Genome-Wide Analysis of Exertional Rhabdomyolysis in Sickle Cell Trait Positive African Americans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Clinical Information
2.2. DNA Sample Handling and Whole-Genome Sequencing
2.3. Germline Variant Calling
2.4. Variant Annotation and Filtering
2.5. Case-Control Genome-Wide Association Analysis
2.6. Gene-Based Association Study and Enrichment Analyses
3. Results
3.1. Study Participant Characteristics
3.2. Single Nucleotide Polymorphisms (SNP) Based on GWAS of ERM in Subjects with SCT
3.3. Gene-Based and Gene-Set-Based GWAS Analyses Show SLC44A3 Significantly Associated with ERM in SCT Carriers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.Z.; Thein, S.L. The carrier state for sickle cell disease is not completely harmless. Haematologica 2019, 104, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.A.; Deuster, P.A.; Carter, R., 3rd; Hill, O.T.; Wolcott, V.L.; Kurina, L.M. Sickle Cell Trait, Rhabdomyolysis, and Mortality among U.S. Army Soldiers. N. Engl. J. Med. 2016, 375, 435–442. [Google Scholar] [CrossRef]
- Ojodu, J.; Hulihan, M.M.; Pope, S.N.; Grant, A.M.; Centers for Disease, C.; Centers for Disease Control and Prevention. Incidence of sickle cell trait—United States, 2010. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 1155–1158. [Google Scholar]
- Naik, R.P.; Smith-Whitley, K.; Hassell, K.L.; Umeh, N.I.; de Montalembert, M.; Sahota, P.; Haywood, C., Jr.; Jenkins, J.; Lloyd-Puryear, M.A.; Joiner, C.H.; et al. Clinical Outcomes Associated with Sickle Cell Trait: A Systematic Review. Ann. Intern. Med. 2018, 169, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Hulsizer, J.; Resurreccion, W.K.; Shi, Z.; Wei, J.; Ladson-Gary, S.; Zheng, S.L.; Helfand, B.T.; Billings, L.; Caplan, M.S.; Xu, J. Sickle Cell Trait and Risk for Common Diseases: Evidence from the UK Biobank. Am. J. Med. 2022, 135, e279–e287. [Google Scholar] [CrossRef]
- Kerle, K.K.; Nishimura, K.D. Exertional collapse and sudden death associated with sickle cell trait. Mil. Med. 1996, 161, 766–767. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Drezner, J.A.; Klossner, D.; Asif, I.M. Sickle cell trait associated with a RR of death of 37 times in national collegiate athletic association football athletes: A database with 2 million athlete-years as the denominator. Br. J. Sports Med. 2012, 46, 325–330. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, F.G.; Franzos, M.A.; Nye, N.S.; Nelson, D.A.; Shell, D.; Voss, J.D.; Anderson, S.A.; Coleman, N.J.; Thompson, A.A.; Harmon, K.G.; et al. Summit on Exercise Collapse Associated with Sickle Cell Trait: Finding the “Way Ahead”. Optom. Vis. Sci. 2021, 20, 47–56. [Google Scholar] [CrossRef] [PubMed]
- O’Connnor, F.G.; Deuster, P.A. Rhabdomyolysis. In Goldman-Cecil Medicine, 27th ed.; Goldman, L., Cooney, K.A., Eds.; Elsevier Inc: New York, NY, USA, 2023; pp. 714–717. [Google Scholar]
- Chavez, L.O.; Leon, M.; Einav, S.; Varon, J. Beyond muscle destruction: A systematic review of rhabdomyolysis for clinical practice. Crit. Care 2016, 20, 135. [Google Scholar] [CrossRef]
- Nance, J.R.; Mammen, A.L. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015, 51, 793–810. [Google Scholar] [CrossRef]
- Kruijt, N.; van den Bersselaar, L.R.; Kamsteeg, E.J.; Verbeeck, W.; Snoeck, M.M.J.; Everaerd, D.S.; Abdo, W.F.; Jansen, D.R.M.; Erasmus, C.E.; Jungbluth, H.; et al. The etiology of rhabdomyolysis: An interaction between genetic susceptibility and external triggers. Eur. J. Neurol. 2021, 28, 647–659. [Google Scholar] [CrossRef]
- Long, B.; Koyfman, A.; Gottlieb, M. An evidence-based narrative review of the emergency department evaluation and management of rhabdomyolysis. Am. J. Emerg. Med. 2019, 37, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Scalco, R.S.; Gardiner, A.R.; Pitceathly, R.D.; Zanoteli, E.; Becker, J.; Holton, J.L.; Houlden, H.; Jungbluth, H.; Quinlivan, R. Rhabdomyolysis: A genetic perspective. Orphanet J. Rare Dis. 2015, 10, 51. [Google Scholar] [CrossRef]
- Marciante, K.D.; Durda, J.P.; Heckbert, S.R.; Lumley, T.; Rice, K.; McKnight, B.; Totah, R.A.; Tamraz, B.; Kroetz, D.L.; Fukushima, H.; et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharm. Genom. 2011, 21, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Vivante, A.; Ityel, H.; Pode-Shakked, B.; Chen, J.; Shril, S.; van der Ven, A.T.; Mann, N.; Schmidt, J.M.; Segel, R.; Aran, A.; et al. Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases. Pediatr. Nephrol. 2017, 32, 2273–2282. [Google Scholar] [CrossRef]
- Wu, L.; Brady, L.; Shoffner, J.; Tarnopolsky, M.A. Next-Generation Sequencing to Diagnose Muscular Dystrophy, Rhabdomyolysis, and HyperCKemia. Can. J. Neurol. Sci. 2018, 45, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Daniele, D.O.; Murray, J. Update: Exertional rhabdomyolysis, active component, U.S. Armed Forces, 2017–2021. MSMR 2022, 29, 15–20. [Google Scholar] [PubMed]
- Carneiro, A.; Viana-Gomes, D.; Macedo-Da-Silva, J.; Lima, G.H.O.; Mitri, S.; Alves, S.R.; Kolliari-Turner, A.; Zanoteli, E.; Neto, F.R.A.; Palmisano, G.; et al. Risk factors and future directions for preventing and diagnosing exertional rhabdomyolysis. Neuromuscul. Disord. 2021, 31, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Isaacs, D.J.; Ahmed, A.E.; Anderson, S.A. Epidemiology of Exertional Rhabdomyolysis in the United States: Analysis of NEISS Database 2000 to 2019. Physician Sportsmed. 2021, 50, 486–493. [Google Scholar] [CrossRef]
- Deuster, P.A.; Contreras-Sesvold, C.L.; O’Connor, F.G.; Campbell, W.W.; Kenney, K.; Capacchione, J.F.; Landau, M.E.; Muldoon, S.M.; Rushing, E.J.; Heled, Y. Genetic polymorphisms associated with exertional rhabdomyolysis. Eur. J. Appl. Physiol. 2013, 113, 1997–2004. [Google Scholar] [CrossRef]
- Norton, E.M.; Mickelson, J.R.; Binns, M.M.; Blott, S.C.; Caputo, P.; Isgren, C.M.; McCoy, A.M.; Moore, A.; Piercy, R.J.; Swinburne, J.E.; et al. Heritability of Recurrent Exertional Rhabdomyolysis in Standardbred and Thoroughbred Racehorses Derived from SNP Genotyping Data. J. Hered. 2016, 107, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Ware, S.M.; Bhatnagar, S.; Dexheimer, P.J.; Wilkinson, J.D.; Sridhar, A.; Fan, X.; Shen, Y.; Tariq, M.; Schubert, J.A.; Colan, S.D.; et al. The genetic architecture of pediatric cardiomyopathy. Am. J. Hum. Genet. 2022, 109, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Gorsi, B.; Hernandez, E.; Moore, M.B.; Moriwaki, M.; Chow, C.Y.; Coelho, E.; Taylor, E.; Lu, C.; Walker, A.; Touraine, P.; et al. Causal and Candidate Gene Variants in a Large Cohort of Women with Primary Ovarian Insufficiency. J. Clin. Endocrinol. Metab. 2022, 107, 685–714. [Google Scholar] [CrossRef] [PubMed]
- Soltis, A.R.; Bateman, N.W.; Liu, J.; Nguyen, T.; Franks, T.J.; Zhang, X.; Dalgard, C.L.; Viollet, C.; Somiari, S.; Yan, C.; et al. Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep. Med. 2022, 3, 100819. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From fastq data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Hunt, S.E.; Moore, B.; Amode, R.M.; Armean, I.M.; Lemos, D.; Mushtaq, A.; Parton, A.; Schuilenburg, H.; Szpak, M.; Thormann, A.; et al. Annotating and prioritizing genomic variants using the Ensembl Variant Effect Predictor—A tutorial. Hum. Mutat. 2022, 43, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.-M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867–2873. [Google Scholar] [CrossRef] [PubMed]
- Staples, J.; Qiao, D.; Cho, M.H.; Silverman, E.K.; University of Washington Center for Mendelian; Nickerson, D.A.; Below, J.E. PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent. Am. J. Hum. Genet. 2014, 95, 553–564. [Google Scholar] [CrossRef]
- Marees, A.T.; de Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef]
- de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.F.; Shihab, H.A.; Mort, M.; Cooper, D.N.; Gaunt, T.R.; Campbell, C. FATHMM-XF: Accurate prediction of pathogenic point mutations via extended features. Bioinformatics 2017, 34, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, F.G.; Bergeron, M.F.; Cantrell, J.; Connes, P.; Harmon, K.G.; Ivy, E.; Kark, J.; Klossner, D.; Lisman, P.; Meyers, B.K.; et al. ACSM and CHAMP summit on sickle cell trait: Mitigating risks for warfighters and athletes. Med. Sci. Sports Exerc. 2012, 44, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, M.L.; Green, V.S.; Buja, M.; Sanchez, L.A.; Harrykissoon, R.I.; Eichner, E.R. Sickle cell trait and fatal rhabdomyolysis in football training: A case study. Med. Sci. Sports Exerc. 2010, 42, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Makaryus, J.N.; Catanzaro, J.N.; Katona, K.C. Exertional rhabdomyolysis and renal failure in patients with sickle cell trait: Is it time to change our approach? Hematology 2007, 12, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Tsaras, G.; Owusu-Ansah, A.; Boateng, F.O.; Amoateng-Adjepong, Y. Complications associated with sickle cell trait: A brief narrative review. Am. J. Med. 2009, 122, 507–512. [Google Scholar] [CrossRef]
- Sambuughin, N.; Capacchione, J.; Blokhin, A.; Bayarsaikhan, M.; Bina, S.; Muldoon, S. The ryanodine receptor type 1 gene variants in African American men with exertional rhabdomyolysis and malignant hyperthermia susceptibility. Clin. Genet. 2009, 76, 564–568. [Google Scholar] [CrossRef]
- Traiffort, E.; O’regan, S.; Ruat, M. The choline transporter-like family SLC44: Properties and roles in human diseases. Mol. Asp. Med. 2013, 34, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Fagerberg, C.R.; Taylor, A.; Distelmaier, F.; Schrøder, H.D.; Kibæk, M.; Wieczorek, D.; Tarnopolsky, M.; Brady, L.; Larsen, M.J.; A Jamra, R.; et al. Choline transporter-like 1 deficiency causes a new type of childhood-onset neurodegeneration. Brain 2020, 143, 94–111. [Google Scholar] [CrossRef] [PubMed]
- da Costa, K.-A.; Badea, M.; Fischer, L.M.; Zeisel, S.H. Elevated serum creatine phosphokinase in choline-deficient humans: Mechanistic studies in C2C12 mouse myoblasts. Am. J. Clin. Nutr. 2004, 80, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Natker, E.; Zeisel, S.H.; Zelman, K.M. Choline: The Underconsumed and Underappreciated Essential Nutrient. Nutr. Today 2018, 53, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef] [PubMed]
- Sonna, L.A.; Sharp, M.A.; Knapik, J.J.; Cullivan, M.; Angel, K.C.; Patton, J.F.; Lilly, C.M. Angiotensin-converting enzyme genotype and physical performance during US Army basic training. J. Appl. Physiol. 2001, 91, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Manzo, S.; Marcial-Quino, J.; Vanoye-Carlo, A.; Serrano-Posada, H.; Ortega-Cuellar, D.; González-Valdez, A.; Castillo-Rodríguez, R.A.; Hernández-Ochoa, B.; Sierra-Palacios, E.; Rodríguez-Bustamante, E.; et al. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World. Int. J. Mol. Sci. 2016, 17, 2069. [Google Scholar] [CrossRef] [PubMed]
- Eziokwu, A.S.; Angelini, D. New Diagnosis of G6PD Deficiency Presenting as Severe Rhabdomyolysis. Cureus 2018, 10, e2387. [Google Scholar] [CrossRef] [PubMed]
- Khaled, S.A.; Ahmed, H.A.; Elbadry, M.I.; NasrEldin, E.; Hassany, S.M.; Ahmed, S.A. Hematological, Biochemical Properties, and Clinical Correlates of Hemoglobin S Variant Disorder: A New Insight into Sickle Cell Trait. J. Hematol. 2022, 11, 92–108. [Google Scholar] [CrossRef]
- Tripette, J.; Hardy-Dessources, M.-D.; Romana, M.; Hue, O.; Diaw, M.; Samb, A.; Diop, S.; Connes, P. Exercise-related complications in sickle cell trait. Clin. Hemorheol. Microcirc. 2013, 55, 29–37. [Google Scholar] [CrossRef]
- Kennedy, A.P.; Walsh, D.A.; Nicholson, R.; Adams, J.G., 3rd; Steinberg, M.H. Influence of HbS levels upon the hematological and clinical characteristics of sickle cell trait. Am. J. Hematol. 1986, 22, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.M.; De Franceschi, L.; Gianesin, B.; Gigante, A.; Graziadei, G.; Lombardini, L.; Palazzi, G.; Quota, A.; Russo, R.; Sainati, L.; et al. Management of the Sickle Cell Trait: An Opinion by Expert Panel Members. J. Clin. Med. 2023, 12, 3441. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Cases (n = 30) | Controls (n = 56) | p-Value |
---|---|---|---|
Gender (n, %) | <0.001 | ||
Male | 26 (86.7) | 17 (30.4) | |
Female | 4 (13.3) | 39 (69.6) | |
Age at enrollment (years) | |||
Median (range) | 29.5 (18–69) | 45 (18–75) | |
Mean (SD) | 33.8 (14.2) | 43.6 (15.7) | 0.003 |
BMI (n, %) | |||
Mean (SD) | 27.2 (6.5) | 29.5 (6.6) | 0.104 |
Physical activity % | |||
Strenuous activity low (≤75%) | 45 | 79 | <0.001 |
Strenuous activity high (≥75%) | 55 | 21 | <0.001 |
Smoking (n, %) | 3 (10%) | 1 (1.8%) | 0.14 |
Characteristics | Reported (%) |
---|---|
Creatine kinase (U/L) | |
Median (range) | 11,000 (989–400,000) |
“Coca-Cola”-colored urine | 26.7% |
Number of episodes | |
Single | 61% |
Recurrent (two or more) | 39% |
Muscle symptoms during event (n) | |
Weakness/fatigue | 60% |
Pain | 88.9% |
Pain (mean on a scale of 1–10) | 7.4 ± 2.6 |
Swelling | 23.3% |
Cramps | 30% |
Exertional collapse | 53.3% |
Exertional heat illness | 10% |
Acute kidney injury | 13.3% |
Compartment syndrome | 16.7% |
Pathways | Genes | β | SE | p-Value | |
---|---|---|---|---|---|
1 | SYNTHESIS_OF_PIPS_AT_THE_EARLY_ENDOSOME_MEMBRANE | 12 | 0.923 | 0.268 | 0.0003 |
2 | REGULATION_OF_IFNG_SIGNALING | 9 | 0.978 | 0.308 | 0.0007 |
3 | SLC-MEDIATED_TRANSMEMBRANE_TRANSPORT | 200 | 0.216 | 0.069 | 0.0009 |
4 | SYNTHESIS_OF_PIPS_AT_THE_GOLGI_MEMBRANE | 14 | 0.704 | 0.228 | 0.0010 |
5 | INTERFERON_γ_SIGNALING | 43 | 0.438 | 0.156 | 0.0025 |
6 | TRANSPORT_OF_VITAMINS,_NUCLEOSIDES,_AND_RELATED_MOLECULES | 22 | 0.592 | 0.213 | 0.0028 |
7 | PI_METABOLISM | 42 | 0.381 | 0.142 | 0.0036 |
8 | TRANSPORT_OF_NUCLEOTIDE_SUGARS | 5 | 1.136 | 0.426 | 0.0039 |
9 | LECTIN_PATHWAY_OF_COMPLEMENT_ACTIVATION | 5 | 1.156 | 0.444 | 0.0047 |
10 | GRB2_EVENTS_IN_ERBB2_SIGNALING | 16 | 0.611 | 0.248 | 0.0069 |
11 | SYNTHESIS_OF_PIPS_AT_THE_LATE_ENDOSOME_MEMBRANE | 9 | 0.750 | 0.311 | 0.0080 |
12 | TRANSPORT_OF_INORGANIC_CATIONS/ANIONS_AND_AMINO_ACIDS/OLIGOPEPTIDES | 78 | 0.264 | 0.110 | 0.0083 |
13 | POST_NMDA_RECEPTOR_ACTIVATION_EVENTS | 21 | 0.495 | 0.207 | 0.0085 |
14 | KSRP_DESTABILIZES_MRNA | 9 | 0.792 | 0.339 | 0.0097 |
15 | TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES | 406 | 0.115 | 0.049 | 0.0098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Sambuughin, N.; Mungunshukh, O.; Edgeworth, D.B.; Hupalo, D.; Zhang, X.; Wilkerson, M.D.; Dalgard, C.L.; O’Connor, F.G.; Deuster, P.A. Genome-Wide Analysis of Exertional Rhabdomyolysis in Sickle Cell Trait Positive African Americans. Genes 2024, 15, 408. https://doi.org/10.3390/genes15040408
Ren M, Sambuughin N, Mungunshukh O, Edgeworth DB, Hupalo D, Zhang X, Wilkerson MD, Dalgard CL, O’Connor FG, Deuster PA. Genome-Wide Analysis of Exertional Rhabdomyolysis in Sickle Cell Trait Positive African Americans. Genes. 2024; 15(4):408. https://doi.org/10.3390/genes15040408
Chicago/Turabian StyleRen, Mingqiang, Nyamkhishig Sambuughin, Ognoon Mungunshukh, Daniel Baxter Edgeworth, Daniel Hupalo, Xijun Zhang, Matthew D. Wilkerson, Clifton L. Dalgard, Francis G. O’Connor, and Patricia A. Deuster. 2024. "Genome-Wide Analysis of Exertional Rhabdomyolysis in Sickle Cell Trait Positive African Americans" Genes 15, no. 4: 408. https://doi.org/10.3390/genes15040408
APA StyleRen, M., Sambuughin, N., Mungunshukh, O., Edgeworth, D. B., Hupalo, D., Zhang, X., Wilkerson, M. D., Dalgard, C. L., O’Connor, F. G., & Deuster, P. A. (2024). Genome-Wide Analysis of Exertional Rhabdomyolysis in Sickle Cell Trait Positive African Americans. Genes, 15(4), 408. https://doi.org/10.3390/genes15040408