Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain
Abstract
1. Introduction
2. Methods
3. Statistical Analysis
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wennberg, A.M.V.; Wu, M.N.; Rosenberg, P.B.; Spira, A.P. Sleep Disturbance, Cognitive Decline, and Dementia: A Review. Semin. Neurol. 2017, 37, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Scarmeas, N.; Stern, Y. Sleep and the aging brain. A multifaceted approach. Sleep Sci. 2020, 13, 152–156. [Google Scholar]
- Tsapanou, A.; Gu, Y.; O’Shea, D.; Eich, T.; Tang, M.X.; Schupf, N.; Manly, J.; Zimmerman, M.; Scarmeas, N.; Stern, Y. Daytime somnolence as an early sign of cognitive decline in a community-based study of older people. Int. J. Geriatr. Psychiatry 2016, 31, 247–255. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, L.; Zheng, F.; Shi, L.; Zhong, B.; Xie, W. Association Between Sleep Duration and Cognitive Decline. JAMA Netw. Open 2020, 3, e2013573. [Google Scholar] [CrossRef]
- Tai, X.Y.; Chen, C.; Manohar, S.; Husain, M. Impact of sleep duration on executive function and brain structure. Commun. Biol. 2022, 5, 201. [Google Scholar] [CrossRef]
- Sehgal, A.; Mignot, E. Genetics of sleep and sleep disorders. Cell 2011, 146, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.J.; Li, Z.Y.; Ning, J.; Yang, L.; Wu, B.S.; Kang, J.J.; Liu, W.S.; He, X.Y.; You, J.; Chen, S.D.; et al. Exome sequencing identifies genes associated with sleep-related traits. Nat. Hum. Behav. 2024, 8, 576–589. [Google Scholar] [CrossRef]
- Zhang, Y.; Elgart, M.; Granot-Hershkovitz, E.; Wang, H.; Tarraf, W.; Ramos, A.R.; Stickel, A.M.; Zeng, D.; Garcia, T.P.; Testai, F.D.; et al. Genetic associations between sleep traits and cognitive ageing outcomes in the Hispanic Community Health Study/Study of Latinos. eBioMedicine 2023, 87, 104393. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Gao, Y.; Stern, Y.; Barral, S. Polygenic score for sleep duration. Association with cognition. Sleep Med. 2020, 74, 262–266. [Google Scholar] [CrossRef]
- Tsapanou, A.; Mourtzi, N.; Charisis, S.; Hatzimanolis, A.; Ntanasi, E.; Kosmidis, M.H.; Yannakoulia, M.; Hadjigeorgiou, G.; Dardiotis, E.; Sakka, P.; et al. Sleep Polygenic Risk Score Is Associated with Cognitive Changes over Time. Genes 2021, 13, 63. [Google Scholar] [CrossRef]
- Alhola, P.; Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr. Dis. Treat. 2007, 3, 553–567. [Google Scholar] [PubMed]
- Habeck, C.; Gazes, Y.; Razlighi, Q.; Steffener, J.; Brickman, A.; Barulli, D.; Salthouse, T.; Stern, Y. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults. Neuroimage 2016, 125, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Mattis, S. Dementia Rating Scale: Professional Manual; Psychological Assessment Resources, Incorporated: Lutz, FL, USA, 1988. [Google Scholar]
- Blessed, G.; Tomlinson, B.E.; Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 1968, 114, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Habeck, C.; Razlighi, Q.; Gazes, Y.; Barulli, D.; Steffener, J.; Stern, Y. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice. Cereb. Cortex 2017, 27, 3962–3969. [Google Scholar] [CrossRef] [PubMed]
- Razlighi, Q.R.; Habeck, C.; Barulli, D.; Stern, Y. Cognitive neuroscience neuroimaging repository for the adult lifespan. Neuroimage 2017, 144, 294–298. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve. Neuropsychologia 2009, 47, 2015–2028. [Google Scholar] [CrossRef]
- Stern, Y.; Habeck, C.; Steffener, J.; Barulli, D.; Gazes, Y.; Razlighi, Q.; Shaked, D.; Salthouse, T. The Reference Ability Neural Network Study: Motivation, design, and initial feasibility analyses. Neuroimage 2014, 103, 139–151. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.; et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; Van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Oschwald, J.; Guye, S.; Liem, F.; Rast, P.; Willis, S.; Röcke, C.; Jäncke, L.; Martin, M.; Mérillat, S. Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Rev. Neurosci. 2019, 31, 1–57. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; Van Der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef]
- Buschke, H.; Fuld, P.A. Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology 1974, 24, 1019–1025. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler adult intelligence scale. Front. Psychol. 1997. [Google Scholar] [CrossRef]
- Reitan, R.M. The relation of the trail making test to organic brain damage. J. Consult. Psychol. 1955, 19, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Test of Adult Reading: WTAR; Psychological Corporation: Sydney, Australia, 2001. [Google Scholar]
- Grober, E.; Sliwinsk, M.; Korey, S.R. Development and validation of a model for estimating premorbid verbal intelligence in the elderly. J. Clin. Exp. Neuropsychol. 1991, 13, 933–949. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Christie, G.J.; Hamilton, T.; Manor, B.D.; Farb, N.A.; Farzan, F.; Sixsmith, A.; Temprado, J.J.; Moreno, S. Do Lifestyle Activities Protect Against Cognitive Decline in Aging? A Review. Front. Aging Neurosci. 2017, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Harman, M.F.; Martín, M.G. Epigenetic mechanisms related to cognitive decline during aging. J. Neurosci. Res. 2020, 98, 234–246. [Google Scholar] [CrossRef]
- Mahedy, L.; Anderson, E.L.; Tilling, K.; Thornton, Z.A.; Elmore, A.R.; Szalma, S.; Simen, A.; Culp, M.; Zicha, S.; Harel, B.T.; et al. Investigation of genetic determinants of cognitive change in later life. Transl. Psychiatry 2024, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Bischof, G.N. The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 2013, 15, 109–119. [Google Scholar] [CrossRef]
- Lemaitre, H.; Goldman, A.L.; Sambataro, F.; Verchinski, B.A.; Meyer-Lindenberg, A.; Weinberger, D.R.; Mattay, V.S. Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol. Aging 2012, 33, 617.e1–617.e9. [Google Scholar] [CrossRef]
- de Chastelaine, M.; Srokova, S.; Hou, M.; Kidwai, A.; Kafafi, S.S.; Racenstein, M.L.; Rugg, M.D. Cortical thickness, gray matter volume, and cognitive performance: A crosssectional study of the moderating effects of age on their interrelationships. Cereb. Cortex 2023, 33, 6474–6485. [Google Scholar] [CrossRef] [PubMed]
- Tatineny, P.; Shafi, F.; Gohar, A.; Bhat, A. Sleep in the Elderly. Mo. Med. 2020, 117, 490–495. [Google Scholar] [PubMed]
- Genderson, M.R.; Rana, B.K.; Panizzon, M.S.; Grant, M.D.; Toomey, R.; Jacobson, K.C.; Xian, H.; Cronin-Golomb, A.; Franz, C.E.; Kremen, W.S.; et al. Genetic and environmental influences on sleep quality in middle-aged men: A twin study. J. Sleep Res. 2013, 22, 519–526. [Google Scholar] [CrossRef]
- Drake, C.L.; Friedman, N.P.; Wright, K.P., Jr.; Roth, T. Sleep reactivity and insomnia: Genetic and environmental influences. Sleep 2011, 34, 1179–1188. [Google Scholar] [CrossRef]
- Gazes, Y.; Lee, S.; Fang, Z.; Mensing, A.; Noofoory, D.; Hidalgo Nazario, G.; Babukutty, R.; Chen, B.B.; Habeck, C.; Stern, Y. Effects of Brain Maintenance and Cognitive Reserve on Age-Related Decline in Three Cognitive Abilities. J. Gerontol. Ser. B 2023, 78, 1284–1293. [Google Scholar] [CrossRef]
- Lo, J.C.; Loh, K.K.; Zheng, H.; Sim, S.K.Y.; Chee, M.W.L. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance. Sleep 2014, 37, 821. [Google Scholar] [CrossRef]
- Xu, W.; Tan, C.-C.; Zou, J.-J.; Cao, X.-P.; Tan, L. Sleep problems and risk of all-cause cognitive decline or dementia: An updated systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Keil, S.A.; Schindler, A.G.; Wang, M.X.; Piantino, J.; Silbert, L.C.; Elliott, J.E.; Werhane, M.L.; Thomas, R.G.; Willis, S.; Lim, M.M.; et al. Longitudinal Sleep Patterns and Cognitive Impairment in Older Adults. JAMA Netw. Open 2023, 6, e2346006. [Google Scholar] [CrossRef]
- Voss, P.; Thomas, M.E.; Cisneros-Franco, J.M.; de Villers-Sidani, É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front. Psychol. 2017, 8, 1657. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.O.; Park, D.C. Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restor. Neurol. Neurosci. 2009, 27, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef]
Total | Young | Middle | Old | |
---|---|---|---|---|
Age, years, mean (SD) | 58.3 (15.2) | 30.7 (5.9) | 58.3 (5.6) | 70.1 (3.8) |
Sex, women, N (%) | 47 (49) | 8 (44.4) | 20 (55.6) | 19 (45.2) |
Education, years, mean (SD) | 16.5 (2.3) | 16.4 (2.5) | 16.7 (2.3) | 16.5 (2.3) |
Memory, mean (SD) | 0.08 (0.99) | 0.68 (0.96) | 0.23 (0.95) | −0.31 (0.88) |
Fluid reasoning, mean (SD) | 0.28 (0.83) | 0.86 (0.79) | 0.39 (0.80) | −0.06 (0.72) |
Speed of processing, mean (SD) | 0.17 (0.77) | 1.01 (0.76) | 0.18 (0.64) | −0.19 (0.58) |
Language, mean (SD) | 0.32 (0.7) | 0.55 (0.56) | 0.48 (0.59) | 0.47 (0.6) |
Total, N | 96 | 18 | 36 | 42 |
Cognitive Domain | Parameters | Unadjusted of BM | Adjusted for BM | ||||
---|---|---|---|---|---|---|---|
95% CI | p | 95% CI | p | ||||
Memory | Time x PGI x Age (Middle) | 1.08 | −21.10–23.26 | 0.923 | 0.94 | −21.73–23.62 | 0.935 |
Time x PGI x Age (Old) | 5.35 | −11.91–22.61 | 0.542 | 5 | −12.36–22.37 | 0.57 | |
Fluid Reasoning | Time x PGI x Age (Middle) | −0.74 | −16.21–14.74 | 0.925 | −2.26 | −18.00–13.49 | 0.777 |
Time x PGI x Age (Old) | 0.3 | −11.61–12.22 | 0.96 | −1.61 | −13.53–10.31 | 0.79 | |
Speed of processing | Time x PGI x Age (Middle) | −7.84 | −20.35–4.67 | 0.217 | −9.55 | −20.51–1.42 | 0.088 |
Time x PGI x Age (Old) | −7.64 | −17.22–1.94 | 0.117 | −10.24 | −18.44–−2.03 | 0.015 | |
Language | Time x PGI x Age (Middle) | 1.58 | −8.17–11.33 | 0.749 | 3.02 | −7.31–13.35 | 0.564 |
Time x PGI x Age (Old) | 2.45 | −5.01–9.91 | 0.518 | 2.52 | −5.25–10.28 | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsapanou, A.; Lee, S.; Chapman, S.; Mourtzi, N.; Habeck, C.; Stern, Y. Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain. Genes 2025, 16, 21. https://doi.org/10.3390/genes16010021
Tsapanou A, Lee S, Chapman S, Mourtzi N, Habeck C, Stern Y. Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain. Genes. 2025; 16(1):21. https://doi.org/10.3390/genes16010021
Chicago/Turabian StyleTsapanou, Angeliki, Seonjoo Lee, Silvia Chapman, Niki Mourtzi, Christian Habeck, and Yaakov Stern. 2025. "Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain" Genes 16, no. 1: 21. https://doi.org/10.3390/genes16010021
APA StyleTsapanou, A., Lee, S., Chapman, S., Mourtzi, N., Habeck, C., & Stern, Y. (2025). Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain. Genes, 16(1), 21. https://doi.org/10.3390/genes16010021