BRAF V600E-Mutant Acute Myeloid Leukemia: A Case Series and Literature Review of a Rare Entity
Abstract
:1. Introduction
2. Methods
Microscopy, Flow Cytometry, Fluorescence In Situ Hybridization, and Targeted DNA-Based NGS
3. Results
3.1. Clinical Presentation, Diagnosis, Treatment, and Follow-Up
3.1.1. Case 1
3.1.2. Case 2
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wander, S.A.; Hasserjian, R.P.; Oduro, K.; Glomski, K.; Nardi, V.; Cote, G.M.; Graubert, T.A.; Brunner, A.M.; Chen, Y.A.; Fathi, A.T. Combined Targeted Therapy for BRAF-Mutant, Treatment-Related Acute Myeloid Leukemia. JCO Precis. Oncol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dankner, M.; Rose, A.A.N.; Rajkumar, S.; Siegel, P.M.; Watson, I.R. Classifying BRAF alterations in cancer: New rational therapeutic strategies for actionable mutations. Oncogene 2018, 37, 3183–3199. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, D.H.; Andersen, M.K.; Desta, F.; Pedersen-Bjergaard, J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005, 19, 2232–2240. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wertheim, G.; Morrissette, J.J.; Bagg, A. BRAF kinase domain mutations in de novo acute myeloid leukemia with monocytic differentiation. Leuk. Lymphoma 2017, 58, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Caporale, C.; Chang, L.; Fortini, B.K.; Ali, H.; Bell, D.; Stein, A.; Marcucci, G.; Telatar, M.; Afkhami, M. BRAF Mutations in Patients with Myeloid Neoplasms: A Cancer Center Multigene Next-Generation Sequencing Analysis Experience. Int. J. Mol. Sci. 2024, 25, 5183. [Google Scholar] [CrossRef] [PubMed]
- Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy (NCT03959085); National Cancer Institute: Bethesda, MD, USA.
- Dastugue, N.; Suciu, S.; Plat, G.; Speleman, F.; Cave, H.; Girard, S.; Bakkus, M.; Pages, M.P.; Yakouben, K.; Nelken, B.; et al. Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. Blood 2013, 121, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Paulsson, K.; Johansson, B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2009, 48, 637–660. [Google Scholar] [CrossRef] [PubMed]
- Salek, M.; Oak, N.; Hines, M.; Maciaszek, J.L.; Tatevossian, R.; Sharma, A.; Nichols, K.E.; Campbell, P. Development of BRAFV600E-positive acute myeloid leukemia in a patient on long-term dabrafenib for multisystem LCH. Blood Adv. 2022, 6, 2681–2684. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shihab, Y.; Nicolet, D.; Mrózek, K.; Routbort, M.; Patel, K.P.; Walker, C.J.; Buss, J.; Stiff, A.; Laganson, A.; DiNardo, C.D.; et al. BRAF-Mutated Acute Myeloid Leukemia (AML) Represents a Distinct, Prognostically Poor Subgroup Enriched in Myelodysplasia-Related (MR-)AML. Blood 2023, 142 (Suppl. S1), 1575. [Google Scholar] [CrossRef]
- Abuasab, T.; Mohamed, S.; Pemmaraju, N.; Kadia, T.M.; Daver, N.; DiNardo, C.D.; Ravandi, F.; Qiao, W.; Montalban-Bravo, G.; Borthakur, G. BRAF mutation in myeloid neoplasm: Incidences and clinical outcomes. Leuk. Lymphoma 2024, 65, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Soung, Y.H.; Park, W.S.; Kim, S.Y.; Nam, S.W.; Min, W.S.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. BRAF mutations in acute leukemias. Leukemia 2004, 18, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Singh, R.R.; Patel, K.P.; Stingo, F.; Routbort, M.; You, M.J.; Miranda, R.N.; Garcia-Manero, G.; Kantarjian, H.M.; Medeiros, L.J.; et al. BRAF kinase domain mutations are present in a subset of chronic myelomonocytic leukemia with wild-type RAS. Am. J. Hematol. 2014, 89, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Lilley, C.M.; Tang, G.; Loghavi, S.; Mirza, K.M. Phenotypic clues that predict underlying cytogenetic/genetic abnormalities in myeloid malignancies: A contemporary review. Cytopathology 2023, 34, 530–541. [Google Scholar] [CrossRef] [PubMed]
Relevant Laboratory Investigations at AML Diagnosis | |
---|---|
Case 1 | Case 2 |
BUN: 44 mg/dL Creatinine: 3.88 mg/dL Platelet count: 20 × 103/uL Leukocyte count: 120.5 × 103/uL | Hemoglobin: 7.5 g/dL Platelet count: 16 × 103/uL Leukocyte count: 27.2 × 103/uL |
s | Diagnosis | Karyotype | FISH | DNA-based NGS |
---|---|---|---|---|
1 | AML | 48–49, XY, +8, +18, +2–3mar, inc[10]/46, XY[10] | Copy number gain of RUNX1T1 (8q22) (82% of nuclei) | BRAF c.1799T>A, p.V600E (Variant allele frequency [VAF]: 33%) TET2 c.1522delA, p.M508Cfs*25 (VAF: 48%) TET2 c.3633t>A, p.C1211* (VAF: 49%) ZRSR2 c.883C>T, p.R295* (VAF: 71%) BRAF c.1742A>G, p.N581S at 6% (VAF: 6%) EZH2 c.118-2A>G, p.? (VAF: 4%) |
2 | B-ALL | 58<2n>, X, +X, −Y, +3, +4, +6, +8, +10, +11, +12, +14, +17, +18, +21, +21, +22[3]/46, XY[17] | Abnormal copy number gains of BCR locus (22q11.2) in 34% of nuclei, KMT2A locus (formerly MLL, 11q23) in 40% of nuclei, ETV6 (12p13), RUNX1 (21q22) loci in 37% of nuclei, and IgH locus (14q32) in 40.5% of nuclei | Not performed |
AML | 46, XY, t(9;11)(p21;q23) [4]/ 46–47, idem, der(6)t(6;11) (p23;q13), +22 [cp14]/ 46, XY[2] Non-clonal: add(7)(p14) del(16)(q21) | Abnormal with one to two MLL fusion signals, one isolated 5′ MLL signal and one isolated 3′ MLL signal in 92% (184/200) of interphase nuclei, suggestive of MLL (11q23) rearrangement | Peripheral blood: BRAF c.1799T>A, p.V600E (VAF: 1%) KRAS c.35G>C, p.G12A (VAF: 28%) Solid organs: Liver: KRAS c.35G>C, p.G12A (VAF: 23%) RAF1 c.770C>T, p.S257L (VAF: 29%) Spleen: BRAF c.1799T>A, p.V600E (VAF: 1%) KRAS c.35G>C, p.G12A (VAF: 21%) RAF1 c.770C>T, p.S257L (VAF: 23%) Mesenteric lymph node: BRAF c.1799T>A, p.V600E (VAF: 3%) KRAS c.35G>C, p.G12A (VAF: 18%) RAF1 c.770C>T, p.S257L (VAF: 21%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, G.V.; Evans, A.G.; Jajosky, A.N. BRAF V600E-Mutant Acute Myeloid Leukemia: A Case Series and Literature Review of a Rare Entity. Genes 2024, 15, 1383. https://doi.org/10.3390/genes15111383
George GV, Evans AG, Jajosky AN. BRAF V600E-Mutant Acute Myeloid Leukemia: A Case Series and Literature Review of a Rare Entity. Genes. 2024; 15(11):1383. https://doi.org/10.3390/genes15111383
Chicago/Turabian StyleGeorge, Giby V., Andrew G. Evans, and Audrey N. Jajosky. 2024. "BRAF V600E-Mutant Acute Myeloid Leukemia: A Case Series and Literature Review of a Rare Entity" Genes 15, no. 11: 1383. https://doi.org/10.3390/genes15111383
APA StyleGeorge, G. V., Evans, A. G., & Jajosky, A. N. (2024). BRAF V600E-Mutant Acute Myeloid Leukemia: A Case Series and Literature Review of a Rare Entity. Genes, 15(11), 1383. https://doi.org/10.3390/genes15111383