Genome-Wide Identification and Expression Analysis of the Starch Synthase Gene Family in Sweet Potato and Two of Its Closely Related Species
Abstract
:1. Introduction
2. Results
2.1. Identification of SS in Sweet Potato and Two Closely Related Species
2.2. Analysis of Phylogenetic Relationships between Sweet Potato and Two Diploid Wild Relatives
2.3. Conserved Motifs and Exon–Intron Structure Analysis of SS in Sweet Potato and Two Closely Related Species
2.4. Analysis of Cis-Acting Elements of SS Promoters in Sweet Potato and Two Closely Related Species
2.5. Expression Analysis of SS Genes in Sweet Potato and Two Closely Related Species
2.5.1. Expression Analysis in Different Tissues
2.5.2. Expression Analysis under Potassium Deficiency in Sweet Potato
2.5.3. Expression Analysis under Hormone Stress
2.5.4. Expression Analysis under Cold Stress
2.5.5. Expression Analysis under Heat Stress
2.5.6. Expression Analysis under Salt and Drought Stresses
2.6. Real-Time PCR Analysis of SS Genes in Sweet Potato
2.7. Sweet Potato IbSSs Protein Interactions
3. Discussion
3.1. Evolution of SS in Sweet Potato and Two Closely Related Species
3.2. Distinct Roles of SS Genes in Biological Processes
3.3. Involvement of SS in Hormonal Responses in Sweet Potato and Two Closely Related Species
4. Materials and Methods
4.1. Identification of SS Genes Members in Sweet Potato
4.2. Phylogenetic Analysis of Sweet Potato SS Genes
4.3. Conserved Motifs and Exon–Intron Structure Analysis of Sweet Potato SS
4.4. Analysis of the Promoter Cis-Acting Element of the Sweet Potato SS Genes
4.5. Analysis of SS Genes Expression in Sweet Potato
4.6. qRT-PCR Detection of SS Genes in Sweet Potato
4.7. Protein–Protein Interaction Analysis of SS Protein in Sweet Potato
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Ding, J.; Feng, X.; Zhong, X.; Lan, J.; Tang, H.; Harwood, W.; Li, Z.; Guzmán, C.; Xu, Q.; et al. Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydr. Polym. 2022, 285, 119238. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tan, H.; Zhang, C.; Li, Q.; Liu, Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Höchstötter, A.; Jekle, M.; Arendt, E.; Becker, T. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocoll. 2013, 32, 52–63. [Google Scholar] [CrossRef]
- Gong, D.; Xu, X.; Wu, L.; Dai, G.; Zheng, W.; Xu, Z. Effect of biochar on rice starch properties and starch-related gene expression and enzyme activities. Sci. Rep. 2020, 10, 16917. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Wang, S.Y.; Gao, H.Y.; Nguyen, K.M.; Nguyen, C.H.; Shih, M.C.; Lin, K.H. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem. 2016, 199, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, J.; Hong, Y.; Liu, G.; Zheng, J.; Gu, Z.; Zhang, P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydr. Polym. 2015, 122, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jang, S.; Lar, S.M.; Lee, A.R.; Cao, F.Y.; Seo, J.; Kwon, S.W. Genome-Wide Identification and Genetic Variations of the Starch Synthase Gene Family in Rice. Plants 2021, 10, 1154. [Google Scholar] [CrossRef]
- Mishra, B.P.; Kumar, R.; Mohan, A.; Gill, K.S. Conservation and divergence of Starch Synthase III genes of monocots and dicots. PLoS ONE 2017, 12, e189303. [Google Scholar] [CrossRef]
- Cao, H.; James, M.G.; Myers, A.M. Purification and Characterization of Soluble Starch Synthases from Maize Endosperm. Arch. Biochem. Biophys. 2000, 373, 135–146. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Zhang, C.; Jiang, L.; Jiang, M.; Zhong, M.; Fan, X.; Gu, M.; Liu, Q. Rice Soluble Starch Synthase I: Allelic Variation, Expression, Function, and Interaction With Waxy. Front. Plant Sci. 2018, 9, 1591. [Google Scholar] [CrossRef]
- Nazarian-Firouzabadi, F.; Visser, R.G.F. Potato starch synthases: Functions and relationships. Biochem. Biophys. Rep. 2017, 10, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Barchiesi, J.; Hedin, N.; Iglesias, A.A.; Gomez-Casati, D.F.; Ballicora, M.A.; Busi, M. Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Biochimie 2017, 133, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Schwarte, S.; Brust, H.; Steup, M.; Tiedemann, R. Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana. BMC Res. Notes 2013, 6, 84. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Yuan, Y.; Shen, Q.; Jiang, Q.; Hua, X.; Zhang, Q.; Zhang, M.; Ming, R.; Zhang, J. Evolution and Expression Analysis of Starch Synthase Gene Families in Saccharum spontaneum. Trop. Plant Biol. 2019, 12, 158–173. [Google Scholar] [CrossRef]
- Kitahara, K.; Hamasuna, K.; Nozuma, K.; Otani, M.; Hamada, T.; Shimada, T.; Fujita, K.; Suganuma, T. Physicochemical properties of amylose-free and high-amylose starches from transgenic sweet potatoes modified by RNA interference. Carbohydr. Polym. 2007, 69, 233–240. [Google Scholar] [CrossRef]
- Otani, M.; Hamada, T.; Katayama, K.; Kitahara, K.; Kim, S.H.; Takahata, Y.; Suganuma, T.; Shimada, T. Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants. Plant Cell Rep. 2007, 26, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Crofts, N.; Iizuka, Y.; Abe, N.; Miura, S.; Kikuchi, K.; Matsushima, R.; Fujita, N. Rice Mutants Lacking Starch Synthase I or Branching Enzyme IIb Activity Altered Starch Biosynthetic Protein Complexes. Front. Plant Sci. 2018, 9, 1817. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, Y.; Li, X.; Yan, Z.; Xie, Y.; Xiong, H.; Zhao, L.; Gu, J.; Zhao, S.; Liu, L. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genom. 2017, 18, 358. [Google Scholar] [CrossRef]
- Malinova, I.; Alseekh, S.; Feil, R.; Fernie, A.R.; Baumann, O.; Schöttler, M.A.; Lunn, J.E.; Fettke, J. Starch Synthase 4 and Plastidal Phosphorylase Differentially Affect Starch Granule Number and Morphology. Plant Physiol. 2017, 174, 73–85. [Google Scholar] [CrossRef]
- Crumpton Taylor, M.; Pike, M.; Lu, K.J.; Hylton, C.M.; Feil, R.; Eicke, S.; Lunn, J.E.; Zeeman, S.C.; Smith, A.M. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytol. 2013, 200, 1064–1075. [Google Scholar] [CrossRef]
- Roldán, I.; Wattebled, F.; Mercedes Lucas, M.; Delvalle, D.; Planchot, V.; Jimenez, S.; Perez, R.; Ball, S.; d’Hulst, C.; Merida, A. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. Cell Mol. Biol. 2007, 49, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, G.; Wei, B.; Wang, Y.; Zhang, Z.; Hu, H.; Liu, Y.; Yu, G.; Zhang, H.; Huang, Y. Identification and Phylogenetic Analysis of a Novel Starch Synthase in Maize. Front. Plant Sci. 2015, 6, 1013. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, P.; Moreau, H.; Worden, A.Z.; Dauvillée, D.; Ball, S.G. Early gene duplication within Chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 2008, 178, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Thi, K.M.; Lin, L.; Xie, X.; Khine, E.E.; Nyein, E.E.; Lin, M.H.W.; New, W.W.; Aye, S.S.; Wu, W. Genome-wide association study of cooking-caused grain expansion in rice (Oryza sativa L.). Front. Plant Sci. 2023, 14, 1250854. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.G.; Morell, M.K. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 2003, 54, 207–233. [Google Scholar] [CrossRef]
- Imparl-Radosevich, J.M.; Keeling, P.L.; Guan, H. Essential arginine residues in maize starch synthase IIa are involved in both ADP-glucose and primer binding. FEBS Lett. 1999, 457, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Helle, S.; Bray, F.; Verbeke, J.; Courseaux, A.; Rolando, C.; Szydlowski, N. Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors. Front. Plant Sci. 2018, 9, 746. [Google Scholar] [CrossRef]
- Wu, S.; Lau, K.H.; Cao, Q.; Hamilton, J.P.; Sun, H.; Zhou, C.; Eserman, L.; Gemenet, D.C.; Olukolu, B.A.; Wang, H.; et al. Genome sequences of two diploid wild relatives of cultivated sweet potato reveal targets for genetic improvement. Nat. Commun. 2018, 9, 4580. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, H.; Zhai, H.; Liu, Q.; He, S. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato. Sci. Rep. 2017, 7, 2315. [Google Scholar] [CrossRef]
- Kitahara, K.; Takahata, Y.; Otani, M.; Tanaka, M.; Katayama, K.; Yoshinaga, M.; Fujita, K.; Suganuma, T. Starch Properties of Transgenic Sweetpotato Plants Modified by RNA Interference of the Starch Synthase II Gene. J. Appl. Glycosci. 2011, 58, 85–90. [Google Scholar] [CrossRef]
- Sheng, M.; Xia, H.; Ding, H.; Pan, D.; He, J.; Li, Z.; Liu, J. Long-Term Soil Drought Limits Starch Accumulation by Altering Sucrose Transport and Starch Synthesis in Sweet Potato Tuberous Root. Int. J. Mol. Sci. 2023, 24, 3053. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Jiang, H.; Pan, X.; Li, M.; Chen, Y.; Wu, G. The gene encoding starch synthase IIc exists in maize and wheat. Plant Sci. 2009, 176, 51–57. [Google Scholar] [CrossRef]
- Li, Z.; Rahman, S.; Kosar-Hashemi, B.; Mouille, G.; Appels, R.; Morell, M.K. Cloning and characterization of a gene encoding wheat starch synthase I. Theor. Appl. Genet. 1999, 98, 1208–1216. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; Avramova, V.; Baggerman, G.; Van Raemdonck, G.; Valkenborg, D.; Van Ostade, X.; Guisez, Y.; Prinsen, E.; Asard, H.; Van den Ende, W.; et al. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant Cell Environ. 2020, 43, 2254–2271. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, M.; Santelia, D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 2017, 214, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Ortiz, S.M.; De La Paz Arrieta-Montiel, M.; Acosta-Gallegos, J.; Covarrubias, A.A. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 2008, 31, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- González-Cruz, J.; Pastenes, C. Water-stress-induced thermotolerance of photosynthesis in bean (Phaseolus vulgaris L.) plants: The possible involvement of lipid composition and xanthophyll cycle pigments. Environ. Exp. Bot. 2012, 77, 127–140. [Google Scholar] [CrossRef]
- Kanai, M.; Higuchi, K.; Hagihara, T.; Konishi, T.; Ishii, T.; Fujita, N.; Nakamura, Y.; Maeda, Y.; Yoshiba, M.; Tadano, T. Common reed produces starch granules at the shoot base in response to salt stress. New Phytol. 2007, 176, 572–580. [Google Scholar] [CrossRef]
- Tan, C.; Feng, C.; Guo, W.; Zhu, X.K.; Li, C.Y.; Peng, Y.X. Difference in Expression of Starch Synthase Gene and Starch Synthesis in the Grains of Different Wheat Cultivars. Mai Lei Zuo Wu Xue Bao 2011, 31, 1063–1070. [Google Scholar]
- Genschel, U.; Abel, G.; Lörz, H.; Lütticke, S. The sugary-type isoamylase in wheat: Tissue distribution and subcellular localisation. Planta 2002, 214, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ming, D.; Ma, W.; Xu, F. Changes in starch accumulation and activity of enzymes associated with starch synthesis under different N supplying date. Agric. Sci. China 2004, 3, 738–745. [Google Scholar]
- Bing, Y.I.; Zhou, Y.-F.; Gao, M.-Y.; Zhang, Z.; Yi, H.; Yang, G.-D.; Wenjuan, X.; Huang, R.-D. Effect of Drought Stress During Flowering Stage on Starch Accumulation and Starch Synthesis Enzymes in Sorghum Grains. J. Integr. Agric. 2014, 13, 2399–2406. [Google Scholar]
- Chen, Y.; Jiang, Y.; Chen, Y.; Feng, W.; Liu, G.; Yu, C.; Lian, B.; Zhong, F.; Zhang, J. Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis. PLoS ONE 2020, 15, e236129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hua, Y.; Wang, S.; Liu, X.; Zou, L.; Chen, C.; Zhao, H.; Yan, Y. Analysis of the Prunellae Spica transcriptome under salt stress. Plant Physiol. Biochem. 2020, 156, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, Z.; Yan, G.; Wang, F.; Zhao, L.; Liu, N.; Abudurezike, A.; Li, Y.; Wang, W.; Shi, S. Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci. Rep. 2020, 10, 20669. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Meng, Y.; Bai, Y.; Yu, H.; Qian, Y.; Zhang, D.; Zhou, Y. Starch and Sucrose Metabolism and Plant Hormone Signaling Pathways Play Crucial Roles in Aquilegia Salt Stress Adaption. Int. J. Mol. Sci. 2023, 24, 3948. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef]
- Walker, J.M.J.; Walker, J.M. Protein Identification and Analysis Tools on the ExPASy Server; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Shao, Z.; He, M.; Zeng, Z.; Chen, Y.; Hanna, A.-D.; Zhu, H. Genome-Wide Identification and Expression Analysis of the MADS-Box Gene Family in Sweet Potato [Ipomoea batatas (L.) Lam]. Front. Genet. 2021, 12, 750137. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, T.; Yu, J.; Hong, H.; Liu, S.; Guo, F.; Ma, H.; Zhang, J.; Zhu, M.; Meng, X. Genome-wide survey and expression analysis of Dof transcription factor family in sweetpotato shed light on their promising functions in stress tolerance. Front. Plant Sci. 2023, 14, 1140727. [Google Scholar] [CrossRef]
Accession Number | Gene Name | Chromosome | Location | Mw(kDa) | Pl | Hydropathicity | Amion Acid | Instability | |
---|---|---|---|---|---|---|---|---|---|
Start | End | ||||||||
AAC19119.1 | IbSS1 | LG5 | 5,188,689 | 5,194,313 | 85.28 | 5.31 | −0.388 | 770 | 44.68 |
OR861658 | IbSS2 | LG5 | 29,389,428 | 29,394,162 | 71.72 | 5.17 | −0.147 | 651 | 33.61 |
OR861659 | IbSS3 | LG7 | 28,141,052 | 28,152,901 | 107.98 | 6.66 | −0.109 | 953 | 41.17 |
OR861660 | IbSS4 | LG7 | 34,676,444 | 34,680,867 | 89.60 | 5.67 | −0.367 | 811 | 40.82 |
OR861661 | IbSS5 | LG9 | 25,462,397 | 25,471,028 | 116.65 | 5.18 | −0.023 | 1037 | 45.73 |
BAI83439.1 | IbSS6 | LG10 | 7,535,337 | 7,539,015 | 70.69 | 7.15 | −0.023 | 641 | 30.32 |
OR861662 | IbSS7 | LG11 | 7,369,578 | 7,381,372 | 70.83 | 5.88 | −0.112 | 633 | 35.68 |
OR861663 | IbSS8 | LG11 | 37,816,551 | 37,826,370 | 157.43 | 5.11 | −0.561 | 1402 | 42.03 |
OR861664 | ItfSS1 | LG1 | 2,007,039 | 2,016,615 | 156.75 | 4.96 | −0.571 | 1391 | 41.2 |
OR861665 | ItfSS2 | LG1 | 27,774,044 | 27,786,340 | 70.40 | 6.06 | −0.143 | 627 | 35.3 |
OR861666 | ItfSS3 | LG3 | 728,515 | 733,683 | 89.53 | 5.67 | −0.374 | 811 | 40.48 |
OR861667 | ItfSS4 | LG3 | 5,894,206 | 5,901,262 | 68.06 | 6.56 | −0.197 | 604 | 39.81 |
OR861668 | ItfSS5 | LG8 | 5,505,555 | 5,508,685 | 59.38 | 6.34 | −0.035 | 538 | 25.11 |
OR861669 | ItfSS6 | LG10 | 3,353,952 | 3,362,791 | 124.61 | 5.17 | −0.467 | 1104 | 46.85 |
GLL26599.1 | ItfSS7 | LG12 | 4,022,872 | 4,028,737 | 89.40 | 5.51 | −0.377 | 811 | 42.61 |
OR861670 | ItfSS8 | LG12 | 4,028,737 | 23,299,232 | 72.82 | 5.28 | −0.248 | 657 | 31.85 |
XP_031110077.1 | ItbSS1 | LG1 | 2,448,185 | 2,458,262 | 152.42 | 5.13 | −0.579 | 1349 | 41.74 |
OR861671 | ItbSS2 | LG1 | 33,298,263 | 33,310,246 | 70.57 | 6.16 | −0.129 | 627 | 35.56 |
XP_031107980.1 | ItbSS3 | LG3 | 833,120 | 838,217 | 89.69 | 5.64 | −0.377 | 813 | 42.68 |
XP_031109143.1 | ItbSS4 | LG3 | 6,699,089 | 6,708,023 | 77.55 | 6.06 | −0.233 | 685 | 42.36 |
XP_031124794.1 | ItbSS5 | LG8 | 6,898,989 | 6,903,301 | 66.70 | 8.31 | −0.075 | 608 | 26.11 |
XP_031130996.1 | ItbSS6 | LG10 | 4093,699 | 4,102,135 | 124.59 | 5.17 | −0.465 | 1104 | 46.85 |
XP_031094614.1 | ItbSS7 | LG12 | 5,048,708 | 5,054,476 | 88.81 | 5.50 | −0.335 | 806 | 41.47 |
XP_031096470.1 | ItbSS8 | LG12 | 27,425,473 | 27,429,928 | 73.12 | 5.39 | −0.239 | 660 | 32.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, Z.; Lin, X.; Hu, Z.; Jiang, M.; Tang, B.; Zhao, Z.; Xing, M.; Yang, X.; Zhu, H. Genome-Wide Identification and Expression Analysis of the Starch Synthase Gene Family in Sweet Potato and Two of Its Closely Related Species. Genes 2024, 15, 400. https://doi.org/10.3390/genes15040400
Sun Z, Li Z, Lin X, Hu Z, Jiang M, Tang B, Zhao Z, Xing M, Yang X, Zhu H. Genome-Wide Identification and Expression Analysis of the Starch Synthase Gene Family in Sweet Potato and Two of Its Closely Related Species. Genes. 2024; 15(4):400. https://doi.org/10.3390/genes15040400
Chicago/Turabian StyleSun, Zongjian, Zhenqin Li, Xiongjian Lin, Zhifang Hu, Mengzhen Jiang, Binquan Tang, Zhipeng Zhao, Meng Xing, Xiaohui Yang, and Hongbo Zhu. 2024. "Genome-Wide Identification and Expression Analysis of the Starch Synthase Gene Family in Sweet Potato and Two of Its Closely Related Species" Genes 15, no. 4: 400. https://doi.org/10.3390/genes15040400
APA StyleSun, Z., Li, Z., Lin, X., Hu, Z., Jiang, M., Tang, B., Zhao, Z., Xing, M., Yang, X., & Zhu, H. (2024). Genome-Wide Identification and Expression Analysis of the Starch Synthase Gene Family in Sweet Potato and Two of Its Closely Related Species. Genes, 15(4), 400. https://doi.org/10.3390/genes15040400