Gene Abnormalities and Modulated Gene Expression Associated with Radionuclide Treatment: Towards Predictive Biomarkers of Response
Abstract
:1. Introduction
1.1. Radionuclide Therapy and MRT
1.2. Radionuclides Used in MRT
2. Imaging of Patients Undergoing MRT
3. Gene Expression and Mutation
3.1. Clinical Transcriptomic Studies
3.2. Preclinical Transcriptomic Studies
3.2.1. Normal Tissue Absorbed Dose and Gene Expression
3.2.2. Tumour Tissue
4. Discussion
Funding
Conflicts of Interest
References
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Sadaghiani, M.S.; Sheikhbahaei, S.; Werner, R.A.; Pienta, K.J.; Pomper, M.G.; Solnes, L.B.; Gorin, M.A.; Wang, N.-Y.; Rowe, S.P. A systematic review and meta-analysis of the effectiveness and toxicities of lutetium-177–labeled prostate-specific membrane antigen–targeted radioligand therapy in metastatic castration-resistant prostate cancer. Eur. Urol. 2021, 80, 82–94. [Google Scholar] [CrossRef]
- Danieli, R.; Milano, A.; Gallo, S.; Veronese, I.; Lascialfari, A.; Indovina, L.; Botta, F.; Ferrari, M.; Cicchetti, A.; Raspanti, D.; et al. Personalized Dosimetry in Targeted Radiation Therapy: A Look to Methods, Tools and Critical Aspects. J. Pers. Med. 2022, 12, 205. [Google Scholar] [CrossRef]
- Rakotomalala, A.; Escande, A.; Furlan, A.; Meignan, S.; Lartigau, E. Hypoxia in Solid Tumors: How Low Oxygenation Impacts the “Six Rs” of Radiotherapy. Front. Endocrinol. 2021, 12, 742215. [Google Scholar] [CrossRef]
- Song, Y.P.; Mistry, H.; Irlam, J.; Valentine, H.; Yang, L.; Lane, B.; West, C.; Choudhury, A.; Hoskin, P.J. Long-Term Outcomes of Radical Radiation Therapy with Hypoxia Modification with Biomarker Discovery for Stratification: 10-Year Update of the BCON (Bladder Carbogen Nicotinamide) Phase 3 Randomized Trial (ISRCTN45938399). Int. J. Radiat. Oncol. 2021, 110, 1407–1415. [Google Scholar] [CrossRef]
- Smith, T.A.; West, C.M.; Joseph, N.; Lane, B.; Irlam-Jones, J.; More, E.; Mistry, H.; Reeves, K.J.; Song, Y.P.; Reardon, M.; et al. A hypoxia biomarker does not predict benefit from giving chemotherapy with radiotherapy in the BC2001 randomised controlled trial. EBioMedicine 2024, 101, 105032. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Berglund, A.; Schell, M.J.; Mihaylov, I.; Fulp, W.J.; Yue, B.; Welsh, E.; Caudell, J.J.; Ahmed, K.; Strom, T.S.; et al. A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study. Lancet Oncol. 2017, 18, 202–211. [Google Scholar] [CrossRef]
- Rolleman, E.J.; Melis, M.; Valkema, R.; Boerman, O.C.; Krenning, E.P.; de Jong, M. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1018–1031. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.W.; de Blois, E.; Hooijman, E.; van der Veldt, A.; Brabander, T. Advances in 177Lu-PSMA and 225Ac-PSMA radionuclide therapy for metastatic castration-resistant prostate cancer. Pharmaceutics 2022, 14, 2166. [Google Scholar] [CrossRef]
- Carter, R.E.; Feldman, A.R.; Coyle, J.T. Prostate-Specific Membrane Antigen Is a Hydrolase with Substrate and Pharmacologic Characteristics of a Neuropeptidase. Proc. Natl. Acad. Sci. USA 1996, 93, 749–753. [Google Scholar] [CrossRef]
- Jackson, P.A.; Hofman, M.S.; Hicks, R.J.; Scalzo, M.; Violet, J. Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Posttreatment SPECT/CT Scan: A Novel Methodology to Generate Time- and Tissue-Specific Dose Factors. J. Nucl. Med. 2020, 61, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.; Kendi, A.T.; Sartor, O. Status of PSMA-targeted radioligand therapy in prostate cancer: Current data and future trials. Ther. Adv. Med. Oncol. 2023, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khreish, F.; Ebert, N.; Ries, M.; Maus, S.; Rosar, F.; Bohnenberger, H.; Stemler, T.; Saar, M.; Bartholoma, M.; Ezziddin, S. 225AcPSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: Pilot experience. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Rosar, F.; Hau, F.; Bartholoma, M.; Maus, S.; Stemler, T.; Linxweiler, J.; Ezziddin, S.; Khreish, F. Molecular imaging and biochemical response assessment after a single cycle of [225Ac]Ac-PSMA-617/[177Lu]Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on [177Lu]Lu-PSMA-617 monotherapy. Theranostics 2021, 11, 4050–4060. [Google Scholar] [CrossRef]
- Navalkissoor, S.; Flux, G.; Bomanji, J. Molecular radiotheranostics for neuroendocrine tumours. Clin. Med. 2017, 17, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.T.; Kulkarni, H.R.; Singh, A.; Baum, R.P. Theranostics of Neuroendocrine Tumors. Visc. Med. 2017, 33, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Bodet-Milin, C.; Bourgeois, M.; Gouard, S.; Ansquer, C.; Barbaud, M.; Sébille, J.-C.; Chérel, M.; Kraeber-Bodéré, F.; Carlier, T. Exploring Tumor Heterogeneity Using PET Imaging: The Big Picture. Cancers 2019, 11, 1282. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A.; Zanda, M.; Fleming, I.N. Hypoxia stimulates 18F-fluorodeoxyglucose uptake in breast cancer cells via hypoxia inducible factor-1 and AMP-activated protein kinase. Nucl. Med. Biol. 2013, 40, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Papotti, M.; Bongiovanni, M.; Volante, M.; Allìa, E.; Landolfi, S.; Helboe, L.; Schindler, M.; Cole, S.L.; Bussolati, G. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. Int. J. Pathol. 2002, 440, 461–475. [Google Scholar] [CrossRef]
- Atkinson, C.; Ganeshan, B.; Endozo, R.; Wan, S.; Aldridge, M.D.; Groves, A.M.; Bomanji, J.B.; Gaze, M.N. Radiomics-Based Texture Analysis of 68Ga-DOTATATE Positron Emission Tomography and Computed Tomography Images as a Prognostic Biomarker in Adults with Neuroendocrine Cancers Treated with 177Lu-DOTATATE. Front. Oncol. 2021, 11, 686235. [Google Scholar] [CrossRef]
- Ezziddin, S.; Lohmar, J.; Yong-Hing, C.J.; Sabet, A.; Ahmadzadehfar, H.; Kukuk, G.; Biersack, H.-J.; Guhlke, S.; Reichmann, K. Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin. Nucl. Med. 2012, 37, e141–e147. [Google Scholar] [CrossRef] [PubMed]
- Liberini, V.; Huellner, M.W.; Grimaldi, S.; Finessi, M.; Thuillier, P.; Muni, A.; Pellerito, R.E.; Papotti, M.G.; Piovesan, A.; Arvat, E.; et al. The challenge of evaluating response to peptide receptor radionuclide therapy in gastroenteropancreatic neuroendocrine tumors: The present and the future. Diagnostics 2020, 10, 1083. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.V.; Sawin, C.T. Radioiodine and thyroid disease: The beginning. Semin. Nucl. Med. 1996, 26, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Xi, Y.; Miao, D.; Xu, J.; Jing, Z.; Gao, W. Nine Genes Mediate the Therapeutic Effects of Iodine-131 Radiotherapy in Thyroid Carcinoma Patients. Dis. Markers 2020, 2020, 9369341. [Google Scholar] [CrossRef] [PubMed]
- Caradec, J.; Sirab, N.; Keumeugni, C.; Moutereau, S.; Chimingqi, M.; Matar, C.; Revaud, D.; Bah, M.; Manivet, P.; Conti, M.; et al. ‘Desperate house genes’: The dramatic example of hypoxia. Br. J. Cancer 2010, 102, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A.D.; AbdelKarem, O.A.; Irlam-Jones, J.J.; Lane, B.; Valentine, H.; Bibby, B.A.S.; Denley, H.; Choudhury, A.; West, C.M.L. Selection of endogenous control genes for normalising gene expression data derived from formalin-fixed paraffin-embedded tumour tissue. Sci. Rep. 2020, 10, 17258. [Google Scholar] [CrossRef]
- Groen, L.; Kloots, I.; Englert, D.; Seto, K.; Estafanos, L.; Smith, P.; Verhaegh, G.W.; Mehra, N.; Schalken, J.A. Transcriptome Profiling of Circulating Tumor Cells to Predict Clinical Outcomes in Metastatic Castration-Resistant Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 9002. [Google Scholar] [CrossRef]
- Handke, A.; Kesch, C.; Fendler, W.P.; Telli, T.; Liu, Y.; Hakansson, A.; Davicioni, E.; Hughes, J.; Song, H.; Lueckerath, K.; et al. Analysing the tumor transcriptome of prostate cancer to predict efficacy of Lu-PSMA therapy. J. Immunother. Cancer 2023, 11, e007354. [Google Scholar] [CrossRef]
- Sayar, E.; Patel, R.A.; Coleman, I.M.; Roudier, M.P.; Zhang, A.; Mustafi, P.; Low, J.Y.; Hanratty, B.; Ang, L.S.; Bhatia, V.; et al. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight 2023, 8, e162907. [Google Scholar] [CrossRef]
- Edmondson, D.A.; Karski, E.E.; Kohlgruber, A.; Koneru, H.; Matthay, K.K.; Allen, S.; Hartmann, C.L.; Peterson, L.E.; DuBois, S.G.; Coleman, M.A. Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with 131I-mIBG, a Targeted Radionuclide. Radiat. Res. 2016, 186, 235–244. [Google Scholar] [CrossRef]
- Evans, A.C.; Setzkorn, T.; Edmondson, D.A.; Segelke, H.; Wilson, P.F.; Matthay, K.K.; Granger, M.M.; Marachelian, A.; Haas-Kogan, D.A.; DuBois, S.G.; et al. Peripheral Blood Transcript Signatures after Internal 131I-mIBG Therapy in Relapsed and Refractory Neuroblastoma Patients Identifies Early and Late Biomarkers of Internal 131I Exposures. Radiat. Res. 2022, 197, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Kidd, M.; Drozdov, I.; Modlin, I. Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status. Endocr.-Relat. Cancer 2015, 22, 561–575. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Raj, N.; Do, R.K.; Mauguen, A.; Krebs, S.; Reidy-Lagunes, D.; Schoder, H. Interim Analysis of a Prospective Validation of 2 Blood-Based Genomic Assessments (PPQ and NETest) to Determine the Clinical Efficacy of 177Lu-DOTATATE in Neuroendocrine Tumors. J. Nucl. Med. 2023, 64, 567–573. [Google Scholar] [CrossRef]
- Bodei, L.; Kidd, M.S.; Singh, A.; van der Zwan, W.A.; Severi, S.; Drozdov, I.A.; Cwikla, J.; Baum, R.P.; Kwekkeboom, D.J.; Paganelli, G.; et al. PRRT genomic signature in blood for prediction of 177Lu-octreotate efficacy. Eur. J. Nucl. Med. 2018, 45, 1155–1169. [Google Scholar] [CrossRef]
- Satapathy, S.; Das, C.K.; Aggarwal, P.; Sood, A.; Parihar, A.S.; Singh, S.K.; Mittal, B.R. Genomic characterization of metastatic castration-resistant prostate cancer patients undergoing PSMA radioligand therapy: A single-center experience. Prostate 2023, 83, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Labrecque, M.P.; Coleman, I.M.; Brown, L.G.; True, L.D.; Kollath, L.; Lakely, B.; Nguyen, H.M.; Yang, Y.C.; Gil da Costa, R.M.; Kaipainen, A.; et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J. Clin. Investig. 2019, 129, 4492–4505. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.L.; Pike, L.R.G.; Royce, T.J.; Mahal, B.A.; Loeffler, J.S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 2018, 15, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.; Song, L.; Wang, B.Y.; Rezazadeh Kalebasty, A.; Uchio, E.; Zi, X. Prostate cancer immunotherapy: A review of recent advancements with novel treatment methods and efficacy. Am. J. Clin. Exp. Urol. 2022, 10, 210–233. [Google Scholar] [PubMed]
- Bicak, M.; Lückerath, K.; Kalidindi, T.; Phelps, M.E.; Strand, S.-E.; Morris, M.J.; Radu, C.G.; Damoiseaux, R.; Peltola, M.T.; Peekhaus, N.; et al. Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proc. Natl. Acad. Sci. USA 2020, 117, 15172–15181. [Google Scholar] [CrossRef]
- Ohshima, Y.; Kono, N.; Yokota, Y.; Watanabe, S.; Sasaki, I.; Ishioka, N.S.; Sakashita, T.; Arakawa, K. Anti-tumor effects and potential therapeutic response biomarkers in α-emitting meta-211At-astato-benzylguanidine therapy for malignant pheochromocytoma explored by RNA-sequencing. Theranostics 2019, 9, 1538–1549. [Google Scholar] [CrossRef]
- Spetz, J.; Rudqvist, N.; Langen, B.; Parris, T.Z.; Dalmo, J.; Schüler, E.; Wängberg, B.; Nilsson, O.; Helou, K.; Forssell-Aronsson, E. Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after 177Lu[Lu]-octreotate therapy. Nucl. Med. Biol. 2018, 60, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Spetz, J.; Langen, B.; Rudqvist, N.-P.; Parris, T.Z.; Shubbar, E.; Dalmo, J.; Wängberg, B.; Nilsson, O.; Helou, K.; Forssell-Aronsson, E. Transcriptional effects of 177Lu-octreotate therapy using a priming treatment schedule on GOT1 tumor in nude mice. EJNMMI Res. 2019, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Seidl, C.; Port, M.; Apostolidis, C.; Bruchertseifer, F.; Schwaiger, M.; Senekowitsch-Schmidtke, R.; Abend, M. Differential gene expression triggered by highly cytotoxic α-Emitter-immunoconjugates in gastric cancer cells. Investig. New Drugs 2010, 28, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Langen, B.; Rudqvist, N.; Parris, T.Z.; Schüler, E.; Helou, K.; Forssell-Aronsson, E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J. Nucl. Med. 2013, 54, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Schüler, E.; Rudqvist, N.; Parris, T.Z.; Langen, B.; Helou, K.; Forssell-Aronsson, E. Transcriptional response of kidney tissue after 177Lu-octreotate administration in mice. Nucl. Med. Biol. 2014, 41, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Schüler, E.; Larsson, M.; Parris, T.Z.; Johansson, M.E.; Helou, K.; Forssell-Aronsson, E. Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice. PLoS ONE 2015, 10, e0136204. [Google Scholar] [CrossRef] [PubMed]
- Schüler, E.; Parris, T.Z.; Rudqvist, N.; Helou, K.; Forssell-Aronsson, E. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice. EJNMMI Res. 2011, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- Lundh, C.; Lindencrona, U.; Schmitt, A.; Nilsson, M.; Forssell-Aronsson, E. Biodistribution of free 211At and 125I− in nude mice bearing tumors derived from anaplastic thyroid carcinoma cell lines. Cancer Biother. Radiopharm. 2006, 21, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.R.; Morgan, W.F. Gene expression profiling after irradiation: Clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004, 23, 259–268. [Google Scholar] [CrossRef]
- Chaudhry, M.A. Biomarkers for human radiation exposure. J. Biomed. Sci. 2008, 15, 557–563. [Google Scholar] [CrossRef]
- Metheetrairut, C.; Slack, F.J. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr. Opin. Genet. Dev. 2013, 23, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.A.; Kreger, B.; Omaruddin, R.A. Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int. J. Radiat. Biol. 2010, 86, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, D.-R.; Ye, L.-Y.; Huang, L.-N.; Jaiswal, S.; Li, X.-W.; Wang, H.-H.; Chen, L. HER-2 overexpression and survival in colorectal cancer: A meta-analysis. J. Zhejiang Univ. B 2014, 15, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.J.; Milenic, D.E.; Baidoo, K.E.; Brechbiel, M.W. Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel. PLoS ONE 2014, 9, e108511. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.J.; Milenic, D.E.; Baidoo, K.E.; Brechbiel, M.W. Paclitaxel potentiates 212Pb-radioimmunotherapy-induced cell killing efficacy by perturbing mitotic spindle checkpoint. Br. J. Cancer 2015, 108, 2013–2020. [Google Scholar] [CrossRef]
- Yong, K.J.; Milenic, D.E.; Baidoo, K.E.; Kim, Y.S.; Brechbiel, M.W. Gene expression profiling upon 212Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model. Cancer Med. 2013, 2, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.I.; Smith, T.A. Colorectal tumor cells treated with 5-FU, oxaliplatin, irinotecan, and cetuximab exhibit changes in 18F-FDG incorporation corresponding to hexokinase activity and glucose transport. J. Nucl. Med. 2008, 49, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Tanudji, M.; Shoemaker, J.; L’Italien, L.; Russell, L.; Chin, G.; Schebye, X.M. Gene silencing of CENP-E by small interfering RNA in HeLa Cells leads to missegregation of chromosomes after a mitotic delay. Mol. Biol. Cell 2004, 15, 3771–3781. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Zhang, B.; Carlson, M.; Lu, K.V.; Zhu, S.; Felciano, R.M.; Laurance, M.F.; Zhao, W.; Qi, S.; Chen, Z.; et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. Sci. USA 2006, 103, 17402–17407. [Google Scholar] [CrossRef]
- Yuan, S.; Lin, L.-S.; Gan, R.-H.; Huang, L.; Wu, X.-T.; Zhao, Y.; Su, B.-H.; Zheng, D.; Lu, Y.-G. Elevated matrix metalloproteinase 7 expression promotes the proliferation, motility and metastasis of tongue squamous cell carcinoma. BMC Cancer 2020, 20, 33. [Google Scholar] [CrossRef]
- Reid, A.H.; Attard, G.; Ambroisine, L.; Fisher, G.; Kovacs, G.; Brewer, D.; Clark, J.; Flohr, P.; Edwards, S.; Berney, D.M.; et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer 2010, 102, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.; Grimm, S.; El-Bahrawy, M.; Yagüe, E. TMEFF2: A Transmembrane Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers 2020, 12, 3862. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; West, C.M.L. Hypoxia gene expression signatures as predictive biomarkers for personalising radiotherapy. Br. J. Radiol. 2019, 92, 20180036. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Taylor, J.; Eustace, A.; Irlam, J.J.; Denley, H.; Hoskin, P.J.; Alsner, J.; Buffa, F.M.; Harris, A.L.; Choudhury, A.; et al. A Gene Signature for Selecting Benefit from Hypoxia Modification of Radiotherapy for High-Risk Bladder Cancer Patients. Clin. Cancer Res. 2017, 23, 4761–4768. [Google Scholar] [CrossRef] [PubMed]
- Eschrich, S.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.-H.; Bloom, G.; Torres-Roca, J.F. Systems biology modeling of the radiation sensitivity network: A biomarker discovery platform. Int. J. Radiat. Oncol. 2009, 75, 497–505. [Google Scholar] [CrossRef] [PubMed]
- White Paper Dutch Embassy: Unlocking the Full Potential of Cancer Treatments Using Targeted Radionuclide Therapy through Netherlands-UK Partnerships. 2024. Available online: https://subscribepage.io/TRTWhitePaper (accessed on 23 May 2024).
- Sumanasuriya, S.; Seed, G.; Parr, H.; Christova, R.; Pope, L.; Bertan, C.; Bianchini, D.; Rescigno, P.; Figueiredo, I.; Goodall, J.; et al. Elucidating Prostate Cancer Behaviour during Treatment via Low-pass Whole-genome Sequencing of Circulating Tumour DNA. Eur. Urol. 2021, 80, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.K.; Davis, A.A.; Carneiro, B.A.; Chandra, S.; Mohindra, N.; Kalyan, A.; Kaplan, J.; Matsangou, M.; Pai, S.; Costa, R.; et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget 2016, 7, 65364–65373. [Google Scholar] [CrossRef] [PubMed]
- Mino-Kenudson, M. Cons: Can liquid biopsy replace tissue biopsy?—The US experience. Transl. Lung Cancer Res. 2016, 5, 424–427. [Google Scholar] [CrossRef]
- Tsui, N.B.; Ng, E.K.; Lo, Y.D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 2002, 48, 1647–1653. [Google Scholar] [CrossRef]
- Smith, T.A.; Lane, B.; More, E.; Valentine, H.; Lunj, S.; Abdelkarem, O.A.; Irlam-Jones, J.; Shabbir, R.; Vora, S.; Denley, H.; et al. Comparison of multiple gene expression platforms for measuring a bladder cancer hypoxia signature. Mol. Med. Rep. 2022, 26, 261. [Google Scholar] [CrossRef]
- Kidd, M.; Nadler, B.; Mane, S.; Eick, G.; Malfertheiner, M.; Champaneria, M.; Pfragner, R.; Modlin, I. GeneChip, geNorm, and gastrointestinal tumors: Novel reference genes for real-time PCR. Physiol. Genom. 2007, 30, 363–370. [Google Scholar] [CrossRef] [PubMed]
Tissue | Treatment | Main Findings/Genes Modulated | Study |
---|---|---|---|
Prostate tumour n = 23 (transcriptome) | [177Lu]-PSMA-617 | PD-L1 signature genes | [28] |
Blood CTCs n = 40 (MRT = 2) | All treatment regimens for prostate cancer | Genes associated with poor outcome: ARV7, DLX1, HOXB13, KLK3 (Androgen receptor signalling) BRCA1, BRCA2, FANCA, TOP2A (damaged DNA response) and ERG and GLRH2 (oncogenes) | [27] |
mCRPC primary and metastasis n = 52 | [177Lu]-PSMA-617 | Low PSMA expressing tumours include: ↑DHRS9, JAK3, MATK, PTGES, ADH1C, MAPK15, CDK6, MUC1, EMA, MSLN, CEACAM5 PSMA expression linked to ↑CpG methylation and ↓histone Lys acetylation | [29] |
Blood NET n = 40 | [131I]-mIBG | Post treatment at 72 h and 96 h: ↑CDKN1A, FDXR, GADD45A, STAT5B, BAX, XPC, MDM2, DDB2 Predictors of absorbed dose: CDKN1A, BAX, DDB2 | [30] |
Blood NET n = 59 | [131I]-mIBG | Post treatment 72 h and 15 d: ↑FDXR and DDB2 at 72 h and 15 d At 15 d absorbed dose could no longer be determined but exposure to [131I]-mIBG still evident in gene expression. | [31] |
Blood NET n = 130 test n = 159 tumour n = 22 | [177Lu]-DOTATATE | NETest 51 genes involved in neoplastic behaviour in NETs. Differentiated patients with progressive and stable disease | [32] |
Blood NET n = 158 | [90Y]-or [177Lu]-DOTATATE | PRRT-predictive quotient (PPQ): tumour grade+ mRNA levels: Growth factor ARAF, BRAF, KRAS, RAF-1 and metabolism ATP6V1H, OAZ2, PANK2, PLD3 Outcome prediction accuracy: PPQ: 96% NETest 90% | [33,34] |
Blood n = 15 | [177Lu]- or [225Ac]- PSMA-617 | 21 genetic alterations involving ATM, BRCA2, TP53, PTEN, FANCD2, FANCM, NBN no relationship with outcome | [35] |
Tissue | Radiation Type/Compound | Gene Expression | Study |
---|---|---|---|
Prostate xenograft | 225Ac (11kBq) Kallikrein-related peptidase 2 targeted molecule | Tumours that relapsed after 225Ac: Up: MMP7, ETV1, NTS, TMEFF2, SCHLAP1, PMP22, CAMK2N1, UGT2-B17UDP Down: KLK3, FOLH1, PMEPA1, SPOCK1 | [39] |
Phaeochromocytoma | 211At (0.85kBq) compared with γ (60Co) m-astato-benzylguanidine | Consistently expressed genes all times: Both α + γ: P53 associated: MDM2, CDKN1A, GADD45A, GADD45C, RB1 Genes related to decreased survival: GDF15, FAM212B, CDKN1A, ENC1, Genes specific to survival after 211At: MIEN1, OTUB1, VEGFA, VDAC1, P53INP1 (all are activated p53 targets) | [40] |
Intestinal neuroendocrine tumour (GOT) xenograft | 177Lu 15 MBq DOTATATE | All time points: LY6H, RNU1A3, RNU1-5 Early (1 d) ↑CDKN1A, IL6, TGFβ1, HIF1↓BCAT1, PAM 3 d:↑APOE, DAX (apoptosis intrinsic p/w) 41 d: ↑ADORA2A, BNIP3, BNIP3L, HSPB1, NEDD9, TNF Stromal: ACTA1, SERPIN3g, ATP2A1, CXCL9, TNN12, MYL1, MYLPF | [41] |
GOT xenograft | 177Lu 5 then 10 MBq DOTATATE | In addition to 15 MBq: ↑TNFRSF10B, NGFRAP1 (apoptosis extrinsic p/w) ↓CXCR7, LGALS1 (proliferation) corresponds with slower regrowth with pre-priming | [42] |
Gastric cancer cells | 213Bi (1.5 MBq) Cadherin antibody d9-E-Cad | ↑COL4A2, NEDD9, NMES1, RASA4 ↓CDC20, GAS2L3, ASPM, KIF20A, CENPE, HIST4H4, WWP2, RFX3, PHF17 | [43] |
Mouse liver, kidney, lung, spleen | 211At (0.06–0.42 kBq) | ↑ANGPT14 all organs and doses ↑RGS16 with absorbed dose by liver Transcriptional response highest at low absorbed dose; greatly decreased at higher doses. Above threshold ↑Amy2 in spleen | [44] |
Mouse kidney | 177Lu (1.3–140 MBq) Octreotide | 24 h post treatment ↑ANGPT14 all except highest dose and CYP24A1, DNASE1, GLDC, HMGCS2, IGFBP4, S100A8, SLC25A20, SLC25A25 altered at some doses. Across all doses microRNAs consistently ↑miR-194, miR-107, MiR-3090, miR-3077 12months post treatment–kidney function diminished and ↑CDKN1A, C3, DBP, LCN2 and PER2 | [45,46,47] |
Treatment | Category | Gene Upregulated | Gene Downregulated |
---|---|---|---|
[212Pb]-Trastuzumab | Apoptosis | ABL, GADD45A, GADD45C, PCBP4, p73 | |
[212Pb]-Trastuzumab/Paclitaxel | GADD45A, GADD45C, PCBP4, P73, GML, IP6K3, PPP1R15A, CIDEA | BRCA1, RAD21 | |
[212Pb]-Trastuzumab/Gemcitabine | GADD45A, GADD45C, PCBP4, P73, IP6K3 | BRCA1, RAD21 | |
[212Pb]-Trastuzumab | Cell cycle | ATM, GADD45A, PCBP4, MKK6, SESN1, ZAK | DDIT3, GTSE1 |
[212Pb]-Trastuzumab/Paclitaxel | GADD45A, GML, PCBP4, PPP1R15A, RAD9A, SESN1 | BRCA1 and RAD21 CHK1, CHK2 GTSE1, NBN | |
[212Pb]-Trastuzumab/Gemcitabine | GADD45A, MAP2K6, PCBP4, SESN1 | CHK1, CHK2, FANCG, GTSE1, NBN, BRCA1 | |
[212Pb]-Trastuzumab | DNA damage and repair | ATM, BTG2 | |
[212Pb]-Trastuzumab/Paclitaxel | ATRX, BTG2, IGHMBP2, MUTYH, PNKP, PPP1R15A, SEM4A4, P73, XPC | BRCA1, EXO1, FEN1, MSH2, NBN, OGG1, PRKDC, RAD18, RAD21, XRCC2 | |
[212Pb]-Trastuzumab /Gemcitabine | BTG2, ERCC1, SEMA4A, P73, XPC | BRCA1, DMC1, EXO1, FANCG, FEN1, MSH2, MSH3, NBN, NTHL1, PRKDC, RAD18, RAD21, RAD51B, UNG, XRCC2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, T.A.D. Gene Abnormalities and Modulated Gene Expression Associated with Radionuclide Treatment: Towards Predictive Biomarkers of Response. Genes 2024, 15, 688. https://doi.org/10.3390/genes15060688
Smith TAD. Gene Abnormalities and Modulated Gene Expression Associated with Radionuclide Treatment: Towards Predictive Biomarkers of Response. Genes. 2024; 15(6):688. https://doi.org/10.3390/genes15060688
Chicago/Turabian StyleSmith, Tim A. D. 2024. "Gene Abnormalities and Modulated Gene Expression Associated with Radionuclide Treatment: Towards Predictive Biomarkers of Response" Genes 15, no. 6: 688. https://doi.org/10.3390/genes15060688
APA StyleSmith, T. A. D. (2024). Gene Abnormalities and Modulated Gene Expression Associated with Radionuclide Treatment: Towards Predictive Biomarkers of Response. Genes, 15(6), 688. https://doi.org/10.3390/genes15060688