Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Full-Length Transcriptome Sequencing
2.3. Identification of Tree Peony PsARF Genes
2.4. Phylogenetic Analysis of PsARF Genes
2.5. Bioinformatics Analysis of PsARF Genes
2.6. Gene Cloning and Vector Construction
2.7. Subcellular Localization
2.8. RNA Sequencing and Transcriptome Analysis
2.9. Validation by Quantitative Real-Time PCR
3. Results
3.1. Identification and Physicochemical Characteristics of PsARF Genes
3.2. Evolutionary Relationships among PsARF Genes
3.3. Conserved Domains and Motifs in PsARF Proteins
3.4. PsARF Gene Structures
3.5. Gene Cloning and Subcellular Localization
3.6. KEGG Pathway Enrichment Analysis of DEGs
3.7. DEG Screening and qRT-PCR Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, S.S.; He, R.R.; Zheng, J.K.; Tian, R.N. Research advances in tissue culture of tree peony. Chin. For. Sci. 2018, 54, 143–155. [Google Scholar]
- Zhang, Y.; Gao, L.; Wang, Y.; Niu, D.; Yuan, Y.; Liu, C.; Zhan, X.; Gai, S. Dual functions of PsmiR172b-PsTOE3 module in dormancy release and flowering in tree peony (Paeonia suffruticosa). Hortic. Res. 2023, 10, uhad033. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Cheng, F.; Zhong, Y. Micropropagation of tree peony (Paeonia × lemoinei ‘High Noon’) and the assessment of genetic stability by SSR analysis. Propag. Ornam. Plants 2016, 16, 19–27. [Google Scholar]
- Zhu, X.T.; Li, X.Q.; Ding, W.J.; Jin, S.H.; Wang, Y. Callus induction and plant regeneration from leaves of peony. Hortic. Environ. Biotechnol. 2018, 59, 575–582. [Google Scholar] [CrossRef]
- Fu, Z.Z.; Xu, M.L.; Wang, H.J.; Wang, E.Q.; Li, Y.M.; Wang, L.M.; Gao, J.; Zhang, J.; Yuan, X. Analysis of the transcriptome and related physiological indicators of tree peony (Paeonia suffruticosa Andr.) plantlets before and after rooting in vitro. Plant Cell Tissue Organ Cult. 2021, 147, 529–543. [Google Scholar] [CrossRef]
- Liu, L. Studies on Tissue Culture and Establishment of the Regeneration System of Tree Peonies. Master’s Thesis, Southwest University, Chongqing, China, 2009. [Google Scholar]
- Cancé, C.; Martin-Arevalillo, R.; Boubekeur, K.; Dumas, R. Auxin response factors are keys to the many auxin doors. New Phytol. 2022, 235, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Weijers, D.; Jürgens, G. Funneling auxin action: Specificity in signal transduction. Curr. Opin. Plant Biol. 2004, 7, 687–693. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Zhao, Y.; Feng, Z.; Li, Q.; Yang, H.Q.; Luan, S.; Li, J.; He, Z.H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15485–15490. [Google Scholar] [CrossRef]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef]
- Song, S.Q.; Liu, J.; Tang, C.F.; Zhang, W.H.; Xu, H.H.; Zhang, Q.; Gao, J.D. Metabolism and signaling of auxins and their roles in regulating seed dormancy and germination. Chin. Sci. Bull. 2020, 65, 3924–3943. [Google Scholar] [CrossRef]
- Guilfoyle, T.J.; Hagen, G. Auxin response factors. J. Plant Growth Regul. 2001, 20, 281–291. [Google Scholar] [CrossRef]
- Bentsink, L.; Koornneef, M. Seed dormancy and germination. Arab. Book 2008, 6, e0119. [Google Scholar] [CrossRef] [PubMed]
- Okushima, Y.; Overvoorde, P.J.; Arima, K.; Alonso, J.M.; Chan, A.; Chang, C.; Ecker, J.R.; Hughes, B.; Lui, A.; Nguyen, D.; et al. Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. Plant Cell 2005, 17, 444–463. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, L.J.; Mao, Y.B.; Cai, W.J.; Xue, H.W.; Chen, X.Y. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 2005, 17, 2204–2216. [Google Scholar] [CrossRef] [PubMed]
- Mallory, A.C.; Bartel, D.P.; Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 2005, 17, 1360–1375. [Google Scholar] [CrossRef]
- Liu, P.P.; Montgomery, T.A.; Fahlgren, N.; Kasschau, K.D.; Carrington, J.C. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007, 52, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Liu, H.; Hao, C.Y.; Li, T.; Liu, Y.C.; Wang, X.L.; Yang, Y.X.; Zheng, J.; Zhang, X.Y. The auxin response factor TaARF15-A1 negatively regulates senescence in common wheat (Triticum aestivum L.). Plant Physiol. 2023, 191, 1254–1271. [Google Scholar] [CrossRef]
- Bryant, F.M.; Hughes, D.; Hassani-Pak, K.; Eastmond, P.J. Basic leucine zipper transcription factor 67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis. Plant Cell 2019, 31, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Cheng, S.; Wang, Z.; Li, S.; Jin, X.; Lan, L.; Yang, B.; Yu, K.; Ni, X.; Li, N.; et al. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecol. Evol. 2020, 10, 4518–4530. [Google Scholar] [CrossRef]
- Yuan, J.; Jiang, S.; Jian, J.; Liu, M.; Yue, Z.; Xu, J.; Li, J.; Xu, C.; Lin, L.; Jing, Y.; et al. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nat. Commun. 2022, 13, 7328. [Google Scholar] [CrossRef]
- Russell, D.W.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Pertea, G.; Huang, X.Q.; Liang, F.; Antonescu, V.; Sultana, R.; Karamycheva, S.; Lee, Y.D.; White, J.; Cheung, F.; Parvizi, B. TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics 2003, 19, 651–652. [Google Scholar] [CrossRef]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identifcation using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yu, Y.C.; Xiang, F.N. Auxin response factors and plant growth and development. Hereditas 2011, 33, 1335–1346. [Google Scholar] [CrossRef]
- Bai, Y.W.; Ma, Y.J.; Chang, Y.T.; Zhang, W.B.; Deng, Y.Y.; Zhang, N.; Zhang, X.; Fan, K.K.; Hu, X.M.; Wang, S.H.; et al. Identification and transcriptome data analysis of ARF family genes in five Orchidaceae species. Plant Mol. Biol. 2023, 112, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.Q.; Jiang, S.L.; Wang, F.; Zhao, Y.N. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in pear. Sci. Agric. Sin. 2018, 51, 327–340. [Google Scholar]
- Wan, S.; Li, W.; Zhu, Y.; Liu, Z.; Huang, W.; Zhan, J. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Rep. 2014, 33, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.; Jurgens, G.; De Smet, I. The evolving complexity of the auxin pathway. Plant Cell 2008, 20, 1738–1746. [Google Scholar] [CrossRef]
- Luo, X.C.; Sun, M.H.; Xu, R.R.; Shu, H.R.; Wang, J.W.; Zhang, S.Z. Genomewide identification and expression analysis of the ARF gene family in apple. J. Genet. 2014, 93, 785–797. [Google Scholar] [CrossRef]
- Huseyin, T. Genome-wide analysis of the auxin response factors(ARF) gene family in barley (Hordeum vulgare L.). J. Plant Biochem. Biotechnol. 2018, 28, 14–24. [Google Scholar]
- Li, S.B.; OuYang, W.Z.; Hou, X.J.; Xie, L.L.; Hu, C.G.; Zhang, J.Z. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Front Plant Sci. 2015, 6, 119. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Soler, M.; Mila, I.; San Clemente, H.; Savelli, B.; Dunand, C.; Paiva, J.A.; Myburg, A.A.; Bouzayen, M.; Grima-Pettenati, J. Genome-wide characterization and expression profiling of the auxin response factor(ARF) gene family in Eucalyptus grandis. PLoS ONE 2014, 9, e108906. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wei, Y.Z.; Wang, Y.; Zheng, X.W.; Li, W.C. Transcriptome-wide identification and expression profiling of the auxin response factor(ARF)gene family in Litchi chinensis Sonn. Chin. J. Trop. Crops 2017, 38, 1485–1491. [Google Scholar]
- Wu, J.; Wang, F.; Cheng, L.; Kong, F.; Peng, Z.; Liu, S.; Yu, X.; Lu, G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Rep. 2011, 30, 2059–2073. [Google Scholar] [CrossRef]
- Yang, J.; Tian, L.; Sun, M.X.; Huang, X.Y.; Zhu, J.; Guan, Y.F.; Jia, Q.S.; Yang, Z.N. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol. 2013, 162, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, J.Y.; Zhou, Y.W. Research progress on molecular regulation mechanisms in bulbous plants at dormancy. Acta Prataculturae Sin. 2013, 22, 295–304. [Google Scholar]
- Yan, X.N.; Tian, M.; Liu, F.; Wang, C.X.; Zhang, Y. Hormonal and morphological changes during seed development of Cypripedium japonicum. Protoplasma 2017, 254, 2315–2322. [Google Scholar] [CrossRef] [PubMed]
- Su, W.C.; Jia, Y.L.; Sun, L.L.; Xu, H.L.; Wu, R.H. Correlation analysis of abscisic acid change and dormancy in volunteer wheat. Chin. Plant Physiol. J. 2022, 58, 402–414. [Google Scholar]
- Vanstraelen, M.; Benková, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef]
- Li, J.; Li, C.Y. Seventy-year major research progress in plant hormones by Chinese scholars. Sci. Sin. Vitae 2019, 49, 1227–1281. [Google Scholar]
- Hu, S.; Wang, F.Z.; Liu, Z.N.; Liu, Y.P.; Yu, X.L. ABA signaling mediated by PYR/PYL/RCAR in plants. Hereditas 2012, 34, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lee, Y.; Park, J.; Lee, N.; Choi, G. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol. 2013, 54, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Okubo, H.; Saitou, K. Increase in the expresson of an alpha-amylase gene and sugar accumulation induced during cold period reflects shoot elongation in hyacinth bulbs. J. Am. Soc. Hortic. Sci. 2006, 131, 185–191. [Google Scholar] [CrossRef]
- Shin, K.S.; Chakrabarty, D.; Paek, K.Y. Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Sci. Hortic. 2002, 96, 195–204. [Google Scholar] [CrossRef]
- Cochrane, M.P.; Duffers, C.M. The effect of low temperature storage on the activities of α-and β-amylase and α-glucosidase in potato tubers. Potato Res. 1991, 34, 333–341. [Google Scholar] [CrossRef]
- Stassen, M.J.J.; Stringlis, I.A. Decoupling Sugar and Spice in Soybean Rhizosphere Depends on BGLU Activity. Plant Cell Physiol. 2023, 64, 451–453. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Forward Primers (5′→3′) | Reverse Primers (5′→3′) |
---|---|---|---|
SAUR23 | Pos.gene4962 | GCTTACCTCAACCATCCTTCA | CTTGGCATTAGCAATCATCG |
PP2C55 | NewGene_27695 | CGTTGGAAGGTATTAGTGGAGG | GGAGAGCCTGACCATCAAAG |
ZEP | Pos.gene28760 | GATACATTCACACCTGCGGT | TTCTTCCTCACCTTTGACCA |
BGLU12 | Pos.gene55662 | TGTTACCCTGTTTCACTGGG | CCTTGTAGCAAAGTTCCGC |
STH-2 | Pos.gene41152 | AACCAAGTTTGCCCAAGG | GCTCAACGCCATCTTTAGC |
CTR1 | Pos.gene70798 | TGTGATGTGGGAGATGGTTAC | CTGCCAACAACGCTTCAT |
ABP19a | Pos.gene47097 | TGACTTCTGTGTGGCTAACC | TGTTTGAGGTATTCCCAGC |
CRRSP38 | Pos.gene25516 | TCACTGCCAACAACCCTTAC | GACACAGAGCAAGCCCATT |
CYP714C2 | Pos.gene23350 | GCACACAGACCCAGAAGTATG | AAGCGGGCGAGTGATTAT |
GA3ox1 | Pos.gene64704 | TTTGGGTGATGCGTCTCA | ACCAGGAATAGGAACAGCCC |
Pstubulin | Gene.20610::PB-F_transcript_12290/psu.T.00016986.1 | CAAGTGTTTGTGACATTCCTCC | CCATTTCATCCATACCTTCTCC |
Gene Name | Gene ID | Gene ID | Gene ID | Protein Length/aa | pI | Molecular Weight/kDa | Distribution on Chromosomes | Domain |
---|---|---|---|---|---|---|---|---|
PsARF1 | Gene.131018::PB-F_transcript_97250 | Pos.gene22084 | psu.T.00012958.1 | 652, 604, 369 | 7.73, 7.32, 7.79 | 73.06, 67.99, 41.35 | 2 | B3, ARF, Aux/IAA |
PsARF2a | Gene.7512::PB-F_transcript_2941 | Pos.gene36395 | / | 854, 880, / | 6.49, 6.47, / | 94.96, 98.06, / | 2 | B3, ARF, Aux/IAA |
PsARF2b | / | Pos.gene33192 | psu.T.00031102.1 | /, 807, 726 | /, 6.80, 7.86 | /, 89.92, 80.67 | 5 | B3, ARF, Aux/IAA |
PsARF3 | Gene.138423::PB-F_transcript_101725 | Pos.gene54551 | psu.T.00033043.1 | 684, 684, 684 | 6.66, 6.66, 6.66 | 74.99, 74.99, 74.99 | 5 | B3, ARF |
PsARF4 | / | / | psu.T.00008733.1 | /, /, 800 | /, /, 6.01 | /, /, 88.77 | / | B3, ARF, Aux/IAA |
PsARF5 | Gene.99507::PB-F_transcript_80590 | Pos.gene48813 | / | 946, 954, / | 5.13, 5.26, / | 104.44, 105.44, / | 2 | B3, ARF, Aux/IAA |
PsARF6 | Gene.81267::PB-F_transcript_71012 | Pos.gene59490 | / | 720, 843, / | 6.00, 6.16, / | 80.89, 94.80, / | 4 | B3, ARF, Aux/IAA |
PsARF7 | Gene.71676::PB-F_transcript_66112 | Pos.gene80351 | psu.T.00013165.1 | 788, 714, 1005 | 6.17, 7.93, 6.99 | 87.77, 80.67, 112.46 | 4 | B3, ARF, Aux/IAA |
PsARF8a | Gene.5886::PB-F_transcript_2127 | Pos.gene47864 | psu.T.00026218.1 | 889, 993, 847 | 6.52, 6.90, 6.66 | 98.60, 109.83, 93.84 | 1 | B3, ARF, Aux/IAA |
PsARF8b | Gene.3745::PB-F_transcript_1154 | Pos.gene50509 | psu.T.00005392.1 | 917, 905, 477 | 6.76, 6.68, 9.74 | 101.69, 100.42, 52.69 | 5 | B3, ARF, Aux/IAA |
PsARF9 | Gene.9265::PB-F_transcript_3919 | Pos.gene67379 | psu.T.00003487.1 | 673, 673, 673 | 6.92, 6.92, 6.92 | 75.08, 75.08, 75.08 | 1 | B3, ARF, Aux/IAA |
PsARF10 | Gene.155669::PB-F_transcript_110701 | Pos.gene37675 | / | 699, 699, / | 6.86, 6.86, / | 77.39, 77.37, / | 2 | B3, ARF |
PsARF11a | Gene.108016::PB-F_transcript_85046 | Pos.gene39948 | psu.T.00005912.1 | 663, 700, 709 | 6.78, 7.00, 7.10 | 73.83, 77.28, 79.07 | 3 | B3, ARF, Aux/IAA |
PsARF11b | Gene.112109::PB-F_transcript_87131 | / | psu.T.00019060.1 | 464, /, 461 | 9.61, /, 10.11 | 52.25, /, 52.50 | / | B3, ARF |
PsARF16a | Gene.163854::PB-F_transcript_115372 | Pos.gene62772 | psu.T.00016095.1 | 674, 794, 601 | 8.00, 7.65, 8.05 | 74.51, 87.92, 66.66 | 1 | B3, ARF |
PsARF16b | Gene.12697::PB-F_transcript_6183 | / | / | 630, /, / | 8.60, /, / | 69.68, /, / | / | B3, ARF |
PsARF17 | / | Pos.gene21092 | / | /, 584, / | /, 4.98, / | /, 65.25, / | 2 | B3, ARF |
PsARF19 | Gene.119605::PB-F_transcript_91086 | Pos.gene73404 | / | 367, 810, / | 4.47, 5.53, / | 40.17, 89.34, / | 3 | B3, ARF, Aux/IAA |
PsARFx | / | Pos.gene73377 | psu.T.00012042.1 | /, 557, 444 | /, 7.35, 6.20 | /, 62.60, 50.54 | 2 | B3, ARF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Yuan, X.; Zhao, Y.; Wang, X.; Lu, L.; Wang, H.; Li, Y.; Gao, J.; Wang, L.; Zhang, H. Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets. Genes 2024, 15, 666. https://doi.org/10.3390/genes15060666
Fu Z, Yuan X, Zhao Y, Wang X, Lu L, Wang H, Li Y, Gao J, Wang L, Zhang H. Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets. Genes. 2024; 15(6):666. https://doi.org/10.3390/genes15060666
Chicago/Turabian StyleFu, Zhenzhu, Xin Yuan, Yinge Zhao, Xiaohui Wang, Lin Lu, Huijuan Wang, Yanmin Li, Jie Gao, Limin Wang, and Hechen Zhang. 2024. "Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets" Genes 15, no. 6: 666. https://doi.org/10.3390/genes15060666
APA StyleFu, Z., Yuan, X., Zhao, Y., Wang, X., Lu, L., Wang, H., Li, Y., Gao, J., Wang, L., & Zhang, H. (2024). Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets. Genes, 15(6), 666. https://doi.org/10.3390/genes15060666