Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in HCCS-Related Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- al-Gazali, L.I.; Mueller, R.F.; Caine, A.; Antoniou, A.; McCartney, A.; Fitchett, M.; Dennis, N.R. Two 46,XX,t(X;Y) females with linear skin defects and congenital microphthalmia: A new syndrome at Xp22.3. J. Med. Genet. 1990, 27, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Temple, I.K.; Hurst, J.A.; Hing, S.; Butler, L.; Baraitser, M. De novo deletion of Xp22.2-pter in a female with linear skin lesions of the face and neck, microphthalmia, and anterior chamber eye anomalies. J. Med. Genet. 1990, 27, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Wimplinger, I.; Morleo, M.; Rosenberger, G.; Iaconis, D.; Orth, U.; Meinecke, P.; Lerer, I.; Ballabio, A.; Gal, A.; Franco, B.; et al. Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome. Am. J. Hum. Genet. 2006, 79, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.M.; Ruiz de Luzuriaga, A.M.; Waggoner, D.; Greenwald, M.; Stein, S.L. Microphthalmia with linear skin defects: A case report and review. Pediatr. Dermatol. 2008, 25, 548–552. [Google Scholar] [CrossRef]
- Indrieri, A.; Franco, B. Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): An Unconventional Mitochondrial Disorder. Genes 2021, 12, 263. [Google Scholar] [CrossRef]
- Babbitt, S.E.; San Francisco, B.; Bretsnyder, E.C.; Kranz, R.G. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme. Biochemistry 2014, 53, 5261–5271. [Google Scholar] [CrossRef]
- San Francisco, B.; Bretsnyder, E.C.; Kranz, R.G. Human mitochondrial holocytochrome c synthase’s heme binding, maturation determinants, and complex formation with cytochrome c. Proc. Natl. Acad. Sci. USA 2013, 110, E788–E797. [Google Scholar] [CrossRef]
- Banganho, D.; Oliveira, I.; Machado, C.; Povoas, M. Microphthalmia with linear skin defects syndrome (MIDAS). BMJ Case Rep. 2019, 12, e227791. [Google Scholar] [CrossRef]
- Chateau, A.; Kutsche, K.; Fuchs, S.; Harms, F.; Kruse, C.H.; Mosam, A. Microphthalmia with linear skin defects syndrome associated with hypopigmented mosaic lesions and ptosis: Two siblings from Africa. Int. J. Dermatol. 2020, 59, 864–866. [Google Scholar] [CrossRef]
- Franco, E.; Scanga, H.L.; Nischal, K.K. Variable phenotype of secondary congenital corneal opacities associated with microphthalmia with linear skin defects syndrome. Am. J. Med. Genet. A 2023, 191, 586–591. [Google Scholar] [CrossRef]
- Reis, L.M.; Amor, D.J.; Haddad, R.A.; Nowak, C.B.; Keppler-Noreuil, K.M.; Chisholm, S.A.; Semina, E.V. Alternative Genetic Diagnoses in Axenfeld-Rieger Syndrome Spectrum. Genes 2023, 14, 1948. [Google Scholar] [CrossRef] [PubMed]
- Zucco, J.; Baldan, F.; Allegri, L.; Bregant, E.; Passon, N.; Franzoni, A.; D’Elia, A.V.; Faletra, F.; Damante, G.; Mio, C. A bird’s eye view on the use of whole exome sequencing in rare congenital ophthalmic diseases. J. Hum. Genet. 2024, 69, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.M.; Campbell, I.M.; Hernandez-Garcia, A.; Lalani, S.R.; Liu, P.; Shaw, C.A.; Rosenfeld, J.A.; Scott, D.A. Clinical exome sequencing data reveal high diagnostic yields for congenital diaphragmatic hernia plus (CDH+) and new phenotypic expansions involving CDH. J. Med. Genet. 2022, 59, 270–278. [Google Scholar] [CrossRef]
- Normand, E.A.; Braxton, A.; Nassef, S.; Ward, P.A.; Vetrini, F.; He, W.; Patel, V.; Qu, C.; Westerfield, L.E.; Stover, S.; et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018, 10, 74. [Google Scholar] [CrossRef]
- Cornthwaite, M.; Turner, K.; Armstrong, L.; Boerkoel, C.F.; Chang, C.; Lehman, A.; Nikkel, S.M.; Patel, M.S.; Van Allen, M.; Langlois, S. Impact of variation in practice in the prenatal reporting of variants of uncertain significance by commercial laboratories: Need for greater adherence to published guidelines. Prenat. Diagn. 2022, 42, 1514–1524. [Google Scholar] [CrossRef]
- Chesneau, B.; Aubert-Mucca, M.; Fremont, F.; Pechmeja, J.; Soler, V.; Isidor, B.; Nizon, M.; Dollfus, H.; Kaplan, J.; Fares-Taie, L.; et al. First evidence of SOX2 mutations in Peters’ anomaly: Lessons from molecular screening of 95 patients. Clin. Genet. 2022, 101, 494–506. [Google Scholar] [CrossRef]
- Weh, E.; Reis, L.M.; Happ, H.C.; Levin, A.V.; Wheeler, P.G.; David, K.L.; Carney, E.; Angle, B.; Hauser, N.; Semina, E.V. Whole exome sequence analysis of Peters anomaly. Hum. Genet. 2014, 133, 1497–1511. [Google Scholar] [CrossRef]
- Wimplinger, I.; Shaw, G.M.; Kutsche, K. HCCS loss-of-function missense mutation in a female with bilateral microphthalmia and sclerocornea: A novel gene for severe ocular malformations? Mol. Vis. 2007, 13, 1475–1482. [Google Scholar]
- van Rahden, V.A.; Rau, I.; Fuchs, S.; Kosyna, F.K.; de Almeida, H.L., Jr.; Fryssira, H.; Isidor, B.; Jauch, A.; Joubert, M.; Lachmeijer, A.M.; et al. Clinical spectrum of females with HCCS mutation: From no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J. Rare Dis. 2014, 9, 53. [Google Scholar] [CrossRef]
- Pezzoli, L.; Pezzani, L.; Bonanomi, E.; Marrone, C.; Scatigno, A.; Cereda, A.; Bedeschi, M.F.; Selicorni, A.; Gasperini, S.; Bini, P.; et al. Not Only Diagnostic Yield: Whole-Exome Sequencing in Infantile Cardiomyopathies Impacts on Clinical and Family Management. J. Cardiovasc. Dev. Dis. 2021, 9, 2. [Google Scholar] [CrossRef]
- Piekutowska-Abramczuk, D.; Paszkowska, A.; Ciara, E.; Fraczak, K.; Mirecka-Rola, A.; Wicher, D.; Pollak, A.; Rutkowska, K.; Sarnecki, J.; Ziolkowska, L. Genetic Profile of Left Ventricular Noncompaction Cardiomyopathy in Children-A Single Reference Center Experience. Genes 2022, 13, 1334. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.M.; Atilla, H.; Kannu, P.; Schneider, A.; Thompson, S.; Bardakjian, T.; Semina, E.V. Distinct Roles of Histone Lysine Demethylases and Methyltransferases in Developmental Eye Disease. Genes 2023, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Iacocca, M.A.; Wang, J.; Dron, J.S.; Robinson, J.F.; McIntyre, A.D.; Cao, H.; Hegele, R.A. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia. J. Lipid Res. 2017, 58, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alfoldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 2024, 625, 92–100. [Google Scholar] [CrossRef]
- Allen, R.C.; Zoghbi, H.Y.; Moseley, A.B.; Rosenblatt, H.M.; Belmont, J.W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am. J. Hum. Genet. 1992, 51, 1229–1239. [Google Scholar]
- Musalkova, D.; Minks, J.; Storkanova, G.; Dvorakova, L.; Hrebicek, M. Identification of novel informative loci for DNA-based X-inactivation analysis. Blood Cells Mol. Dis. 2015, 54, 210–216. [Google Scholar] [CrossRef]
- Rehm, H.L.; Berg, J.S.; Brooks, L.D.; Bustamante, C.D.; Evans, J.P.; Landrum, M.J.; Ledbetter, D.H.; Maglott, D.R.; Martin, C.L.; Nussbaum, R.L.; et al. ClinGen—The Clinical Genome Resource. N. Engl. J. Med. 2015, 372, 2235–2242. [Google Scholar] [CrossRef]
- Daruich, A.; Duncan, M.; Robert, M.P.; Lagali, N.; Semina, E.V.; Aberdam, D.; Ferrari, S.; Romano, V.; des Roziers, C.B.; Benkortebi, R.; et al. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog. Retin. Eye Res. 2023, 95, 101133. [Google Scholar] [CrossRef]
- Reis, L.M.; Seese, S.; Costakos, D.; Semina, E.V. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog. Retin. Eye Res. 2024, 102, 101288. [Google Scholar] [CrossRef] [PubMed]
- Semina, E.V.; Murray, J.C.; Reiter, R.; Hrstka, R.F.; Graw, J. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet. 2000, 9, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.; Estrella, N.M.; Milkovich, R.N.; Kim, J.W.; Simmer, J.P.; Hu, J.C. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur. J. Oral. Sci. 2011, 119 (Suppl. 1), 311–323. [Google Scholar] [CrossRef] [PubMed]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef] [PubMed]
Ind | Genomic Position a | Variant b | ACMG c | GnomAD (v4.1.0) | XCI Ratio | Age, Gender | Skin | Eye | CNS | ID | SS | Heart |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | X:11136623 | c.404G>A p.(Trp135*) | LP (PVS1, PM2_supp) | NP | 100:1 | 13 y, F | NR | + | - | - | NR | - |
2 | X:11139108 | c.603G>A p.(Trp201*) | LP (PVS1, PM2_supp) | NP | 2:98 | 7 y, F | NR | + | NR | NR | NR | NR |
3 | X:11139773 | c.650G>A p.(Arg217His) | LP (PM2_ supp, PM5, PP3_mod, PP4) | 1/1210474 (0 hemi) | 96:4 | 31 y, F | + | + | - | - | + | + |
[17] (#3) | X:11121718 | c.715C>T p.(Gln239*) | LP (PVS1, PM2_supp) | NP | - | 5 m, F | - | + | - | - | - | - |
4A | X:8169987-11664819 | ~3.49 Mb deletion: VCX2, VCX3B, ANOS1, FAM9A, FAM9B, TBL1X, GPR143, SHROOM2, CLDN34, WWC3, CLCN4, MID1, HCCS, ARHGAP6, AMELX | P (2A, 4A) | NP | - | 4 m, F | NR | + | NR | NR | NR | NR |
4B | X:8169987-11664819 | ~3.49 Mb deletion: VCX2, VCX3B, ANOS1, FAM9A, FAM9B, TBL1X, GPR143, SHROOM2, CLDN34, WWC3, CLCN4, MID1, HCCS, ARHGAP6, AMELX | P (2A, 4A) | NP | - | adult, F | NR | + | NR | NR | NR | NR |
5 | X:11130179-11369520 | ~239 kb deletion: HCCS, ARHGAP6, AMELX | P (2A, 4A, 5A) | NP | - | 14 m, F | - | + | - | - | NR | - |
[11] (#9) | X:7370404-11445756 | ~4.08 Mb deletion: VCX, PNPLA4, VCX2, VCX3B, ANOS1, FAM9A, FAM9B, TBL1X, GPR143, SHROOM2, CLDN34, WWC3, CLCN4, MID1, HCCS, ARHGAP6, AMELX | P (2A, 4A, 5A) | NP | - | 57 y, F | - | + | - | - | - | - |
6A | X:11130179-11318734 | ~189 kb duplication: HCCS, ARHGAP6, AMELX | VUS | NP | - | 5 y, M | - | + | - | - | - | + |
6B | X:11130179-11318734 | ~189 kb duplication: HCCS, ARHGAP6, AMELX | VUS | NP | 54:46 | 44 y, F | - | - | - | - | - | - |
Skin Lesions | Micro/Anophthalmia | Corneal Opacity | CNS Malformations | Developmental Delay | Short Stature | Cardiac Anomalies | References a |
---|---|---|---|---|---|---|---|
4/9 44% | 12/13 92% | 11/11 100% | 4/12 33% | 2/7 29% | 2/8 25% | 7/13 54% | [3,10,13,14,15,16,17,18,19,20,21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, L.M.; Basel, D.; Bitoun, P.; Walton, D.S.; Glaser, T.; Semina, E.V. Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in HCCS-Related Disease. Genes 2024, 15, 1636. https://doi.org/10.3390/genes15121636
Reis LM, Basel D, Bitoun P, Walton DS, Glaser T, Semina EV. Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in HCCS-Related Disease. Genes. 2024; 15(12):1636. https://doi.org/10.3390/genes15121636
Chicago/Turabian StyleReis, Linda M., Donald Basel, Pierre Bitoun, David S. Walton, Tom Glaser, and Elena V. Semina. 2024. "Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in HCCS-Related Disease" Genes 15, no. 12: 1636. https://doi.org/10.3390/genes15121636
APA StyleReis, L. M., Basel, D., Bitoun, P., Walton, D. S., Glaser, T., & Semina, E. V. (2024). Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in HCCS-Related Disease. Genes, 15(12), 1636. https://doi.org/10.3390/genes15121636