Autotetraploid Induction of Three A-Genome Wild Peanut Species, Arachis cardenasii, A. correntina, and A. diogoi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Seedling Solid Agar Treatment
2.3. Pregerminated Seed Submersion Treatment
2.4. Flow Cytometry
2.5. Phenotypes of Diploid and Tetraploid Plants
3. Results
3.1. Seedling Solid Agar Treatment
3.2. Seed Submersion Treatment
3.3. Phenotypes of Diploid and Tetraploid Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peanuts. Available online: https://www.agmrc.org/commodities-products/nuts/peanut-profile#:~:text=Peanuts%20grown%20in%20the%20U.S.,oil%2C%20confections%20and%20direct%20consumption.%3E (accessed on 3 January 2024).
- Oilseeds: World Markets and Trade. Available online: https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade (accessed on 3 January 2024).
- Cason, J.M.; Simpson, C.E.; Burow, M.D.; Tallury, S.; Pham, H.; Ravelombola, S.W. Use of wild and exotic germplasm for resistance in peanut. J. Plant Regist. 2023, 17, 1–25. [Google Scholar] [CrossRef]
- Stalker, H.T. Utilizing Wild Species for Peanut Improvement. Crop Sci. 2017, 57, 1102–1120. [Google Scholar] [CrossRef]
- Fávero, A.P.; Simpson, C.E.; Valls, J.F.M.; Vello, N.A. Study of the Evolution of Cultivated Peanut through Crossability Studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Sci. 2006, 46, 1546–1552. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.; Ren, L.; Farmer, A.D.; Pandey, M.K. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [Google Scholar] [CrossRef]
- Simpson, C.E. Pathways for Introgression of Pest Resistance into Arachis hypogaea L. Peanut Sci. 1991, 18, 22–26. [Google Scholar] [CrossRef]
- Eng, W.; Ho, W. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Manzoor, A.; Ahmad, T.; Bashir, M.A.; Hafiz, I.A.; Silvestri, C. Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants. Plants 2019, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, L.E.; Brand, M.H.; Lubell-Brand, J.D. Production of tetraploid and triploid hemp. HortScience 2020, 55, 1703–1707. [Google Scholar] [CrossRef]
- Contreras, R.N.; Ruter, J.M.; Hanna, W.W. An oryzalin-induced autoallooctoploid of Hibiscus acetosella ‘Panama Red’. J. Am. Soc. Hort. Sci. 2009, 134, 553–559. [Google Scholar] [CrossRef]
- McLeod, A.; Contreras, R.; Halstead, M.; Vining, K. In vivo and in vitro chromosome doubling of ‘I3′ hemp. HortScience 2023, 58, 1018–1022. [Google Scholar] [CrossRef]
- Pan, I.; Lu, Y.; Wen, P.; Chen, Y. Using colchicine to create poinsettia (Euphorbia pulcherrima × Euphorbia cornastra) mutants with various morphological traits. HortScience 2019, 54, 1667–1672. [Google Scholar] [CrossRef]
- Crawford, S.; Rojas, B.M.; Crawford, E.; Otten, M.; Schoenenberger, T.A.; Garfinkel, A.R.; Chen, H. Characteristics of the Diploid, Triploid, and Tetraploid Versions of a Cannabigerol-Dominant F1 Hybrid Industrial Hemp Cultivar, Cannabis sativa ‘Stem Cell CBG’. Genes 2021, 12, 923. [Google Scholar] [CrossRef]
- Li, Z.; Ruter, J.M. Development and Evaluation of diploid and polyploid Hibiscus moscheutos. HortScience 2017, 52, 676–681. [Google Scholar] [CrossRef]
- Touchell, D.H.; Palmer, I.E.; Ranney, T.G. In vitro ploidy manipulation for crop improvement. Front. Plant Sci. 2020, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.E.; Starr, J.L. Registration of ‘COAN’ Peanut. Crop Sci. 2001, 41, 918. [Google Scholar] [CrossRef]
- Baring, M.R.; Cason, J.M.; Burow, M.D.; Simpson, C.E.; Chagoya, J.; Bennett, B.D. Registration of ‘NemaTAM II’ peanut. J. Plant Regist. 2023, 17, 291–298. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Timper, P.; Dong, W.; Kvien, C.K.; Culbreath, A.K. Development of near-isogenic peanut lines with and without resistance to the peanut root-knot nematode. Crop Sci. 2008, 48, 194–198. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Ozias-Akins, P.; Chu, Y.; Culbreath, A.K.; Kvien, C.K.; Brenneman, T.B. Registration of ‘TifNV-high O/L’ peanut. J. Plant Regist. 2017, 11, 228–230. [Google Scholar] [CrossRef]
- Stalker, H.T.; Beute, M.K. Registration of four leafspot-resistant peanut germplasm lines. Crop Sci. 1993, 33, 1117. [Google Scholar] [CrossRef]
- Stalker, H.T.; Beute, M.K.; Shew, B.B.; Isleib, T.G. Registration of five leaf spot-resistant peanut germplasm lines.(Registrations of Germplasm). Crop Sci. 2002, 42, 314–317. [Google Scholar] [PubMed]
- Tallury, S.P.; Isleib, T.G.; Copeland, S.C.; Rosas-Anderson, P.; Balota, M.; Singh, D.; Stalker, H.T. Registration of two multiple disease-resistant peanut germplasm lines derived from Arachis cardenasii Krapov. & WC Gregory, GKP 10017. J. Plant Regist. 2014, 8, 86–89. [Google Scholar]
- Newman, C.S.; Andres, R.J.; Youngblood, R.C.; Campbell, J.D.; Simpson, S.A.; Cannon, S.B.; Scheffler, B.E.; Oakley, A.T.; Hulse-Kemp, A.M.; Dunne, J.C. Initiation of genomics-assisted breeding in Virginia-type peanuts through the generation of a de novo reference genome and informative markers. Front. Plant Sci. 2023, 13, 1073542. [Google Scholar] [CrossRef] [PubMed]
- Bertioli, D.J.; Clevenger, J.; Godoy, I.J.; Stalker, H.T.; Wood, S.; Santos, J.F.; Ballén-Taborda, C.; Abernathy, B.; Azevedo, V.; Campbell, J. Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange. Proc. Natl. Acad. Sci. USA 2021, 118, e2104899118. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Stalker, H.T.; Marasigan, K.; Levinson, C.M.; Gao, D.; Bertioli, D.J.; Leal-Bertioli, S.; Holbrook, C.C.; Jackson, S.A.; Ozias-Akins, P. Registration of three peanut allotetraploid interspecific hybrids resistant to late leaf spot disease and tomato spotted wilt. J. Plant Regist. 2021, 15, 562–572. [Google Scholar] [CrossRef]
- Hancock, W.G.; Tallury, S.P.; Isleib, T.G.; Chu, Y.; Ozias-Akins, P.; Stalker, H.T. Introgression analysis and morphological characterization of an Arachis hypogaea × A. diogoi interspecific hybrid derived population. Crop Sci. 2019, 59, 640–649. [Google Scholar] [CrossRef]
- Hancock, W.G. Improving Resistance to Multiple Diseases in Peanut Using Traditional and Molecular Breeding Methods. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2018. [Google Scholar]
- de Paula, A.F.; Dinato, N.B.; Vigna, B.B.Z.; Fávero, A.P. Recombinants from the crosses between amphidiploid and cultivated peanut (Arachis hypogaea) for pest-resistance breeding programs. PLoS ONE 2017, 12, e0175940. [Google Scholar] [CrossRef]
- Chen, H.; Contreras, R.N. Near-Hexaploid and Near-Tetraploid Aneuploid Progenies Derived from Backcrossing Tetraploid Parents Hibiscus syriacus × (H. syriacus × H. paramutabilis). Genes 2022, 13, 1022. [Google Scholar] [CrossRef]
- Anderson, W.F.; Kochert, G.; Holbrook, C.C.; Stalker, H.T. Phenotypic and molecular evaluation of interspecific peanut (Arachis) lines. Peanut Sci. 2004, 31, 65–70. [Google Scholar] [CrossRef]
- Chen, Y.; Pandey, S.; Catto, M.; Leal-Bertioli, S.; Abney, M.R.; Bag, S.; Hopkins, M.; Culbreath, A.; Srinivasan, R. Evaluation of wild peanut species and their allotetraploids for resistance against thrips and thrips-transmitted tomato spotted wilt orthotospovirus (TSWV). Pathogens 2023, 12, 1102. [Google Scholar] [CrossRef]
- Leal-Bertioli, S.C.; Santos, S.P.; Dantas, K.M.; Inglis, P.W.; Nielen, S.; Araujo, A.C.; Silva, J.P.; Cavalcante, U.; Guimaraes, P.M.; Brasileiro, A.C.M. Arachis batizocoi: A study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids. Ann. Bot. 2015, 115, 237–249. [Google Scholar] [CrossRef] [PubMed]
Species | Gel Treatment (mM) | # of Sown + | # of Treated ** | # of Survived * | Diploid | Mixoploid | Tetraploid |
---|---|---|---|---|---|---|---|
A. cardenasii | Colchicine 10 | 10 | 2 | 1 | 0 | 0 | 1 *** |
Colchicine 30 | 10 | 3 | 0 | - | - | - | |
Oryzalin 0.1 | 10 | 4 | 4 | 2 | 2 | 0 | |
Oryzalin 0.3 | 10 | 1 | 1 | 1 | 0 | 0 | |
Trifluralin 0.1 | 10 | 5 | 5 | 5 | 0 | 0 | |
Trifluralin 0.3 | 10 | 1 | 0 | 0 | 0 | 0 | |
A. correntina | Colchicine 10 | 10 | 3 | 1 | 0 | 1 | 0 |
Colchicine 30 | 10 | 4 | 0 | - | - | - | |
Oryzalin 0.1 | 10 | 4 | 4 | 3 | 0 | 1 *** | |
Oryzalin 0.3 | 10 | 5 | 2 | 2 | 0 | 0 | |
Trifluralin 0.1 | 10 | 6 | 6 | 6 | 0 | 0 | |
Trifluralin 0.3 | 10 | 7 | 7 | 6 | 1 | 0 | |
A. diogoi | Colchicine 10 | 10 | 2 | 0 | - | - | - |
Colchicine 30 | 10 | 1 | 0 | - | - | - | |
Oryzalin 0.1 | 10 | 2 | 2 | 2 | 0 | 0 | |
Oryzalin 0.3 | 10 | 3 | 2 | 1 | 1 | 0 | |
Trifluralin 0.1 | 10 | 6 | 5 | 5 | 0 | 0 | |
Trifluralin 0.3 | 10 | 6 | 5 | 3 | 2 | 0 |
Spp. | # of Sown + | # Treated | # Survived | Diploid | Mixoploid | Tetraploid |
---|---|---|---|---|---|---|
A. cardenasii | 15 | 12 | 1 (8.3%) | 0 | 1 | 0 |
A. correntina | 15 | 14 | 0 (0%) | - | - | - |
A. diogoi | 15 | 15 | 1 (6.7%) | 0 | 0 | 1 * |
Species | Oryzalin (mM) | # Treated + | # Survived | Diploid | Mixoploid | Tetraploid |
---|---|---|---|---|---|---|
A. cardenasii | 0.1 | 19 | 18 (95%) | 13 | 4 | 1 * |
0.3 | 20 | 19 (95%) | 17 | 2 | 0 | |
0.5 | 20 | 18 (90%) | 14 | 4 | 0 | |
A. correntina | 0.1 | 12 | 11 (92%) | 10 | 1 | 0 |
0.3 | 12 | 10 (83%) | 9 | 1 | 0 | |
0.5 | 12 | 12 (100%) | 11 | 1 | 0 | |
A. diogoi | 0.1 | 20 | 20 (100%) | 15 | 5 | 0 |
0.3 | 20 | 18 (90%) | 17 | 1 | 0 | |
0.5 | 20 | 19 (95%) | 17 | 1 | 1 * |
Species | Mitotic Inhibitor * | Treated Seeds + | Survived # | Diploids | Mixoploids | Tetraploids |
---|---|---|---|---|---|---|
A. cardenasii | Colchicine 6 h | 15 | 5 (33%) a | 2 | 1 | 2 |
Oryzalin 6 h | 15 | 5 (33%) a | 4 | 1 | 0 | |
Oryzalin 12 h | 15 | 3 (20%) a | 0 | 3 | 0 | |
Oryzalin 24 h | 15 | 0 (0%) a | - | - | - | |
Water 24 h | 10 | 0 (0%) a | - | - | - | |
A. correntina | Colchicine 6 h | 18 | 4 (22%) a | 3 | 0 | 1 |
Oryzalin 6 h | 18 | 3 (17%) a | 3 | 0 | 0 | |
Oryzalin 12 h | 18 | 4 (22%) a | 3 | 1 | 0 | |
Oryzalin 24 h | 18 | 0 (0%) a | - | - | - | |
Water 24 h | 14 | 0 (0%) a | - | - | - | |
A. diogoi | Colchicine 6 h | 16 | 4 (25%) a | 3 | 0 | 1 ** |
Oryzalin 6 h | 16 | 3 (19%) a | 1 | 0 | 0 | |
Oryzalin 12 h | 16 | 0 (0%) a | - | - | - | |
Oryzalin 24 h | 16 | 0 (0%) a | - | - | - | |
Water 24 h | 13 | 0 (0%) a | - | - | - |
Species | Ploidy | L * Length | p-Value | L * Width | p-Value | F * Width | p-Value |
---|---|---|---|---|---|---|---|
A. cardenasii | 2× | 2.38 | 2.5 × 10−10 | 1.59 | 1.9 × 10−14 | 1.10 | 2.49 × 10−3 |
4× | 2.93 | 2.29 | 1.66 | ||||
A. correntina | 2× | 1.82 | 1.6 × 10−27 | 0.83 | 8.5 × 10−25 | 1.46 | 9.03 × 10−3 |
4× | 3.67 | 1.48 | 2.38 | ||||
A. diogoi | 2× | 2.33 | 2.5 × 10−9 | 1.10 | 5.4 × 10−15 | 1.48 | 9.01 × 10−3 |
4× | 3.83 | 1.79 | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suppa, R.W.; Andres, R.J.; Dunne, J.C.; Arram, R.F.; Morgan, T.B.; Chen, H. Autotetraploid Induction of Three A-Genome Wild Peanut Species, Arachis cardenasii, A. correntina, and A. diogoi. Genes 2024, 15, 303. https://doi.org/10.3390/genes15030303
Suppa RW, Andres RJ, Dunne JC, Arram RF, Morgan TB, Chen H. Autotetraploid Induction of Three A-Genome Wild Peanut Species, Arachis cardenasii, A. correntina, and A. diogoi. Genes. 2024; 15(3):303. https://doi.org/10.3390/genes15030303
Chicago/Turabian StyleSuppa, Robert W., Ryan J. Andres, Jeffrey C. Dunne, Ramsey F. Arram, Thomas B. Morgan, and Hsuan Chen. 2024. "Autotetraploid Induction of Three A-Genome Wild Peanut Species, Arachis cardenasii, A. correntina, and A. diogoi" Genes 15, no. 3: 303. https://doi.org/10.3390/genes15030303
APA StyleSuppa, R. W., Andres, R. J., Dunne, J. C., Arram, R. F., Morgan, T. B., & Chen, H. (2024). Autotetraploid Induction of Three A-Genome Wild Peanut Species, Arachis cardenasii, A. correntina, and A. diogoi. Genes, 15(3), 303. https://doi.org/10.3390/genes15030303