, E. Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg. Nutr. 2015, 4, 109–116. [Google Scholar] [PubMed]
- Zhang, R.; Zhu, L.; Zhang, Y.; Shao, D.; Wang, L.; Gong, D. CDNA cloning and the response to overfeeding in the expression of stearoyl-CoA desaturase 1 gene in Landes goose. Gene 2013, 512, 464–469. [Google Scholar] [CrossRef]
- Lu, L.; Chen, Y.; Wang, Z.; Li, X.; Chen, W.; Tao, Z.; Shen, J.; Tian, Y.; Wang, D.; Li, G.; et al. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biol. 2015, 16, 89. [Google Scholar] [CrossRef]
- Kamal, S.; Saleem, A.; Rehman, S.; Bibi, I.; Iqbal, H.M.N. Protein engineering: Regulatory perspectives of stearoyl CoA desaturase. Int. J. Biol. Macromol. 2018, 114, 692–699. [Google Scholar] [CrossRef]
- Ntambi, J.M.; Miyazaki, M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 2004, 43, 91–104. [Google Scholar] [CrossRef]
- Biddinger, S.B.; Miyazaki, M.; Boucher, J.; Ntambi, J.M.; Kahn, C.R. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes 2006, 55, 2032–2041. [Google Scholar]
- Lin, J.; Yang, R.; Tarr, P.T.; Wu, P.H.; Handschin, C.; Li, S.; Yang, W.; Pei, L.; Uldry, M.; Tontonoz, P.; et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 2005, 120, 261–273. [Google Scholar] [CrossRef]
- Fernández-García, V.; González-Ramos, S.; Avendaño-Ortiz, J.; Martín-Sanz, P.; Gómez-Coronado, D.; Delgado, C.; Castrillo, A.; Boscá, L. High-fat diet activates splenic NOD1 and enhances neutrophil recruitment and neutrophil extracellular traps release in the spleen of ApoE-deficient mice. Cell. Mol. Life Sci. 2022, 79, 396. [Google Scholar]
- Moltó-Puigmartí, C.; Plat, J.; Mensink, R.P.; Müller, A.; Jansen, E.; Zeegers, M.P.; Thijs, C. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am. J. Clin. Nutr. 2010, 91, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.H.; Liu, L.; Xia, L.; Zhao, X.; Wang, Q.; Sun, X.; Zhang, Y.; Yang, B.; Zheng, Y.; Gong, D.; et al. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver. Mol. Cell. Biochem. 2016, 418, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Loix, M.; Vanherle, S.; Turri, M.; Kemp, S.; Fernandes, K.J.L.; Hendriks, J.J.A.; Bogie, J.F.J. Stearoyl-CoA desaturase-1: A potential therapeutic target for neurological disorders. Mol. Neurodegener. 2024, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.A.; Shah, N.A.; Mohapatra, S.; Warrington, J.A.; Horton, J.D. Identification of a Mammalian Long Chain Fatty Acyl Elongase Regulated by Sterol Regulatory Element-binding Proteins. J. Biol. Chem. 2001, 276, 45358–45366. [Google Scholar] [CrossRef]
- Ju, H.Q.; Lin, J.F.; Tian, T.; Xie, D.; Xu, R.H. NADPH homeostasis in cancer: Functions, mechanisms and therapeutic implications. Signal Transduct. Target. Ther. 2020, 5, 231. [Google Scholar] [CrossRef]
- Mourot, J.; Guy, G.; Lagarrigue, S.; Peiniau, P.; Hermier, D. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser). Comp. Biochem. Physiol.-B Biochem. Mol. Biol. 2000, 126, 81–87. [Google Scholar] [CrossRef]
- Zhu, G.; Zheng, X.; Wang, Z.; Xu, X. Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules 2022, 12, 1655. [Google Scholar] [CrossRef]
- Wang, X.; Shao, Y.; Yang, Z.; Yang, H.; Wang, Z. Role of Vanin-1 Gene Methylation in Fat Synthesis in Goose Liver: Effects of Betaine and 5-Azacytidine Treatments. Animals 2025, 15, 719. [Google Scholar] [CrossRef]
Reference | Fatty Acid Profiles | Transcriptome/Gene Study | Epigenetic Modifications | Protein/Amino Acid Profiles | Repository/Repositories and Accession Number(s) * | Breed |
---|---|---|---|---|---|---|
[2] | y | y | n | y | https://figshare.com/s/70fbe6ff915e6471c431 (accessed on 10 September 2025); https://international.biocloud.net/zh/dashboard (accessed on 10 September 2025); ID:15215045770; Password: deng19940227 | Tianfu |
[3] | y | n | n | n | nd | Landes (France) |
[7] | n | y | n | n | GenBank Accession no. GW713791-GW713889 and GW714091-GW714097; GenBank Accession no. HO224431 to HO224443 | Landes (China) |
[8] | y | n | n | n | nd | Kartuska, Lubelska |
[9] | n | y | n | n | nd | Kielecka, Landes (Poland), and White Koluda®geese |
[10] | y | n | n | n | nd | White Koluda®geese |
[11] | y | y | n | y | https://doi.org/10.1016/j.aninu.2025.03.003. | Landes (China) |
[12] | y | y | n | n | nd | Xupu |
[13] | y | y | n | n | https://figshare.com/articles/dataset/Integrative_Analysis_between_Transcriptome_and_Lipidome_Reveal_Fructose_Pro-Steatosis_Mechanism_in_Goose_Fatty_Liver_Formation/21060628/1 (accessed on 10 September 2025). | Tianfu |
[14] | y | y | n | y | 10.6084/m9.figshare.21154540. | Tianfu |
[15] | n | y | y | y | nd | Landes (China) |
[16] | y | y | n | n | https://doi.org/10.1016/j.gene.2018.05.122. | Landes (China) |
[17] | n | n | y | n | NCBI (GEO99200, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99200, accessed on 10 September 2025). | Landes (China) |
[18] | n | y | y | n | Gene Expression Omnibus (GEO) Accession No. GSE243829 | Lion-head goose |
[19] | n | n | y | n | nd | Landes (China) |
[20] | n | n | y | n | China National Center for Bioinformation Accession No. CRA014346 and CRA012842; https://www.mdpi.com/article/10.3390/ani14060839/s1 (accessed on 10 September 2025) | Sichuan white goose |
Gene Name | Supplementation Type, Reference, and Breed Studied | |||
---|---|---|---|---|
Maize | Reference/Goose Breed | G, F, S | Reference/Goose Breed | |
ELOVL6 | up | Tianfu [14] Landes [7] | down (G, F, S) | Tianfu [2] |
SCD1 | up | nd | ||
ACSL1 | up | nd | ||
ME1 | up | nd | ||
FAS | down | up | ||
FABP | nd | up (G, F) | ||
PPAR | nd | up (F, S) |
Gene Name | Supplementation Type, Reference, and Breed Studied | |
---|---|---|
Goose Fat, Rapeseed Oil [16] | Soybean Oil [11] | |
ELOVL1 | down | nd |
ELOVL2 | down | nd |
ELOVL3 | down | nd |
SCD | up | down |
ACACA | up | nd |
SLC2A2 | up | nd |
SLC2A5 | up | nd |
SLC5A9 | up | nd |
ACSBG2 | up | nd |
FASN | nd | down |
ELOVL6 | nd | down |
SREBP1 | nd | down |
LPL | nd | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koseniuk, A. Characteristic Gene Alterations During Fatty Acid Metabolism in the Goose Liver. Genes 2025, 16, 1137. https://doi.org/10.3390/genes16101137
Koseniuk A. Characteristic Gene Alterations During Fatty Acid Metabolism in the Goose Liver. Genes. 2025; 16(10):1137. https://doi.org/10.3390/genes16101137
Chicago/Turabian StyleKoseniuk, Anna. 2025. "Characteristic Gene Alterations During Fatty Acid Metabolism in the Goose Liver" Genes 16, no. 10: 1137. https://doi.org/10.3390/genes16101137
APA StyleKoseniuk, A. (2025). Characteristic Gene Alterations During Fatty Acid Metabolism in the Goose Liver. Genes, 16(10), 1137. https://doi.org/10.3390/genes16101137