Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain
Abstract
:1. Introduction
2. Methods
3. Statistical Analysis
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wennberg, A.M.V.; Wu, M.N.; Rosenberg, P.B.; Spira, A.P. Sleep Disturbance, Cognitive Decline, and Dementia: A Review. Semin. Neurol. 2017, 37, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Scarmeas, N.; Stern, Y. Sleep and the aging brain. A multifaceted approach. Sleep Sci. 2020, 13, 152–156. [Google Scholar]
- Tsapanou, A.; Gu, Y.; O’Shea, D.; Eich, T.; Tang, M.X.; Schupf, N.; Manly, J.; Zimmerman, M.; Scarmeas, N.; Stern, Y. Daytime somnolence as an early sign of cognitive decline in a community-based study of older people. Int. J. Geriatr. Psychiatry 2016, 31, 247–255. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, L.; Zheng, F.; Shi, L.; Zhong, B.; Xie, W. Association Between Sleep Duration and Cognitive Decline. JAMA Netw. Open 2020, 3, e2013573. [Google Scholar] [CrossRef]
- Tai, X.Y.; Chen, C.; Manohar, S.; Husain, M. Impact of sleep duration on executive function and brain structure. Commun. Biol. 2022, 5, 201. [Google Scholar] [CrossRef]
- Sehgal, A.; Mignot, E. Genetics of sleep and sleep disorders. Cell 2011, 146, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.J.; Li, Z.Y.; Ning, J.; Yang, L.; Wu, B.S.; Kang, J.J.; Liu, W.S.; He, X.Y.; You, J.; Chen, S.D.; et al. Exome sequencing identifies genes associated with sleep-related traits. Nat. Hum. Behav. 2024, 8, 576–589. [Google Scholar] [CrossRef]
- Zhang, Y.; Elgart, M.; Granot-Hershkovitz, E.; Wang, H.; Tarraf, W.; Ramos, A.R.; Stickel, A.M.; Zeng, D.; Garcia, T.P.; Testai, F.D.; et al. Genetic associations between sleep traits and cognitive ageing outcomes in the Hispanic Community Health Study/Study of Latinos. eBioMedicine 2023, 87, 104393. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Gao, Y.; Stern, Y.; Barral, S. Polygenic score for sleep duration. Association with cognition. Sleep Med. 2020, 74, 262–266. [Google Scholar] [CrossRef]
- Tsapanou, A.; Mourtzi, N.; Charisis, S.; Hatzimanolis, A.; Ntanasi, E.; Kosmidis, M.H.; Yannakoulia, M.; Hadjigeorgiou, G.; Dardiotis, E.; Sakka, P.; et al. Sleep Polygenic Risk Score Is Associated with Cognitive Changes over Time. Genes 2021, 13, 63. [Google Scholar] [CrossRef]
- Alhola, P.; Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr. Dis. Treat. 2007, 3, 553–567. [Google Scholar] [PubMed]
- Habeck, C.; Gazes, Y.; Razlighi, Q.; Steffener, J.; Brickman, A.; Barulli, D.; Salthouse, T.; Stern, Y. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults. Neuroimage 2016, 125, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Mattis, S. Dementia Rating Scale: Professional Manual; Psychological Assessment Resources, Incorporated: Lutz, FL, USA, 1988. [Google Scholar]
- Blessed, G.; Tomlinson, B.E.; Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 1968, 114, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Habeck, C.; Razlighi, Q.; Gazes, Y.; Barulli, D.; Steffener, J.; Stern, Y. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice. Cereb. Cortex 2017, 27, 3962–3969. [Google Scholar] [CrossRef] [PubMed]
- Razlighi, Q.R.; Habeck, C.; Barulli, D.; Stern, Y. Cognitive neuroscience neuroimaging repository for the adult lifespan. Neuroimage 2017, 144, 294–298. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve. Neuropsychologia 2009, 47, 2015–2028. [Google Scholar] [CrossRef]
- Stern, Y.; Habeck, C.; Steffener, J.; Barulli, D.; Gazes, Y.; Razlighi, Q.; Shaked, D.; Salthouse, T. The Reference Ability Neural Network Study: Motivation, design, and initial feasibility analyses. Neuroimage 2014, 103, 139–151. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.; et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; Van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Oschwald, J.; Guye, S.; Liem, F.; Rast, P.; Willis, S.; Röcke, C.; Jäncke, L.; Martin, M.; Mérillat, S. Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Rev. Neurosci. 2019, 31, 1–57. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; Van Der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef]
- Buschke, H.; Fuld, P.A. Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology 1974, 24, 1019–1025. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler adult intelligence scale. Front. Psychol. 1997. [Google Scholar] [CrossRef]
- Reitan, R.M. The relation of the trail making test to organic brain damage. J. Consult. Psychol. 1955, 19, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Test of Adult Reading: WTAR; Psychological Corporation: Sydney, Australia, 2001. [Google Scholar]
- Grober, E.; Sliwinsk, M.; Korey, S.R. Development and validation of a model for estimating premorbid verbal intelligence in the elderly. J. Clin. Exp. Neuropsychol. 1991, 13, 933–949. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Christie, G.J.; Hamilton, T.; Manor, B.D.; Farb, N.A.; Farzan, F.; Sixsmith, A.; Temprado, J.J.; Moreno, S. Do Lifestyle Activities Protect Against Cognitive Decline in Aging? A Review. Front. Aging Neurosci. 2017, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Harman, M.F.; Martín, M.G. Epigenetic mechanisms related to cognitive decline during aging. J. Neurosci. Res. 2020, 98, 234–246. [Google Scholar] [CrossRef]
- Mahedy, L.; Anderson, E.L.; Tilling, K.; Thornton, Z.A.; Elmore, A.R.; Szalma, S.; Simen, A.; Culp, M.; Zicha, S.; Harel, B.T.; et al. Investigation of genetic determinants of cognitive change in later life. Transl. Psychiatry 2024, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Bischof, G.N. The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 2013, 15, 109–119. [Google Scholar] [CrossRef]
- Lemaitre, H.; Goldman, A.L.; Sambataro, F.; Verchinski, B.A.; Meyer-Lindenberg, A.; Weinberger, D.R.; Mattay, V.S. Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol. Aging 2012, 33, 617.e1–617.e9. [Google Scholar] [CrossRef]
- de Chastelaine, M.; Srokova, S.; Hou, M.; Kidwai, A.; Kafafi, S.S.; Racenstein, M.L.; Rugg, M.D. Cortical thickness, gray matter volume, and cognitive performance: A crosssectional study of the moderating effects of age on their interrelationships. Cereb. Cortex 2023, 33, 6474–6485. [Google Scholar] [CrossRef] [PubMed]
- Tatineny, P.; Shafi, F.; Gohar, A.; Bhat, A. Sleep in the Elderly. Mo. Med. 2020, 117, 490–495. [Google Scholar] [PubMed]
- Genderson, M.R.; Rana, B.K.; Panizzon, M.S.; Grant, M.D.; Toomey, R.; Jacobson, K.C.; Xian, H.; Cronin-Golomb, A.; Franz, C.E.; Kremen, W.S.; et al. Genetic and environmental influences on sleep quality in middle-aged men: A twin study. J. Sleep Res. 2013, 22, 519–526. [Google Scholar] [CrossRef]
- Drake, C.L.; Friedman, N.P.; Wright, K.P., Jr.; Roth, T. Sleep reactivity and insomnia: Genetic and environmental influences. Sleep 2011, 34, 1179–1188. [Google Scholar] [CrossRef]
- Gazes, Y.; Lee, S.; Fang, Z.; Mensing, A.; Noofoory, D.; Hidalgo Nazario, G.; Babukutty, R.; Chen, B.B.; Habeck, C.; Stern, Y. Effects of Brain Maintenance and Cognitive Reserve on Age-Related Decline in Three Cognitive Abilities. J. Gerontol. Ser. B 2023, 78, 1284–1293. [Google Scholar] [CrossRef]
- Lo, J.C.; Loh, K.K.; Zheng, H.; Sim, S.K.Y.; Chee, M.W.L. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance. Sleep 2014, 37, 821. [Google Scholar] [CrossRef]
- Xu, W.; Tan, C.-C.; Zou, J.-J.; Cao, X.-P.; Tan, L. Sleep problems and risk of all-cause cognitive decline or dementia: An updated systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Keil, S.A.; Schindler, A.G.; Wang, M.X.; Piantino, J.; Silbert, L.C.; Elliott, J.E.; Werhane, M.L.; Thomas, R.G.; Willis, S.; Lim, M.M.; et al. Longitudinal Sleep Patterns and Cognitive Impairment in Older Adults. JAMA Netw. Open 2023, 6, e2346006. [Google Scholar] [CrossRef]
- Voss, P.; Thomas, M.E.; Cisneros-Franco, J.M.; de Villers-Sidani, É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front. Psychol. 2017, 8, 1657. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.O.; Park, D.C. Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restor. Neurol. Neurosci. 2009, 27, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef]
Total | Young | Middle | Old | |
---|---|---|---|---|
Age, years, mean (SD) | 58.3 (15.2) | 30.7 (5.9) | 58.3 (5.6) | 70.1 (3.8) |
Sex, women, N (%) | 47 (49) | 8 (44.4) | 20 (55.6) | 19 (45.2) |
Education, years, mean (SD) | 16.5 (2.3) | 16.4 (2.5) | 16.7 (2.3) | 16.5 (2.3) |
Memory, mean (SD) | 0.08 (0.99) | 0.68 (0.96) | 0.23 (0.95) | −0.31 (0.88) |
Fluid reasoning, mean (SD) | 0.28 (0.83) | 0.86 (0.79) | 0.39 (0.80) | −0.06 (0.72) |
Speed of processing, mean (SD) | 0.17 (0.77) | 1.01 (0.76) | 0.18 (0.64) | −0.19 (0.58) |
Language, mean (SD) | 0.32 (0.7) | 0.55 (0.56) | 0.48 (0.59) | 0.47 (0.6) |
Total, N | 96 | 18 | 36 | 42 |
Cognitive Domain | Parameters | Unadjusted of BM | Adjusted for BM | ||||
---|---|---|---|---|---|---|---|
95% CI | p | 95% CI | p | ||||
Memory | Time x PGI x Age (Middle) | 1.08 | −21.10–23.26 | 0.923 | 0.94 | −21.73–23.62 | 0.935 |
Time x PGI x Age (Old) | 5.35 | −11.91–22.61 | 0.542 | 5 | −12.36–22.37 | 0.57 | |
Fluid Reasoning | Time x PGI x Age (Middle) | −0.74 | −16.21–14.74 | 0.925 | −2.26 | −18.00–13.49 | 0.777 |
Time x PGI x Age (Old) | 0.3 | −11.61–12.22 | 0.96 | −1.61 | −13.53–10.31 | 0.79 | |
Speed of processing | Time x PGI x Age (Middle) | −7.84 | −20.35–4.67 | 0.217 | −9.55 | −20.51–1.42 | 0.088 |
Time x PGI x Age (Old) | −7.64 | −17.22–1.94 | 0.117 | −10.24 | −18.44–−2.03 | 0.015 | |
Language | Time x PGI x Age (Middle) | 1.58 | −8.17–11.33 | 0.749 | 3.02 | −7.31–13.35 | 0.564 |
Time x PGI x Age (Old) | 2.45 | −5.01–9.91 | 0.518 | 2.52 | −5.25–10.28 | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsapanou, A.; Lee, S.; Chapman, S.; Mourtzi, N.; Habeck, C.; Stern, Y. Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain. Genes 2025, 16, 21. https://doi.org/10.3390/genes16010021
Tsapanou A, Lee S, Chapman S, Mourtzi N, Habeck C, Stern Y. Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain. Genes. 2025; 16(1):21. https://doi.org/10.3390/genes16010021
Chicago/Turabian StyleTsapanou, Angeliki, Seonjoo Lee, Silvia Chapman, Niki Mourtzi, Christian Habeck, and Yaakov Stern. 2025. "Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain" Genes 16, no. 1: 21. https://doi.org/10.3390/genes16010021
APA StyleTsapanou, A., Lee, S., Chapman, S., Mourtzi, N., Habeck, C., & Stern, Y. (2025). Sleep Genetics and Cognitive Changes over Time: The Moderating Effect of Age and the Role of Brain. Genes, 16(1), 21. https://doi.org/10.3390/genes16010021