Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Pathogenicity assessment of the POT1 variants:
- (a)
- incomplete (only in silico)/not updated;
- (b)
- absence of functional studies other than not uniformed/standardized procedures for telomere length measurements.
- Reproducibility and consistency of the data:
- (a)
- finding of a variant in single cases/few families and/or reported only once;
- (b)
- absence of segregation analysis;
- (c)
- generic next-generation sequencing approaches or Genome Wide Association Studies (GWAS);
- (d)
- partial demonstration/evidence for the proposed cancer association with POT1–TPD;
- (e)
- POT1 variants as possible by-product of extended testing;
- (f)
- evaluation of the possible contribution of additional risk factors to the observed cancer histories.
- Variant specific genotype-phenotype correlation
- Recommended improvements:
- (a)
- need for statistical validation of the proposed cancer association with POT1–TPD through wide and systematic studies;
- (b)
- novel approaches for pathogenicity assessment.
3.1. Glioma
3.2. Colon Cancer
3.3. Thyroid Cancer
3.4. Uveal Melanoma
3.5. Sarcoma
3.6. Lymphoid Malignancies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aramburu, T.; Plucinsky, S.; Skordalakes, E. POT1-TPP1 telomere length regulation and disease. Comput. Struct. Biotechnol. J. 2020, 18, 1939–1946. [Google Scholar] [CrossRef]
- Aramburu, T.; Kelich, J.; Rice, C.; Skordalakes, E. POT1-TPP1 binding stabilizes POT1, promoting efficient telomere maintenance. Comput. Struct. Biotechnol. J. 2022, 20, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tan, R.; Ren, Q.; Gao, B.; Sheng, Z.; Zhang, J.; Zheng, X.; Jiang, Y.; Lan, L.; Mao, Z. POT1 inhibits the efficiency but promotes the fidelity of nonhomologous end joining at non-telomeric DNA regions. Aging 2017, 9, 2529–2543. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Wang, Y.; Bisht, K.K.; Wu, L.; Kukova, L.; Smith, E.M.; Xiao, Y.; Bailey, S.M.; Lei, M.; Nandakumar, J.; et al. Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 2017, 36, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yang, X.R.; Ballew, B.; Rotunno, M.; Calista, D.; Fargnoli, M.C.; Ghiorzo, P.; Bressac-de Paillerets, B.; Nagore, E.; Avril, M.F.; et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 2014, 46, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Simonin-Wilmer, I.; Ossio, R.; Leddin, E.M.; Harland, M.; Pooley, K.A.; Martil De La Garza, M.G.; Obolenski, S.; Hewinson, J.; Wong, C.C.; Iyer, V.; et al. Population-based analysis of POT1 variants in a cutaneous melanoma case–control cohort. J. Med. Genet. 2022, 60, 692–696. [Google Scholar] [CrossRef]
- Robles-Espinoza, C.D.; Harland, M.; Ramsay, A.J.; Aoude, L.G.; Quesada, V.; Ding, Z.; Pooley, K.A.; Pritchard, A.L.; Tiffen, J.C.; Petljak, M.; et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 2014, 46, 478–481. [Google Scholar] [CrossRef]
- Herrera-Mullar, J.; Fulk, K.; Brannan, T.; Yussuf, A.; Polfus, L.; Richardson, M.E.; Horton, C. Characterization of {POT1} tumor predisposition syndrome: Tumor prevalence in a clinically diverse hereditary cancer cohort. Genet. Med. 2023, 25, 100937. [Google Scholar] [CrossRef]
- Wu, Y.; Poulos, R.C.; Reddel, R.R. Role of POT1 in Human Cancer. Cancers 2020, 12, 2739. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef]
- Gong, Y.; Stock, A.J.; Liu, Y. The enigma of excessively long telomeres in cancer: Lessons learned from rare human POT1 variants. Curr. Opin. Genet. Dev. 2020, 60, 48–55. [Google Scholar] [CrossRef]
- Henry, M.-L.; Osborne, J.; Else, T. POT1 Tumor Predisposition; University of Washington: Seattle, WA, USA, 2022. [Google Scholar]
- Masson, E.; Zou, W.-B.; Génin, E.; Cooper, D.N.; Le Gac, G.; Fichou, Y.; Pu, N.; Rebours, V.; Férec, C.; Liao, Z.; et al. Expanding ACMG variant classification guidelines into a general framework. Hum. Genom. 2022, 16, 31. [Google Scholar] [CrossRef]
- Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.-Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; Westbrook, M.; et al. Sherloc: A comprehensive refinement of the ACMG–AMP variant classification criteria. Genet. Med. 2017, 19, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.N.; Kinnersley, B.; Culliford, R.; Cornish, A.J.; Law, P.J.; Houlston, R.S. Relationship between genetically determined telomere length and glioma risk. Neuro-Oncology 2022, 24, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Martel-Martel, A.; Corchete, L.A.; Martí, M.; Vidal-Tocino, R.; Hurtado, E.; Álvaro, E.; Jiménez, F.; Jiménez-Toscano, M.; Balaguer, F.; Sanz, G.; et al. Telomere Length as a New Risk Marker of Early-Onset Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 3526. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, M.; Koski, J.R.; Heckman, C.A.; Anttila, P.; Silvennoinen, R.; Lievonen, J.; Kilpivaara, O.; Wartiovaara-Kautto, U. A germline exome analysis reveals harmful POT1 variants in multiple myeloma patients and families. eJHaem 2022, 3, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.L.; Lieberman, D.B.; Davis, A.R.; Loren, A.W.; Hausler, R.; Bigdeli, A.; Li, Y.; Powers, J.; Raper, A.; Regeneron Genetics Center; et al. Germline POT1 variants can predispose to myeloid and lymphoid neoplasms. Leukemia 2021, 36, 283–287. [Google Scholar] [CrossRef]
- Srivastava, A.; Miao, B.; Skopelitou, D.; Kumar, V.; Kumar, A.; Paramasivam, N.; Bonora, E.; Hemminki, K.; Försti, A.; Bandapalli, O.R. A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer. Cancers 2020, 12, 1441. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Y.; Wang, D.; Xu, H.; Ye, J.; Yin, J.C.; Chen, J.; Yan, J.; Ye, B.; Chen, C. Whole exome sequencing identified a novel POT1 variant as a candidate pathogenic allele underlying a Li–Fraumeni-like family. Front. Oncol. 2022, 12, 963364. [Google Scholar] [CrossRef]
- McMaster, M.L.; Sun, C.; Landi, M.T.; Savage, S.A.; Rotunno, M.; Yang, X.R.; Jones, K.; Vogt, A.; Hutchinson, A.; Zhu, B.; et al. Germline mutations in Protection of Telomeres 1 in two families with Hodgkin lymphoma. Br. J. Haematol. 2018, 181, 372–377. [Google Scholar] [CrossRef]
- Speedy, H.E.; Kinnersley, B.; Chubb, D.; Broderick, P.; Law, P.J.; Litchfield, K.; Jayne, S.; Dyer, M.J.S.; Dearden, C.; Follows, G.A.; et al. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood 2016, 128, 2319–2326. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Zhu, B.; Koster, R.; Karlins, E.; Dean, M.; Yeager, M.; Gianferante, M.; Spector, L.G.; Morton, L.M.; Karyadi, D.; et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients with Osteosarcoma. JAMA Oncol. 2020, 6, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Anagnostou, V.; Lytle, K.; Parpart-Li, S.; Nesselbush, M.; Riley, D.R.; Shukla, M.; Chesnick, B.; Kadan, M.; Papp, E.; et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci. Transl. Med. 2015, 7, 283ra53. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, A.N.; Mitchell, A.L.; Akgul, M.; Shetty, S.; Yoest, J.M.; Gerson, S.L.; Sadri, N.; Oduro, K.A. Identification of a Cancer-Predisposing Germline POT1 p.Ile49Metfs*7 Variant by Targeted Sequencing of a Splenic Marginal Zone Lymphoma. Genes 2022, 13, 591. [Google Scholar] [CrossRef] [PubMed]
- Chubb, D.; Broderick, P.; Dobbins, S.E.; Frampton, M.; Kinnersley, B.; Penegar, S.; Price, A.; Ma, Y.P.; Sherborne, A.L.; Palles, C.; et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat. Commun. 2016, 7, 11883. [Google Scholar] [CrossRef]
- Wilson, T.L.-S.; Hattangady, N.; Lerario, A.M.; Williams, C.; Koeppe, E.; Quinonez, S.; Osborne, J.; Cha, K.B.; Else, T. A new POT1 germline mutation—Expanding the spectrum of POT1-associated cancers. Fam. Cancer 2017, 16, 561–566. [Google Scholar] [CrossRef]
- Nathan, V.; Palmer, J.M.; Johansson, P.A.; Hamilton, H.R.; Warrier, S.K.; Glasson, W.; McGrath, L.A.; Kahl, V.F.S.; Vasireddy, R.S.; Pickett, H.A.; et al. Loss-of-function variants in POT1 predispose to uveal melanoma. J. Med. Genet. 2021, 58, 234–236. [Google Scholar] [CrossRef]
- Bainbridge, M.N.; Armstrong, G.N.; Gramatges, M.M.; Bertuch, A.A.; Jhangiani, S.N.; Doddapaneni, H.; Lewis, L.; Tombrello, J.; Tsavachidis, S.; Liu, Y.; et al. Germline mutations in shelterin complex genes are associated with familial glioma. J. Natl. Cancer Inst. 2015, 107, 384. [Google Scholar] [CrossRef]
- Calvete, O.; Garcia-Pavia, P.; Domínguez, F.; Bougeard, G.; Kunze, K.; Braeuninger, A.; Teule, A.; Lasa, A.; Ramón y Cajal, T.; Llort, G.; et al. The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur. J. Hum. Genet. 2017, 25, 1278–1281. [Google Scholar] [CrossRef]
- Calvete, O.; Martinez, P.; Garcia-Pavia, P.; Benitez-Buelga, C.; Paumard-Hernández, B.; Fernandez, V.; Dominguez, F.; Salas, C.; Romero-Laorden, N.; Garcia-Donas, J.; et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat. Commun. 2015, 6, 8383. [Google Scholar] [CrossRef]
- Martínez, P.; Sánchez-Vázquez, R.; Ferrara-Romeo, I.; Serrano, R.; Flores, J.M.; Blasco, M.A. A mouse model for Li-Fraumeni-like Syndrome with cardiac angiosarcomas associated to POT1 mutations. PLoS Genet. 2022, 18, e1010260. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.; Bahmad, H.F.; Delgado, R.; Cordon, B.H.; Poppiti, R.; Howard, L. Papillary cystadenoma of the epididymis. Autops. Case Rep. 2022, 12, e2021374. [Google Scholar] [CrossRef]
- Michler, P.; Schedel, A.; Witschas, M.; Friedrich, U.A.; Wagener, R.; Mehtonen, J.; Brozou, T.; Menzel, M.; Walter, C.; Nabi, D.; et al. Germline POT1 Deregulation Can Predispose to Myeloid Malignancies in Childhood. Int. J. Mol. Sci. 2021, 22, 11572. [Google Scholar] [CrossRef]
- Nathan, V.; Johansson, P.A.; Palmer, J.M.; Hamilton, H.R.; Howlie, M.; Brooks, K.M.; Hayward, N.K.; Pritchard, A.L. A rare missense variant in protection of telomeres 1 (POT1) predisposes to a range of haematological malignancies. Br. J. Haematol. 2021, 192, e57–e60. [Google Scholar] [CrossRef]
- Ishigaki, K.; Akiyama, M.; Kanai, M.; Takahashi, A.; Kawakami, E.; Sugishita, H.; Sakaue, S.; Matoba, N.; Low, S.-K.; Okada, Y.; et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat. Genet. 2020, 52, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Jalali, A.; Yu, K.; Beechar, V.; Huerta, N.A.B.; Grichuk, A.; Mehra, D.; Lozzi, B.; Kong, K.; Scott, K.L.; Rao, G.; et al. POT1 Regulates Proliferation and Confers Sexual Dimorphism in Glioma. Cancer Res. 2021, 81, 2703–2713. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.A.; Lupo, P.J.; Morton, L.M.; Yasui, Y.A.; Sapkota, Y.A.; Arnold, M.A.; Aubert, G.; Neglia, J.P.; Turcotte, L.M.; Leisenring, W.M.; et al. Genetic variation in POT1 and risk of thyroid subsequent malignant neoplasm: A report from the Childhood Cancer Survivor Study. PLoS ONE 2020, 15, e0228887. [Google Scholar] [CrossRef]
- Speedy, H.E.; Di Bernardo, M.C.; Sava, G.P.; Dyer, M.J.S.; Holroyd, A.; Wang, Y.; Sunter, N.J.; Mansouri, L.; Juliusson, G.; Smedby, K.E.; et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 2013, 46, 56–60. [Google Scholar] [CrossRef]
- Cooke, J.G. RE: Germline Mutations in Shelterin Complex Genes Are Associated with Familial Glioma. J. Natl. Cancer Inst. 2015, 107, djv173. [Google Scholar] [CrossRef]
- Bainbridge, M.; Bondy, M.L. Response. J. Natl. Cancer Inst. 2015, 107, djv174. [Google Scholar] [CrossRef]
- Karami, S.; Han, Y.; Pande, M.; Cheng, I.; Rudd, J.; Pierce, B.L.; Nutter, E.L.; Schumacher, F.R.; Kote-Jarai, Z.; Lindstrom, S.; et al. Telomere structure and maintenance gene variants and risk of five cancer types. Int. J. Cancer 2016, 139, 2655–2670. [Google Scholar] [CrossRef] [PubMed]
- Orois, A.; Badenas, C.; Reverter, J.L.; López, V.; Potrony, M.; Mora, M.; Halperin, I.; Oriola, J. Lack of Mutations in POT1 Gene in Selected Families with Familial Non-Medullary Thyroid Cancer. Horm. Cancer 2020, 11, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Walpole, S.; Pritchard, A.L.; Cebulla, C.M.; Pilarski, R.; Stautberg, M.; Davidorf, F.H.; de la Fouchardière, A.; Cabaret, O.; Golmard, L.; Stoppa-Lyonnet, D.; et al. Comprehensive Study of the Clinical Phenotype of Germline BAP1 Variant-Carrying Families Worldwide. J. Natl. Cancer Inst. 2018, 110, 1328–1341. [Google Scholar] [CrossRef] [PubMed]
- Derrien, A.-C.; Rodrigues, M.; Eeckhoutte, A.; Dayot, S.; Houy, A.; Mobuchon, L.; Gardrat, S.; Lequin, D.; Ballet, S.; Pierron, G.; et al. Germline MBD4 Mutations and Predisposition to Uveal Melanoma. J. Natl. Cancer Inst. 2021, 113, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, A.J.; Quesada, V.; Foronda, M.; Conde, L.; Martínez-Trillos, A.; Villamor, N.; Rodríguez, D.; Kwarciak, A.; Garabaya, C.; Gallardo, M.; et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 2013, 45, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Böttcher, S.; et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015, 526, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Zade, N.H.; Khattar, E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J. Cell. Physiol. 2023, 238, 1237–1255. [Google Scholar] [CrossRef]
- Calvete, O.; Garcia-Pavia, P.; Domínguez, F.; Mosteiro, L.; Pérez-Cabornero, L.; Cantalapiedra, D.; Zorio, E.; Ramón, Y.; Cajal, T.; Crespo-Leiro, M.G.; et al. POT1 and Damage Response Malfunction Trigger Acquisition of Somatic Activating Mutations in the VEGF Pathway in Cardiac Angiosarcomas. J. Am. Heart Assoc. 2019, 8, e012875. [Google Scholar] [CrossRef]
- Erwood, S.; Bily, T.M.I.; Lequyer, J.; Yan, J.; Gulati, N.; Brewer, R.A.; Zhou, L.; Pelletier, L.; Ivakine, E.A.; Cohn, R.D. Saturation variant interpretation using CRISPR prime editing. Nat. Biotechnol. 2022, 40, 885–895. [Google Scholar] [CrossRef]
- Findlay, G.M.; Daza, R.M.; Martin, B.; Zhang, M.D.; Leith, A.P.; Gasperini, M.; Janizek, J.D.; Huang, X.; Starita, L.M.; Shendure, J. Accurate classification of BRCA1 variants with saturation genome editing. Nature 2018, 562, 217–222. [Google Scholar] [CrossRef]
POT1 Variants Revised | |||||||||
---|---|---|---|---|---|---|---|---|---|
Reported Cancer Associated with POT1–TPD | chr7 Position | POT1 Variants as Reported | cDNA | Protein | Proposed vs. Original Classification | Dom | A.F. | Reference SNP ID | Ref. |
glioma | 124,917,495 | rs56356267 | c.-226-1849T>C | B/- | 0.2186000 | rs56356267 | [15] | ||
glioma | 124,914,213 | rs59294613 | c.-154+1361G>T | B/- | 0.2744000 | rs59294613 | [15] | ||
colon | 124,900,818 | rs7782354 | c.-153-2444G>A | B/- | 0.5653000 | rs7782354 | [16] | ||
colon | 124,900,787 | rs4383910 | c.-153-2413T>G | B/- | 0.5464000 | rs4383910 | [16] | ||
multiple myeloma | 124,897,173 | c.1A>G; p.Met1Val | c.1A>G | p.(Met1Val) | LP | 0.0000016 | rs1584510207 | [17] | |
myeloproliferative disorders | 124,892,382 | c.10-2A>C | c.10-2A>C | P/LP | na | rs1554434788 | [18] | ||
thyroid | 124,892,305 | p.V29L | c.85G>C | p.(Val29Leu) | VUS/P | OB1 | na | na | [19] |
sarcoma | 124,892,286 | p.P35L | c.104C>T | p.(Pro35Leu) | VUS/P | OB1 | na | na | [20] |
lymphoma | 124,892,284 | Y36H | c.106T>C | p.(Tyr36His) | VUS /deleterious | OB1 | 0.0000007 | na | [21] |
leukemia | 124,892,283 | p.Tyr36Cys | c.107A>T | p.(Tyr36Cys) | VUS /deleterious | OB1 | 0.0000007 | na | [22] |
osteosarcoma | 124,892,266 | c.124G>T | c.124G>T | p.(Asp42Tyr) | VUS/LP | OB1 | 0.0000054 | rs1358511734 | [23] |
cutaneous melanoma, thyroid, lymphoma | 124,871,018 | p.I49Mfs*7; c.147delT | c.147del | p.(Ile49Metfs*7) | P | OB1 | 0.0000031 | rs1064794328 | [8,24,25] |
osteosarcoma | 124,870,961 | c.205C>T | c.205C>T | p.(Leu69Phe) | VUS/LP | OB1 | 0.0000016 | rs905571705 | [23] |
colon | 124,870,941 | p.Asn75LysfsTer16 | c.224dup | p.(Asn75Lysfs*16) | P | OB1 | na | na | [26] |
myeloproliferative disorders | 124,870,933 | c.T233C; p.I78T | c.233T>C | p.(Ile78Thr) | LP/VUS | OB1 | 0.0000087 | rs947005337 | [8,18] |
cutaneous melanoma, thyroid | 124,863,628 | c.A268G; p.K90E | c.268A>G | p.(Lys90Glu) | LP | OB1 | 0.0000131 | rs1554427012 | [27] |
uveal melanoma | 124,863,613 | p.Q94Rfs*12 | c.281_282del | p.(Gln94Argfs*13) | P/LP | OB1 | 0.0000014 | rs1397398300 | [28] |
glioma | 124,863,613 | p.G95C | c.283G>T | p.(Gly95Cys) | VUS/- | OB1 | 0.0000032 | rs797045168 | [29] |
angiosarcoma | 124,863,549 | c.946C>T; p.P116L | c.347C>T | p.(Pro116Leu) | LP | OB1 | 0.0000032 | rs1554426966 | [30] |
angiosarcoma | 124,863,547 | p.R117C | c.349C>T | p.(Arg117Cys) | LP | OB1 | 0.0000014 | rs780936436 | [30,31,32] |
myeloproliferative disorders | 124,863,447 | c.T449C; p.L150S | c.449T>C | p.(Leu150Ser) | VUS | OB2 | 0.0000470 | rs918544320 | [18] |
multiple myeloma | 124,863,438 | c.458T>A; p.Leu153Ter | c.458T>A | p.(Leu153*) | LP | OB2 | na | na | [17] |
myeloproliferative disorders, papillary cystadenoma of the epididymis | 124,863,370 | c.526G>A; (p.Gly176Arg) | c.526G>A | p.(Gly176Arg) | VUS | OB2 | 0.0000155 | rs774576173 | [18,33] |
angiosarcoma, multiple myeloma | 124,859,113 | c.547-1G>A | c.547-1G>A | LP | 0.0000054 | na | [17,30] | ||
leukemia | 124,859,064 | p.Q199* | c.595C>T | p.(Gln199*) | P/LOF | OB2 | na | na | [34] |
myeloproliferative disorders, lymphoma, osteosarcoma | 124,858,989 | D224N | c.670G>A | p.(Asp224Asn) | VUS/LP /deleterious /P/VUS | OB2 | 0.0001701 | rs202187871 | [18,21,23,35] |
myeloproliferative disorders | 124,853,138 | c.G703A; p.V235I | c.703G>A | p.(Val235Ile) | VUS | OB2 | 0.0000103 | rs753638532 | [18] |
myeloproliferative disorders | 124,853,088 | c.G753A; p.M251I | c.753G>A | p.(Met251Ile) | VUS | OB2 | 0.0000020 | rs1172142052 | [18] |
colon | 124,851,984 | rs7784168 | c.870-33A>G | B/- | 0.3171738 | rs7784168 | [16] | ||
angiosarcoma | 124,851,920 | p.Gln301* | c.901C>T | p.(Gln301*) | LP | na | na | [30] | |
not specified | 124,846,992 | c.954_955DUPTG;p.G319VFS*9 | c.954_955dup | p.(Gly319Valfs*9) | P | 0.0000019 | rs1436069277 | [8] | |
myeloproliferative disorders, lung | 124,846,971 | p.V326A | c.977T>C | p.(Val326Ala) | B/VUS/- | TPP1 | 0.0002260 | rs75932146 | [18,36] |
colon, thyroid | 124,846,926 | rs7794637 | c.1006+16A>T | VUS/- | na | rs7794637 | [16] | ||
leukemia | 124,842,898 | p.Gln358SerfsTer13 | c.1071dup | p.(Gln358Serfs*13) | P | TPP1 | 0.0000503 | rs750470470 | [8,22] |
colon | 124,842,883 | p.Arg363Ter | c.1087C>T | p.(Arg363*) | P/- | TPP1 | 0.0000286 | rs756198077 | [8,26] |
myeloproliferative disorders | 124,842,862 | c.1107delT; p.Y369* | c.1107del | p.(Tyr369*) | P | TPP1 | 0.0000197 | rs1487490244 | [8,17] |
leukemia, osteosarcoma | 124,842,843 | p.Gln376Arg | c.1127A>G | p.(Gln376Arg) | VUS/LP /deleterious | TPP1 | 0.0005205 | rs143635917 | [22,23] |
colon | 124,841,191 | rs3815221 | c.1164-13C>T | B/- | 0.3981377 | rs3815221 | [16] | ||
myeloproliferative disorders, leukemia | 124,841,179 | c.1164-1G>A | c.1164-1G>A | P/LP/P | 0.0000398 | rs866612394 | [8,18,22] | ||
myeloproliferative disorders | 124,841,062 | c.A1280C; p.K427T | c.1280A>C | p.(Lys427Thr) | VUS | TPP1 | 0.0000096 | rs1187946222 | [18] |
glioma | 124,840,994 | p.E450X | c.1348G>T | p.(Glu450*) | P/LP | TPP1 | na | rs797045169 | [29,37] |
thyroid | 124,840,584 | rs58722976 | c.1369+389T>C | B/- | 0.0135800 | rs58722976 | [38] | ||
angiosarcoma | 124,835,294 | c.1490C>A; p.T497L | c.1490C>A | p.(Thr497Lys) | LB/LP | TPP1 | 0.0000186 | rs879897044 | [30] |
multiple myeloma | 124,829,254 | c.1594G>C; p.Ala532Pro | c.1594G>C | p.(Ala532Pro) | VUS/LP | TPP1 | 0.0000042 | rs537377921 | [17] |
colon | 124,829,213 | rs10263573 | c.1594+41T>G | VUS/- | 0.3981215 | rs10263573 | [16] | ||
myloproliferative disorders, glioma, colon, uveal melanoma, osteosarcoma | 124,824,014 | p.D617Efs*8 | c.1851_1852del | p.(Asp617Glufs*9) | LP/-/LP/VUS/P | TPP1 | 0.0000628 | rs758673417 | [8,18,23,26,28,29,37] |
myeloproliferative disorders | 124,823,997 | c.A1870G; p.I624V | c.1870A>G | p.(Ile624Val) | VUS | TPP1 | 0.0000118 | rs1410012081 | [18] |
leukemia | 124,822,607 | rs17246404 | c.*1355G>T | LB/- | 0.2018000 | rs17246404 | [39] | ||
colon | 124,822,601 | rs76436625 | c.*1361A>G | B/- | 0.1559000 | rs76436625 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreotti, V.; Vanni, I.; Pastorino, L.; Ghiorzo, P.; Bruno, W. Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome. Genes 2024, 15, 104. https://doi.org/10.3390/genes15010104
Andreotti V, Vanni I, Pastorino L, Ghiorzo P, Bruno W. Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome. Genes. 2024; 15(1):104. https://doi.org/10.3390/genes15010104
Chicago/Turabian StyleAndreotti, Virginia, Irene Vanni, Lorenza Pastorino, Paola Ghiorzo, and William Bruno. 2024. "Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome" Genes 15, no. 1: 104. https://doi.org/10.3390/genes15010104
APA StyleAndreotti, V., Vanni, I., Pastorino, L., Ghiorzo, P., & Bruno, W. (2024). Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome. Genes, 15(1), 104. https://doi.org/10.3390/genes15010104