Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions?
Abstract
:1. Introduction
1.1. The Role of Head and Tail Domains in IF Assembly
1.2. Structural Data
1.3. Interactions
1.4. Low-Complexity Regions
2. Discussion—Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrmann, H.; Aebi, U. Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds. Annu. Rev. Biochem. 2004, 73, 749–789. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.F.; Parry, D.A.D. Intermediate Filament Structure: 3. Analysis of Sequence Homologies. Int. J. Biol. Macromol. 1988, 10, 79–98. [Google Scholar] [CrossRef]
- Herrmann, H.; Aebi, U. Intermediate Filament Assembly: Fibrillogenesis Is Driven by Decisive Dimer-Dimer Interactions. Curr. Opin. Struct. Biol. 1998, 8, 177–185. [Google Scholar] [CrossRef]
- Hesse, M.; Magin, T.M.; Weber, K. Genes for Intermediate Filament Proteins and the Draft Sequence of the Human Genome: Novel Keratin Genes and a Surprisingly High Number of Pseudogenes Related to Keratin Genes 8 and 18. J. Cell Sci. 2001, 114, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.; Aebi, U. Intermediate Filaments: Structure and Assembly. Cold Spring Harb. Perspect. Biol. 2016, 8, a018242. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.; Strelkov, S.V. History and Phylogeny of Intermediate Filaments: Now in Insects. BMC Biol. 2011, 9, 16. [Google Scholar] [CrossRef]
- Dodemont, H.; Riemer, D.; Weber, K. Structure of an Invertebrate Gene Encoding Cytoplasmic Intermediate Filament (IF) Proteins: Implications for the Origin and the Diversification of IF Proteins. EMBO J. 1990, 9, 4083–4094. [Google Scholar] [CrossRef]
- Kollmar, M. Polyphyly of Nuclear Lamin Genes Indicates an Early Eukaryotic Origin of the Metazoan-Type Intermediate Filament Proteins. Sci. Rep. 2015, 5, 10652. [Google Scholar] [CrossRef]
- Kreplak, L.; Aebi, U.; Herrmann, H. Molecular Mechanisms Underlying the Assembly of Intermediate Filaments. Exp. Cell Res. 2004, 301, 77–83. [Google Scholar] [CrossRef]
- Strelkov, S.V.; Herrmann, H.; Aebi, U. Molecular Architecture of Intermediate Filaments. Bioessays 2003, 25, 243–251. [Google Scholar] [CrossRef]
- Herrmann, H.; Bär, H.; Kreplak, L.; Strelkov, S.V.; Aebi, U. Intermediate Filaments: From Cell Architecture to Nanomechanics. Nat. Rev. Mol. Cell Biol. 2007, 8, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Kreplak, L.; Buehler, M.J. Nanomechanical Properties of Vimentin Intermediate Filament Dimers. Nanotechnology 2009, 20, 425101. [Google Scholar] [CrossRef] [PubMed]
- Kreplak, L.; Fudge, D. Biomechanical Properties of Intermediate Filaments: From Tissues to Single Filaments and Back. BioEssays 2007, 29, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Chernyatina, A.A.; Nicolet, S.; Aebi, U.; Herrmann, H.; Strelkov, S.V. Atomic Structure of the Vimentin Central α-Helical Domain and Its Implications for Intermediate Filament Assembly. Proc. Natl. Acad. Sci. USA 2012, 109, 13620–13625. [Google Scholar] [CrossRef]
- Eldirany, S.A.; Ho, M.; Hinbest, A.J.; Lomakin, I.B.; Bunick, C.G. Human Keratin 1/10-1B Tetramer Structures Reveal a Knob-Pocket Mechanism in Intermediate Filament Assembly. EMBO J. 2019, 38, e100741. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Jo, I.; Kang, S.; Hong, S.; Kim, S.; Jeong, S.; Kim, Y.-H.; Park, B.-J.; Ha, N.-C. Structural Basis for Lamin Assembly at the Molecular Level. Nat. Commun. 2019, 10, 3757. [Google Scholar] [CrossRef] [PubMed]
- Nicolet, S.; Herrmann, H.; Aebi, U.; Strelkov, S.V. Atomic Structure of Vimentin Coil 2. J. Struct. Biol. 2010, 170, 369–376. [Google Scholar] [CrossRef]
- Chang, L.; Goldman, R.D. Intermediate Filaments Mediate Cytoskeletal Crosstalk. Nat. Rev. Mol. Cell Biol. 2004, 5, 601–613. [Google Scholar] [CrossRef]
- Tsikitis, M.; Galata, Z.; Mavroidis, M.; Psarras, S.; Capetanaki, Y. Intermediate Filaments in Cardiomyopathy. Biophys. Rev. 2018, 10, 1007–1031. [Google Scholar] [CrossRef]
- Lendahl, U.; Zimmerman, L.B.; McKay, R.D.G. CNS Stem Cells Express a New Class of Intermediate Filament Protein. Cell 1990, 60, 585–595. [Google Scholar] [CrossRef]
- Merdes, A.; Gounari, F.; Georgatos, S.D. The 47-kD Lens-Specific Protein Phakinin Is a Tailless Intermediate Filament Protein and an Assembly Partner of Filensin. J. Cell Biol. 1993, 123, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Bader, B.L.; Magin, T.M.; Hatzfeld, M.; Franke, W.W. Amino Acid Sequence and Gene Organization of Cytokeratin No. 19, an Exceptional Tail-less Intermediate Filament Protein. EMBO J. 1986, 5, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Goulielmos, G.; Gounari, F.; Remington, S.; Müller, S.; Häner, M.; Aebi, U.; Georgatos, S.D. Filensin and Phakinin form a Novel Type of Beaded Intermediate Filaments and Coassemble de Novo in Cultured Cells. J. Cell Biol. 1996, 132, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.; Wedig, T.; Porter, R.M.; Lane, E.B.; Aebi, U. Characterization of Early Assembly Intermediates of Recombinant Human Keratins. J. Struct. Biol. 2002, 137, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.; Häner, M.; Brettel, M.; Müller, S.A.; Goldie, K.N.; Fedtke, B.; Lustig, A.; Franke, W.W.; Aebi, U. Structure and Assembly Properties of the Intermediate Filament Protein Vimentin: The Role of Its Head, Rod and Tail Domains. J. Mol. Biol. 1996, 264, 933–953. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mücke, N.; Katus, H.A.; Herrmann, H.; Bär, H. Disease Mutations in the “Head” Domain of the Extra-Sarcomeric Protein Desmin Distinctly Alter Its Assembly and Network-Forming Properties. J. Mol. Med. 2009, 87, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Hess, J.F.; Budamagunta, M.S.; Voss, J.C.; FitzGerald, P.G. Site-Directed Spin Labeling and Electron Paramagnetic Resonance Determination of Vimentin Head Domain Structure*. J. Biol. Chem. 2010, 285, 15278–15285. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Hess, J.F.; Budamagunta, M.S.; FitzGerald, P.G.; Voss, J.C. Head and Rod 1 Interactions in Vimentin*. J. Biol. Chem. 2009, 284, 7330–7338. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Aldehlawi, H.; Nguyen, T.K.N.; Teh, M.-T.; Waseem, A. Impact of N-Terminal Tags on De Novo Vimentin Intermediate Filament Assembly. Int. J. Mol. Sci. 2022, 23, 6349. [Google Scholar] [CrossRef]
- Beuttenmüller, M.; Chen, M.; Janetzko, A.; Kühn, S.; Traub, P. Structural Elements of the Amino-Terminal Head Domain of Vimentin Essential for Intermediate Filament Formation in Vivo and in Vitro. Exp. Cell Res. 1994, 213, 128–142. [Google Scholar] [CrossRef]
- Herrmann, H.; Hofmann, I.; Franke, W.W. Identification of a Nonapeptide Motif in the Vimentin Head Domain Involved in Intermediate Filament Assembly. J. Mol. Biol. 1992, 223, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, P.-J.; Lilina, A.V.; Hashim, H.M.; Dlabolová, L.; Fiala, J.; Beelen, S.; Kukačka, Z.; Harvey, J.N.; Novák, P.; Strelkov, S.V. Molecular Structure of Soluble Vimentin Tetramers. Sci. Rep. 2023, 13, 8841. [Google Scholar] [CrossRef]
- Georgakopoulou, S.; Möller, D.; Sachs, N.; Herrmann, H.; Aebi, U. Near-UV Circular Dichroism Reveals Structural Transitions of Vimentin Subunits during Intermediate Filament Assembly. J. Mol. Biol. 2009, 386, 544–553. [Google Scholar] [CrossRef]
- Stuurman, N.; Heins, S.; Aebi, U. Nuclear Lamins: Their Structure, Assembly, and Interactions. J. Struct. Biol. 1998, 122, 42–66. [Google Scholar] [CrossRef]
- Ralton, J.E.; Lu, X.; Hutcheson, A.M.; Quinlan, R.A. Identification of Two N-Terminal Non-Alpha-Helical Domain Motifs Important in the Assembly of Glial Fibrillary Acidic Protein. J. Cell Sci. 1994, 107, 1935–1948. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Maddison, W.P.; Maddison, D.R. Interactive Analysis of Phylogeny and Character Evolution Using the Computer Program MacClade. Folia Primatol. 1989, 53, 190–202. [Google Scholar] [CrossRef]
- Eibauer, M.; Weber, M.S.; Kronenberg-Tenga, R.; Beales, C.T.; Boujemaa-Paterski, R.; Turgay, Y.; Sivagurunathan, S.; Kraxner, J.; Köster, S.; Goldman, R.D.; et al. Vimentin Filaments Integrate Low Complexity Domains in a Highly Complex Helical Structure. bioRxiv 2023. preprint. [Google Scholar] [CrossRef]
- Eibauer, M.; Weber, M.S.; Turgay, Y.; Sivagurunathan, S.; Goldman, R.D.; Medalia, O. The Molecular Architecture of Vimentin Filaments. bioRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Bray, D.J.; Walsh, T.R.; Noro, M.G.; Notman, R. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly. PLoS ONE 2015, 10, e0132706. [Google Scholar] [CrossRef] [PubMed]
- Steinert, P.M.; Chou, Y.H.; Prahlad, V.; Parry, D.A.; Marekov, L.N.; Wu, K.C.; Jang, S.I.; Goldman, R.D. A High Molecular Weight Intermediate Filament-Associated Protein in BHK-21 Cells Is Nestin, a Type VI Intermediate Filament Protein. Limited Co-Assembly in Vitro to Form Heteropolymers with Type III Vimentin and Type IV Alpha-Internexin. J. Biol. Chem. 1999, 274, 9881–9890. [Google Scholar] [CrossRef] [PubMed]
- Ching, G.Y.; Liem, R.K. Roles of Head and Tail Domains in Alpha-Internexin’s Self-Assembly and Coassembly with the Neurofilament Triplet Proteins. J. Cell Sci. 1998, 111 Pt 3, 321–333. [Google Scholar] [CrossRef]
- Heitlinger, E.; Peter, M.; Lustig, A.; Villiger, W.; Nigg, E.A.; Aebi, U. The Role of the Head and Tail Domain in Lamin Structure and Assembly: Analysis of Bacterially Expressed Chicken Lamin A and Truncated B2 Lamins. J. Struct. Biol. 1992, 108, 74–89. [Google Scholar] [CrossRef]
- Isobe, K.; Gohara, R.; Ueda, T.; Takasaki, Y.; Ando, S. The Last Twenty Residues in the Head Domain of Mouse Lamin A Contain Important Structural Elements for Formation of Head-to-Tail Polymers in Vitro. Biosci. Biotechnol. Biochem. 2007, 71, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Izumi, M.; Vaughan, O.A.; Hutchison, C.J.; Gilbert, D.M. Head and/or CaaX Domain Deletions of Lamin Proteins Disrupt Preformed Lamin A and C But Not Lamin B Structure in Mammalian Cells. Mol. Biol. Cell 2000, 11, 4323–4337. [Google Scholar] [CrossRef] [PubMed]
- Strelkov, S.V.; Schumacher, J.; Burkhard, P.; Aebi, U.; Herrmann, H. Crystal Structure of the Human Lamin A Coil 2B Dimer: Implications for the Head-to-Tail Association of Nuclear Lamins. J. Mol. Biol. 2004, 343, 1067–1080. [Google Scholar] [CrossRef]
- Goulielmos, G.; Remington, S.; Schwesinger, F.; Georgatos, S.D.; Gounari, F. Contributions of the Structural Domains of Filensin in Polymer Formation and Filament Distribution. J. Cell Sci. 1996, 109, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Nakamura, A.; Kuratani, Y.; Takada, M.; Iwamoto, S.; Oka, M.; Ando, S. Effects of Truncations in the N- and C-Terminal Domains of Filensin on Filament Formation with Phakinin in Cell-Free Conditions and Cultured Cells. FEBS Open Bio 2023, 13, 1990–2004. [Google Scholar] [CrossRef]
- Geisler, N. Proteinchemical Characterization of Three Structurally Distinct Domains along the Protofilament Unit of Desmin 10 Nm Filaments. Cell 1982, 30, 277–286. [Google Scholar] [CrossRef]
- Premchandar, A.; Mücke, N.; Poznański, J.; Wedig, T.; Kaus-Drobek, M.; Herrmann, H.; Dadlez, M. Structural Dynamics of the Vimentin Coiled-Coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. J. Biol. Chem. 2016, 291, 24931–24950. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lin, Y.; Kato, M.; Mori, E.; Liszczak, G.; Sutherland, L.; Sysoev, V.O.; Murray, D.T.; Tycko, R.; McKnight, S.L. Transiently Structured Head Domains Control Intermediate Filament Assembly. Proc. Natl. Acad. Sci. USA 2021, 118, e2022121118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Kato, M.; McKnight, S.L. How Do Disordered Head Domains Assist in the Assembly of Intermediate Filaments? Curr. Opin. Cell Biol. 2023, 85, 102262. [Google Scholar] [CrossRef] [PubMed]
- Steinert, P.M.; Mack, J.W.; Korge, B.P.; Gan, S.Q.; Haynes, S.R.; Steven, A.C. Glycine Loops in Proteins: Their Occurrence in Certain Intermediate Filament Chains, Loricrins and Single-Stranded RNA Binding Proteins. Int. J. Biol. Macromol. 1991, 13, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Badowski, C.; Sim, A.Y.L.; Verma, C.; Szeverényi, I.; Natesavelalar, C.; Terron-Kwiatkowski, A.; Harper, J.; O’Toole, E.A.; Lane, E.B. Modeling the Structure of Keratin 1 and 10 Terminal Domains and Their Misassembly in Keratoderma. J. Investig. Dermatol. 2017, 137, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Steinert, P.M.; Parry, D.A. The Conserved H1 Domain of the Type II Keratin 1 Chain Plays an Essential Role in the Alignment of Nearest Neighbor Molecules in Mouse and Human Keratin 1/Keratin 10 Intermediate Filaments at the Two- to Four-Molecule Level of Structure. J. Biol. Chem. 1993, 268, 2878–2887. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Lee, J.; Jeong, S.; Kang, S.; Park, B.-J.; Ha, N.-C. Beta-Strand-Mediated Dimeric Formation of the Ig-like Domains of Human Lamin A/C and B1. Biochem. Biophys. Res. Commun. 2021, 550, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Kornreich, M.; Malka-Gibor, E.; Laser-Azogui, A.; Doron, O.; Herrmann, H.; Beck, R. Composite Bottlebrush Mechanics: α-Internexin Fine-Tunes Neurofilament Network Properties. Soft Matter 2015, 11, 5839–5849. [Google Scholar] [CrossRef]
- Hess, J.F.; Budamagunta, M.S.; Aziz, A.; FitzGerald, P.G.; Voss, J.C. Electron Paramagnetic Resonance Analysis of the Vimentin Tail Domain Reveals Points of Order in a Largely Disordered Region and Conformational Adaptation upon Filament Assembly. Protein Sci. 2013, 22, 47–55. [Google Scholar] [CrossRef]
- Vlachakis, D.; Tsilafakis, K.; Kostavasili, I.; Kossida, S.; Mavroidis, M. Unraveling Desmin’s Head Domain Structure and Function. Cells 2024, 13, 603. [Google Scholar] [CrossRef]
- Heimburg, T.; Schuenemann, J.; Weber, K.; Geisler, N. Specific Recognition of Coiled Coils by Infrared Spectroscopy: Analysis of the Three Structural Domains of Type III Intermediate Filament Proteins. Biochemistry 1996, 35, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Kouloumenta, A.; Mavroidis, M.; Capetanaki, Y. Proper Perinuclear Localization of the TRIM-like Protein Myospryn Requires Its Binding Partner Desmin. J. Biol. Chem. 2007, 282, 35211–35221. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Q.; Oiso, N.; Novak, E.K.; Gautam, R.; O’Brien, E.P.; Tinsley, C.L.; Blake, D.J.; Spritz, R.A.; Copeland, N.G.; et al. Hermansky-Pudlak Syndrome Type 7 (HPS-7) Results from Mutant Dysbindin, a Member of the Biogenesis of Lysosome-Related Organelles Complex 1 (BLOC-1). Nat. Genet. 2003, 35, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.A.; Tinsley, C.L.; Blake, D.J. Myospryn Is a Novel Binding Partner for Dysbindin in Muscle. J. Biol. Chem. 2004, 279, 10450–10458. [Google Scholar] [CrossRef] [PubMed]
- Dayal, A.A.; Medvedeva, N.V.; Nekrasova, T.M.; Duhalin, S.D.; Surin, A.K.; Minin, A.A. Desmin Interacts Directly with Mitochondria. Int. J. Mol. Sci. 2020, 21, 8122. [Google Scholar] [CrossRef] [PubMed]
- Chernoivanenko, I.S.; Matveeva, E.A.; Gelfand, V.I.; Goldman, R.D.; Minin, A.A. Mitochondrial Membrane Potential Is Regulated by Vimentin Intermediate Filaments. FASEB J. 2015, 29, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Kouklis, P.D.; Hutton, E.; Fuchs, E. Making a Connection: Direct Binding between Keratin Intermediate Filaments and Desmosomal Proteins. J. Cell Biol. 1994, 127, 1049–1060. [Google Scholar] [CrossRef]
- Meng, J.-J.; Bornslaeger, E.A.; Green, K.J.; Steinert, P.M.; Ip, W. Two-Hybrid Analysis Reveals Fundamental Differences in Direct Interactions between Desmoplakin and Cell Type-Specific Intermediate Filaments *. J. Biol. Chem. 1997, 272, 21495–21503. [Google Scholar] [CrossRef]
- Favre, B.; Begré, N.; Bouameur, J.-E.; Lingasamy, P.; Conover, G.M.; Fontao, L.; Borradori, L. Desmoplakin Interacts with the Coil 1 of Different Types of Intermediate Filament Proteins and Displays High Affinity for Assembled Intermediate Filaments. PLoS ONE 2018, 13, e0205038. [Google Scholar] [CrossRef]
- Favre, B.; Schneider, Y.; Lingasamy, P.; Bouameur, J.-E.; Begré, N.; Gontier, Y.; Steiner-Champliaud, M.-F.; Frias, M.A.; Borradori, L.; Fontao, L. Plectin Interacts with the Rod Domain of Type III Intermediate Filament Proteins Desmin and Vimentin. Eur. J. Cell Biol. 2011, 90, 390–400. [Google Scholar] [CrossRef]
- Bouameur, J.-E.; Favre, B.; Fontao, L.; Lingasamy, P.; Begré, N.; Borradori, L. Interaction of Plectin with Keratins 5 and 14: Dependence on Several Plectin Domains and Keratin Quaternary Structure. J. Investig. Dermatol. 2014, 134, 2776–2783. [Google Scholar] [CrossRef]
- Snider, N.T.; Omary, M.B. Post-Translational Modifications of Intermediate Filament Proteins: Mechanisms and Functions. Nat. Rev. Mol. Cell Biol. 2014, 15, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Takemura, M.; Gomi, H.; Colucci-Guyon, E.; Itohara, S. Protective Role of Phosphorylation in Turnover of Glial Fibrillary Acidic Protein in Mice. J. Neurosci. 2002, 22, 6972–6979. [Google Scholar] [CrossRef]
- Omary, M.B.; Ku, N.-O.; Tao, G.-Z.; Toivola, D.M.; Liao, J. ‘Heads and Tails’ of Intermediate Filament Phosphorylation: Multiple Sites and Functional Insights. Trends Biochem. Sci. 2006, 31, 383–394. [Google Scholar] [CrossRef]
- Jeong, S.; Ahn, J.; Jo, I.; Kang, S.-M.; Park, B.-J.; Cho, H.-S.; Kim, Y.-H.; Ha, N.-C. Cyclin-Dependent Kinase 1 Depolymerizes Nuclear Lamin Filaments by Disrupting the Head-to-Tail Interaction of the Lamin Central Rod Domain. J. Biol. Chem. 2022, 298, 102256. [Google Scholar] [CrossRef]
- Omary, M.B. “IF-Pathies”: A Broad Spectrum of Intermediate Filament-Associated Diseases. J. Clin. Investig. 2009, 119, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Betz, R.C.; Planko, L.; Eigelshoven, S.; Hanneken, S.; Pasternack, S.M.; Büssow, H.; Van Den Bogaert, K.; Wenzel, J.; Braun-Falco, M.; Rütten, A.; et al. Loss-of-Function Mutations in the Keratin 5 Gene Lead to Dowling-Degos Disease. Am. J. Hum. Genet. 2006, 78, 510–519. [Google Scholar] [CrossRef]
- Brenner, M.; Johnson, A.B.; Boespflug-Tanguy, O.; Rodriguez, D.; Goldman, J.E.; Messing, A. Mutations in GFAP, Encoding Glial Fibrillary Acidic Protein, Are Associated with Alexander Disease. Nat. Genet. 2001, 27, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.; Finsterer, J.; Steger, C.; Wexberg, P.; Gatterer, E.; Khazen, C.; Stix, G.; Gerull, B.; Höftberger, R.; Weidinger, F. Novel c.367_369del LMNA Mutation Manifesting as Severe Arrhythmias, Dilated Cardiomyopathy, and Myopathy. Heart Lung 2012, 41, 382–386. [Google Scholar] [CrossRef]
- van Spaendonck-Zwarts, K.Y.; van Hessem, L.; Jongbloed, J.D.H.; de Walle, H.E.K.; Capetanaki, Y.; van der Kooi, A.J.; van Langen, I.M.; van den Berg, M.P.; van Tintelen, J.P. Desmin-Related Myopathy. Clin. Genet. 2011, 80, 354–366. [Google Scholar] [CrossRef]
- Pallari, H.-M.; Eriksson, J.E. Intermediate Filaments as Signaling Platforms. Sci. STKE 2006, 2006, pe53. [Google Scholar] [CrossRef]
- Herrmann, H.; Aebi, U. Intermediate Filaments and Their Associates: Multi-Talented Structural Elements Specifying Cytoarchitecture and Cytodynamics. Curr. Opin. Cell Biol. 2000, 12, 79–90. [Google Scholar] [CrossRef]
- Bott, C.J.; Winckler, B. Intermediate Filaments in Developing Neurons: Beyond Structure. Cytoskeleton 2020, 77, 110–128. [Google Scholar] [CrossRef]
- Wang, Q.; Tolstonog, G.V.; Shoeman, R.; Traub, P. Sites of Nucleic Acid Binding in Type I−IV Intermediate Filament Subunit Proteins. Biochemistry 2001, 40, 10342–10349. [Google Scholar] [CrossRef] [PubMed]
- Shoeman, R.L.; Hüttermann, C.; Hartig, R.; Traub, P. Amino-Terminal Polypeptides of Vimentin Are Responsible for the Changes in Nuclear Architecture Associated with Human Immunodeficiency Virus Type 1 Protease Activity in Tissue Culture Cells. MBoC 2001, 12, 143–154. [Google Scholar] [CrossRef]
- Samson, C.; Petitalot, A.; Celli, F.; Herrada, I.; Ropars, V.; Le Du, M.-H.; Nhiri, N.; Jacquet, E.; Arteni, A.-A.; Buendia, B.; et al. Structural Analysis of the Ternary Complex between Lamin A/C, BAF and Emerin Identifies an Interface Disrupted in Autosomal Recessive Progeroid Diseases. Nucleic Acids Res. 2018, 46, 10460–10473. [Google Scholar] [CrossRef] [PubMed]
- Krimm, I.; Ostlund, C.; Gilquin, B.; Couprie, J.; Hossenlopp, P.; Mornon, J.-P.; Bonne, G.; Courvalin, J.-C.; Worman, H.J.; Zinn-Justin, S. The Ig-like Structure of the C-Terminal Domain of Lamin A/C, Mutated in Muscular Dystrophies, Cardiomyopathy, and Partial Lipodystrophy. Structure 2002, 10, 811–823. [Google Scholar] [CrossRef]
- Etourneaud, L.; Moussa, A.; Rass, E.; Genet, D.; Willaume, S.; Chabance-Okumura, C.; Wanschoor, P.; Picotto, J.; Thézé, B.; Dépagne, J.; et al. Lamin B1 Sequesters 53BP1 to Control Its Recruitment to DNA Damage. Sci. Adv. 2021, 7, eabb3799. [Google Scholar] [CrossRef]
- van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T.; et al. Classification of Intrinsically Disordered Regions and Proteins. Chem. Rev. 2014, 114, 6589–6631. [Google Scholar] [CrossRef] [PubMed]
- King, O.D.; Gitler, A.D.; Shorter, J. The Tip of the Iceberg: RNA-Binding Proteins with Prion-like Domains in Neurodegenerative Disease. Brain Res. 2012, 1462, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Ntountoumi, C.; Vlastaridis, P.; Mossialos, D.; Stathopoulos, C.; Iliopoulos, I.; Promponas, V.; Oliver, S.; Amoutzias, G. Low Complexity Regions in the Proteins of Prokaryotes Perform Important Functional Roles and Are Highly Conserved. Nucleic Acids Res. 2019, 47, 9998–10009. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, H.; Kwon, I. Phase Separation of Low-Complexity Domains in Cellular Function and Disease. Exp. Mol. Med. 2022, 54, 1412–1422. [Google Scholar] [CrossRef] [PubMed]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A.P.; Kim, H.J.; Mittag, T.; Taylor, J.P. Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell 2015, 163, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Musacchio, A. On the Role of Phase Separation in the Biogenesis of Membraneless Compartments. EMBO J. 2022, 41, e109952. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.; Kato, M.; Whitwam, T.; Kim, J.H.; Montell, D.J. An Atypical Tropomyosin in Drosophila with Intermediate Filament-like Properties. Cell Rep. 2016, 16, 928–938. [Google Scholar] [CrossRef]
- Sysoev, V.O.; Kato, M.; Sutherland, L.; Hu, R.; McKnight, S.L.; Murray, D.T. Dynamic Structural Order of a Low-Complexity Domain Facilitates Assembly of Intermediate Filaments. Proc. Natl. Acad. Sci. USA 2020, 117, 23510–23518. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Kumar, R.; Kumar, M. Low Complexity and Disordered Regions of Proteins Have Different Structural and Amino Acid Preferences. Mol. BioSyst. 2015, 11, 585–594. [Google Scholar] [CrossRef]
- Kumari, B.; Kumar, R.; Chauhan, V.; Kumar, M. Comparative Functional Analysis of Proteins Containing Low-Complexity Predicted Amyloid Regions. PeerJ 2018, 6, e5823. [Google Scholar] [CrossRef]
- Agnetti, G.; Halperin, V.L.; Kirk, J.A.; Chakir, K.; Guo, Y.; Lund, L.; Nicolini, F.; Gherli, T.; Guarnieri, C.; Caldarera, C.M.; et al. Desmin Modifications Associate with Amyloid-like Oligomers Deposition in Heart Failure. Cardiovasc. Res. 2014, 102, 24–34. [Google Scholar] [CrossRef]
- Rainer, P.P.; Dong, P.; Sorge, M.; Fert-Bober, J.; Holewinski, R.J.; Wang, Y.; Foss, C.A.; An, S.S.; Baracca, A.; Solaini, G.; et al. Desmin Phosphorylation Triggers Preamyloid Oligomers Formation and Myocyte Dysfunction in Acquired Heart Failure. Circ. Res. 2018, 122, e75–e83. [Google Scholar] [CrossRef] [PubMed]
- Kedia, N.; Arhzaouy, K.; Pittman, S.K.; Sun, Y.; Batchelor, M.; Weihl, C.C.; Bieschke, J. Desmin Forms Toxic, Seeding-Competent Amyloid Aggregates That Persist in Muscle Fibers. Proc. Natl. Acad. Sci. USA 2019, 116, 16835–16840. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Hughes, M.P.; Hu, C.J.; Sawaya, M.R.; Salwinski, L.; Pan, H.; French, S.W.; Seidler, P.M.; Eisenberg, D.S. Identifying Amyloid-Related Diseases by Mapping Mutations in Low-Complexity Protein Domains to Pathologies. Nat. Struct. Mol. Biol. 2022, 29, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.P.; Sawaya, M.R.; Boyer, D.R.; Goldschmidt, L.; Rodriguez, J.A.; Cascio, D.; Chong, L.; Gonen, T.; Eisenberg, D.S. Atomic Structures of Low-Complexity Protein Segments Reveal Kinked β Sheets That Assemble Networks. Science 2018, 359, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.W.; McFarlane, H.T.; et al. Atomic Structures of Amyloid Cross-Beta Spines Reveal Varied Steric Zippers. Nature 2007, 447, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Kouklis, P.D.; Papamarcaki, T.; Merdes, A.; Georgatos, S.D. A Potential Role for the COOH-Terminal Domain in the Lateral Packing of Type III Intermediate Filaments. J. Cell Biol. 1991, 114, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Arbustini, E.; Pasotti, M.; Pilotto, A.; Pellegrini, C.; Grasso, M.; Previtali, S.; Repetto, A.; Bellini, O.; Azan, G.; Scaffino, M.; et al. Desmin Accumulation Restrictive Cardiomyopathy and Atrioventricular Block Associated with Desmin Gene Defects. Eur. J. Heart Fail. 2006, 8, 477–483. [Google Scholar] [CrossRef] [PubMed]
- van Tintelen, J.P.; Van Gelder, I.C.; Asimaki, A.; Suurmeijer, A.J.H.; Wiesfeld, A.C.P.; Jongbloed, J.D.H.; van den Wijngaard, A.; Kuks, J.B.M.; van Spaendonck-Zwarts, K.Y.; Notermans, N.; et al. Severe Cardiac Phenotype with Right Ventricular Predominance in a Large Cohort of Patients with a Single Missense Mutation in the DES Gene. Heart Rhythm. 2009, 6, 1574–1583. [Google Scholar] [CrossRef]
- Lapouge, K.; Fontao, L.; Champliaud, M.-F.; Jaunin, F.; Frias, M.A.; Favre, B.; Paulin, D.; Green, K.J.; Borradori, L. New Insights into the Molecular Basis of Desmoplakinand Desmin-Related Cardiomyopathies. J. Cell Sci. 2006, 119, 4974–4985. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsilafakis, K.; Mavroidis, M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes 2024, 15, 633. https://doi.org/10.3390/genes15050633
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes. 2024; 15(5):633. https://doi.org/10.3390/genes15050633
Chicago/Turabian StyleTsilafakis, Konstantinos, and Manolis Mavroidis. 2024. "Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions?" Genes 15, no. 5: 633. https://doi.org/10.3390/genes15050633
APA StyleTsilafakis, K., & Mavroidis, M. (2024). Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes, 15(5), 633. https://doi.org/10.3390/genes15050633