ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. ADH1B
4.2. ADH1B/1C
4.3. CYP2E1
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shastry, B.S. SNPs: Impact on Gene Function and Phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Sripichai, O.; Fucharoen, S. Genetic Polymorphisms and Implications for Human Diseases. J. Med. Assoc. Thail. 2007, 90, 394–398. [Google Scholar]
- Eberhart, J.K.; Parnell, S.E. The Genetics of Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2016, 40, 1154–1165. [Google Scholar] [CrossRef][Green Version]
- Beaty, T.H.; Ruczinski, I.; Murray, J.C.; Marazita, M.L.; Munger, R.G.; Hetmanski, J.B.; Murray, T.; Redett, R.J.; Fallin, M.D.; Liang, K.Y.; et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet. Epidemiol. 2011, 35, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.F.; Smith, V.C.; The Committee on Substance Abuse. Fetal Alcohol Spectrum Disorders. Pediatrics 2015, 136, e1395–e1406. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e290–e299. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lange, S.; Probst, C.; Gmel, G.; Rehm, J.; Burd, L.; Popova, S. Global Prevalence of Fetal Alcohol Spectrum Disorder among Children and Youth: A Systematic Review and Meta-analysis. JAMA Pediatr. 2017, 171, 948–956. [Google Scholar] [CrossRef]
- Popova, S.; Lange, S.; Shield, K.; Mihic, A.; Chudley, A.E.; Mukherjee, R.A.S.; Bekmuradov, D.; Rehm, J. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. Lancet 2016, 387, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod. Toxicol. 2007, 24, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Popova, S.; Dozet, D.; Shield, K.; Rehm, J.; Burd, L. Alcohol’s Impact on the Fetus. Nutrients 2021, 13, 3452. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Riley, E.P.; Charness, M.E. Clinical presentation, diagnosis, and management of fetal alcohol spectrum disorder. Lancet Neurol. 2019, 18, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Burd, L. Fetal alcohol spectrum disorder: Complexity from comorbidity. Lancet 2016, 387, 926–927. [Google Scholar] [CrossRef] [PubMed]
- Green, R.F.; Stoler, J.M. Alcohol dehydrogenase 1B genotype and fetal alcohol syndrome: A HuGE minireview. Am. J. Obstet. Gynecol. 2007, 197, 12–25. [Google Scholar] [CrossRef] [PubMed][Green Version]
- May, P.A.; Gossage, J.P. Maternal risk factors for fetal alcohol spectrum disorders: Not as simple as it might seem. Alcohol Res. Health 2011, 34, 15–26. [Google Scholar]
- Oei, J.L. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020, 115, 2148–2163. [Google Scholar] [CrossRef]
- Sambo, D.; Goldman, D. Genetic Influences on Fetal Alcohol Spectrum Disorder. Genes 2023, 14, 195. [Google Scholar] [CrossRef]
- Burd, L.; Blair, J.; Dropps, K. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J. Perinatol. 2012, 32, 652–659. [Google Scholar] [CrossRef][Green Version]
- Gemma, S.; Vichi, S.; Testai, E. Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome. Neurosci. Biobehav. Rev. 2007, 31, 221–229. [Google Scholar] [CrossRef]
- Edenberg, H.J. The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health 2007, 30, 5–13. [Google Scholar]
- Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis. 2012, 16, 667–685. [Google Scholar] [CrossRef][Green Version]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: Update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef]
- Warren, K.R.; Li, T.K. Genetic polymorphisms: Impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 195–203. [Google Scholar] [CrossRef]
- Sultatos, L.G.; Pastino, G.M.; Rosenfeld, C.A.; Flynn, E.J. Incorporation of the genetic control of alcohol dehydrogenase into a physiologically based pharmacokinetic model for ethanol in humans. Toxicol. Sci. 2004, 78, 20–31. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Niederhut, M.S.; Gibbons, B.J.; Perez-Miller, S.; Hurley, T.D. Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci. 2001, 10, 697–706. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yin, S.J.; Bosron, W.F.; Magnes, L.J.; Li, T.K. Human liver alcohol dehydrogenase: Purification and kinetic characterization of the beta 2 beta 2, beta 2 beta 1, alpha beta 2, and beta 2 gamma 1 "Oriental" isoenzymes. Biochemistry 1984, 23, 5847–5853. [Google Scholar] [CrossRef] [PubMed]
- Bierut, L.J.; Goate, A.M.; Breslau, N.; Johnson, E.O.; Bertelsen, S.; Fox, L.; Agrawal, A.; Bucholz, K.K.; Grucza, R.; Hesselbrock, V.; et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol. Psychiatry 2012, 17, 445–450. [Google Scholar] [CrossRef][Green Version]
- Muramatsu, T.; Wang, Z.C.; Fang, Y.R.; Hu, K.B.; Yan, H.; Yamada, K.; Higuchi, S.; Harada, S.; Kono, H. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior of Chinese living in Shanghai. Hum. Genet. 1995, 96, 151–154. [Google Scholar] [CrossRef]
- Way, M.; McQuillin, A.; Saini, J.; Ruparelia, K.; Lydall, G.J.; Guerrini, I.; Ball, D.; Smith, I.; Quadri, G.; Thomson, A.D.; et al. Genetic variants in or near ADH1B and ADH1C affect susceptibility to alcohol dependence in a British and Irish population. Addict. Biol. 2015, 20, 594–604. [Google Scholar] [CrossRef]
- Frank, J.; Cichon, S.; Treutlein, J.; Ridinger, M.; Mattheisen, M.; Hoffmann, P.; Herms, S.; Wodarz, N.; Soyka, M.; Zill, P.; et al. Genome-wide significant association between alcohol dependence and a variant in the ADH gene cluster. Addict. Biol. 2012, 17, 171–180. [Google Scholar] [CrossRef][Green Version]
- Macgregor, S.; Lind, P.A.; Bucholz, K.K.; Hansell, N.K.; Madden, P.A.; Richter, M.M.; Montgomery, G.W.; Martin, N.G.; Heath, A.C.; Whitfield, J.B. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: An integrated analysis. Hum. Mol. Genet. 2009, 18, 580–593. [Google Scholar] [CrossRef][Green Version]
- Lee, S.L.; Chau, G.Y.; Yao, C.T.; Wu, C.W.; Yin, S.J. Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: Significance of first-pass metabolism. Alcohol. Clin. Exp. Res. 2006, 30, 1132–1142. [Google Scholar] [CrossRef]
- Höög, J.O.; Hedén, L.O.; Larsson, K.; Jörnvall, H.; von Bahr-Lindström, H. The gamma 1 and gamma 2 subunits of human liver alcohol dehydrogenase. cDNA structures, two amino acid replacements, and compatibility with changes in the enzymatic properties. Eur. J. Biochem. 1986, 159, 215–218. [Google Scholar] [CrossRef]
- Osier, M.; Pakstis, A.J.; Kidd, J.R.; Lee, J.-F.; Yin, S.-J.; Ko, H.-C.; Edenberg, H.J.; Lu, R.-B.; Kidd, K.K. Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. Am. J. Hum. Genet. 1999, 64, 1147–1157. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nakamura, K.; Iwahashi, K.; Matsuo, Y.; Miyatake, R.; Ichikawa, Y.; Suwaki, H. Characteristics of Japanese alcoholics with the atypical aldehyde dehydrogenase 2*2. I. A comparison of the genotypes of ALDH2, ADH2, ADH3, and cytochrome P-4502E1 between alcoholics and nonalcoholics. Alcohol Clin. Exp. Res. 1996, 20, 52–55. [Google Scholar] [CrossRef]
- Shen, Y.C.; Fan, J.H.; Edenberg, H.J.; Li, T.K.; Cui, Y.H.; Wang, Y.F.; Tian, C.H.; Zhou, C.F.; Zhou, R.L.; Wang, J.; et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol Clin. Exp. Res. 1997, 21, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.; Zois, E.; Vollstädt-Klein, S.; Kirsch, M.; Hoffmann, S.; Jorde, A.; Frank, J.; Charlet, K.; Treutlein, J.; Beck, A.; et al. Association of the alcohol dehydrogenase gene polymorphism rs1789891 with gray matter brain volume, alcohol consumption, alcohol craving and relapse risk. Addict. Biol. 2019, 24, 110–120. [Google Scholar] [CrossRef][Green Version]
- Oniszczenko, W.; Rybakowski, J.K.; Dragan, W.Ł.; Grzywacz, A.; Samochowiec, J. The ADH gene cluster SNP rs1789891 and temperamental dimensions in patients with alcohol dependence and affective disorders. Scand. J. Psychol. 2015, 56, 420–427. [Google Scholar] [CrossRef]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharzehan, M.A.K.; Sito, H.; Abdullah, N.; Alexiou, A.; Papadakis, M.; Jamal, R.; Tan, S.C. Association between CYP2E1 polymorphisms and colorectal cancer risk: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 20149. [Google Scholar] [CrossRef]
- Li, Y.; Marion, M.J.; Zipprich, J.; Santella, R.M.; Freyer, G.; Brandt-Rauf, P.W. Gene-environment interactions between DNA repair polymorphisms and exposure to the carcinogen vinyl chloride. Biomarkers 2009, 14, 148–155. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hayashi, S.; Watanabe, J.; Kawajiri, K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J. Biochem. 1991, 110, 559–565. [Google Scholar] [CrossRef][Green Version]
- Koop, D.R.; Nordblom, G.D.; Coon, M.J. Immunochemical evidence for a role of cytochrome P-450 in liver microsomal ethanol oxidation. Arch. Biochem. Biophys. 1984, 235, 228–238. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jin, M.; Ande, A.; Kumar, A.; Kumar, S. Regulation of cytochrome P450 2e1 expression by ethanol: Role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis. 2013, 4, e554. [Google Scholar] [CrossRef][Green Version]
- Sun, F.; Tsuritani, I.; Yamada, Y. Contribution of genetic polymorphisms in ethanol-metabolizing enzymes to problem drinking behavior in middle-aged Japanese men. Behav. Genet. 2002, 32, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Ehrhart, F.; Roozen, S.; Verbeek, J.; Koek, G.; Kok, G.; Van Kranen, H.; Evelo, C.; Curfs, L.M.G. Review and gap analysis: Molecular pathways leading to fetal alcohol spectrum disorders. Mol. Psychiatry 2019, 24, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, M. Genetic and epigenetic insights into fetal alcohol spectrum disorders. Genome Med. 2010, 2, 27. [Google Scholar] [CrossRef][Green Version]
- Pikkarainen, P.H. Metabolism of ethanol and acetaldehyde in perfused human fetal liver. Life Sci. II 1971, 10, 1359–1364. [Google Scholar] [CrossRef]
- Lieber, C.S. Microsomal ethanol-oxidizing system. Enzyme 1987, 37, 45–56. [Google Scholar] [CrossRef]
- Zelner, I.; Koren, G. Pharmacokinetics of ethanol in the maternal-fetal unit. J. Popul. Ther. Clin. Pharmacol. 2013, 20, e259–e265. [Google Scholar]
- Hakkola, J.; Pelkonen, O.; Pasanen, M.; Raunio, H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: Role in intrauterine toxicity. Crit. Rev. Toxicol. 1998, 28, 35–72. [Google Scholar] [CrossRef]
- Pelkonen, O. Biotransformation of xenobiotics in the fetus. Pharmacol. Ther. 1980, 10, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.P.; Lasker, J.M.; Raucy, J.L. Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes. Mol. Pharmacol. 1996, 49, 260–268. [Google Scholar] [PubMed]
- Edenberg, H.J.; McClintick, J.N. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol Clin. Exp. Res. 2018, 42, 2281–2297. [Google Scholar] [CrossRef]
- Edenberg, H.J.; Xuei, X.; Chen, H.J.; Tian, H.; Wetherill, L.F.; Dick, D.M.; Almasy, L.; Bierut, L.; Bucholz, K.K.; Goate, A.; et al. Association of alcohol dehydrogenase genes with alcohol dependence: A comprehensive analysis. Hum. Mol. Genet. 2006, 15, 1539–1549. [Google Scholar] [CrossRef][Green Version]
- Thomasson, H.R.; Edenberg, H.J.; Crabb, D.W.; Mai, X.L.; Jerome, R.E.; Li, T.K.; Wang, S.P.; Lin, Y.T.; Lu, R.B.; Yin, S.J. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am. J. Hum. Genet. 1991, 48, 677–681. [Google Scholar]
- Li, D.; Zhao, H.; Gelernter, J. Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol-induced medical diseases. Biol. Psychiatry 2011, 70, 504–512. [Google Scholar] [CrossRef][Green Version]
- Zintzaras, E.; Stefanidis, I.; Santos, M.; Vidal, F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease? Hepatology 2006, 43, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Park, B.L.; Kim, J.W.; Cheong, H.S.; Kim, L.H.; Lee, B.C.; Seo, C.; Kang, T.-C.; Nam, Y.-W.; Kim, G.-B.; Shin, H.D.; et al. Extended genetic effects of ADH cluster genes on the risk of alcohol dependence: From GWAS to replication. Hum. Genet. 2013, 132, 657–668. [Google Scholar] [CrossRef]
- Luczak, S.E.; Glatt, S.J.; Wall, T.L. Meta-analyses of ALDH2 and ADH1B with alcohol dependence in Asians. Psychol. Bull. 2006, 132, 607–621. [Google Scholar] [CrossRef]
- Viljoen, D.L.; Carr, L.G.; Foroud, T.M.; Brooke, L.; Ramsay, M.; Li, T.K. Alcohol dehydrogenase-2*2 allele is associated with decreased prevalence of fetal alcohol syndrome in the mixed-ancestry population of the Western Cape Province, South Africa. Alcohol Clin. Exp. Res. 2001, 25, 1719–1722. [Google Scholar] [CrossRef]
- Zuccolo, L.; Fitz-Simon, N.; Gray, R.; Ring, S.M.; Sayal, K.; Smith, G.D.; Lewis, S.J. A non-synonymous variant in ADH1B is strongly associated with prenatal alcohol use in a European sample of pregnant women. Hum. Mol. Genet. 2009, 18, 4457–4466. [Google Scholar] [CrossRef][Green Version]
- Yun, Y.P.; Casazza, J.P.; Sohn, D.H.; Veech, R.L.; Song, B.J. Pretranslational activation of cytochrome P450IIE during ketosis induced by a high fat diet. Mol. Pharmacol. 1992, 41, 474–479. [Google Scholar] [PubMed]
- Neafsey, P.; Ginsberg, G.; Hattis, D.; Johns, D.O.; Guyton, K.Z.; Sonawane, B. Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 362–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, S.; Liu, F.; Zhang, B. CYP2E1 RsaI/PstI polymorphisms contributed to oral cancer susceptibility: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 14685–14692. [Google Scholar]
- Wang, R.Y.; Chen, X.W.; Zhang, W.W.; Jiang, F.; Liu, M.Q.; Shen, X.B. CYP2E1 changes the biological function of gastric cancer cells via the PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep. 2020, 21, 842–850. [Google Scholar] [CrossRef][Green Version]
- Neuman, M.G.; Malnick, S.; Maor, Y.; Nanau, R.M.; Melzer, E.; Ferenci, P.; Seitz, H.K.; Mueller, S.; Mell, H.; Samuel, D.; et al. Alcoholic liver disease: Clinical and translational research. Exp. Mol. Pathol. 2015, 99, 596–610. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 2E1 and its roles in disease. Chem. Biol. Interact. 2020, 322, 109056. [Google Scholar] [CrossRef]
- Diesinger, T.; Buko, V.; Lautwein, A.; Dvorsky, R.; Belonovskaya, E.; Lukivskaya, O.; Naruta, E.; Kirko, S.; Andreev, V.; Buckert, D.; et al. Drug targeting CYP2E1 for the treatment of early-stage alcoholic steatohepatitis. PLoS ONE 2020, 15, e0235990. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, S.; Wang, J.; Renukuntla, J.; Sirimulla, S.; Chen, J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab. Rev. 2019, 51, 178–195. [Google Scholar] [CrossRef]
- Lucas, D.; Ferrara, R.; Gonzales, E.; Albores, A.; Manno, M.; Berthou, F. Cytochrome CYP2E1 phenotyping and genotyping in the evaluation of health risks from exposure to polluted environments. Toxicol. Lett. 2001, 124, 71–81. [Google Scholar] [CrossRef]
- Bolt, H.M.; Roos, P.H.; Thier, R. The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: Consequences for occupational and environmental medicine. Int. Arch. Occup. Environ. Health 2003, 76, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.D.; Majumder, M.; Roy, B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics 2008, 9, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Perwitasari, D.A.; Atthobari, J.; Wilffert, B. Pharmacogenetics of isoniazid-induced hepatotoxicity. Drug Metab. Rev. 2015, 47, 222–228. [Google Scholar] [CrossRef][Green Version]
- Tsutsumi, M.; Wang, J.S.; Takase, S.; Takada, A. Hepatic messenger RNA contents of cytochrome P4502E1 in patients with different P4502E1 genotypes. Alcohol Alcohol. Suppl. 1994, 29, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Ikai, E.; Yamada, Y. Genetic polymorphisms in alcohol metabolizing enzymes as related to sensitivity to alcohol-induced health effects. Environ. Health Prev. Med. 1997, 1, 193–200. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Konishi, T.; Calvillo, M.; Leng, A.S.; Feng, J.; Lee, T.; Lee, H.; Smith, J.L.; Sial, S.H.; Berman, N.; French, S.; et al. The ADH3*2 and CYP2E1 c2 alleles increase the risk of alcoholism in Mexican American men. Exp. Mol. Pathol. 2003, 74, 183–189. [Google Scholar] [CrossRef]
- Cichoz-Lach, H.; Partycka, J.; Nesina, I.; Celiński, K.; Słomka, M. The influence of genetic polymorphism of CYP2E1 on the development of alcohol liver cirrhosis. Wiad Lek. 2006, 59, 757–761. [Google Scholar]
- Rasheed, A.; Hines, R.N.; McCarver-May, D.G. Variation in induction of human placental CYP2E1: Possible role in susceptibility to fetal alcohol syndrome? Toxicol. Appl. Pharmacol. 1997, 144, 396–400. [Google Scholar] [CrossRef]
- Brzezinski, M.R.; Boutelet-Bochan, H.; Person, R.E.; Fantel, A.G.; Juchau, M.R. Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain. J. Pharmacol. Exp. Ther. 1999, 289, 1648–1653. [Google Scholar]
- Boutelet-Bochan, H.; Huang, Y.; Juchau, M.R. Expression of CYP2E1 during embryogenesis and fetogenesis in human cephalic tissues: Implications for the fetal alcohol syndrome. Biochem. Biophys. Res. Commun. 1997, 238, 443–447. [Google Scholar] [CrossRef]
- García-Suástegui, W.A.; Ramos-Chávez, L.A.; Rubio-Osornio, M.; Calvillo-Velasco, M.; Atzin-Méndez, J.A.; Guevara, J.; Silva-Adaya, D. The role of CYP2E1 in the drug metabolism or bioactivation in the brain. Oxid. Med. Cell. Longev. 2017, 2017, 4680732. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, J.K.; Chung, H.J.; Fischer, L.; Fischer, J.; Gonzalez, F.J.; Jeong, H. Human placental lactogen induces CYP2E1 expression via PI 3-kinase pathway in female human hepatocytes. Drug Metab. Dispos. 2014, 42, 492–499. [Google Scholar] [CrossRef] [PubMed][Green Version]
hPAE Children Group | n | Age [Years] | Female Sex [n] | Female Sex [%] |
---|---|---|---|---|
total | 303 | 8.94 ± 4.90 | 213 | 70.30% |
FC | 141 | 8.96 ± 5.07 | 84 | 59.57% |
PFC | 42 | 8.60 ± 3.87 | 37 | 88.07% |
NFC | 120 | 9.03 ± 5.06 | 92 | 76.67% |
Mothers Group | n | Age [Years] | ||
total | 251 | 32.77 ± 5.93 | ||
total (hPAE groups) * | ||||
FC | 135 | 33.36 ± 5.97 | ||
PFC | 41 | 33.15 ± 4.53 | ||
NFC | 119 | 32.63 ± 5.91 |
FC + PFC Mothers (n = 176) | NFC Mothers (n = 119) | p a | p b | OR (95% CI) | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
ADH1B rs1229984 | ||||||||
genotype | ||||||||
GG | 157 | 89.21% | 107 | 89.92% | TT + CT vs. CC | 1.00 | 1.08 (0.50–2.32) | |
GA | 19 | 10.79% | 11 | 9.24% | 0.438 | TT vs. CT + CC | 0.40 | - |
AA | 0 | 0.00% | 1 | 0.84% | TT vs. CC | 0.41 | - | |
CT vs. CC | 0.85 | 1.18 (0.54–2.57) | ||||||
TT vs. CT | 0.39 | - | ||||||
ADH1B rs1229984 | ||||||||
allele | ||||||||
G | 333 | 94.60% | 225 | 94.54% | ||||
A | 19 | 5.40% | 13 | 5.46% | T vs. C | 1.00 | 0.99 (0.48–2.04) | |
ADH1B rs1789891 | ||||||||
genotype | ||||||||
CC | 108 | 61.36% | 80 | 67.23% | AA + CA vs. CC | 0.33 | 1.29 (0.79–2.11) | |
CA | 58 | 32.96% | 33 | 27.73% | 0.587 | AA vs. CA + CC | 1.00 | 1.14 (0.40–3.21) |
AA | 10 | 5.68% | 6 | 5.04% | AA vs. CC | 0.80 | 1.24 (0.43–3.54) | |
CA vs. CC | 0.36 | 1.30 (0.78–2.18) | ||||||
AA vs. CA | 1.00 | 0.95 (0.32–2.85) | ||||||
ADH1B rs1789891 | ||||||||
allele | ||||||||
C | 274 | 77.84% | 193 | 81.09% | ||||
A | 78 | 22.16% | 45 | 18.91% | A vs. C | 0.35 | 1.22 (0.81–1.84) | |
CYP2E1 rs3813867 | ||||||||
genotype | ||||||||
GG | 170 | 96.59% | 114 | 95.80% | CC + GC vs. GG | 0.76 | 0.81 (0.24–2.70) | |
GC | 6 | 3.41% | 5 | 4.20% | 0.724 | CC vs. GC + GG | 1.00 | - |
CC | 0 | 0.00% | 0 | 0.00% | CC vs. GG | 1.00 | - | |
GC vs. GG | 0.76 | 0.81 (0.24–2.70) | ||||||
CC vs. GC | 1.00 | - | ||||||
CYP2E1 rs3813867 | ||||||||
allele | ||||||||
G | 346 | 98.30% | 233 | 97.90% | ||||
C | 6 | 1.70% | 5 | 2.10% | C vs. G | 0.76 | 0.81 (0.25–2.68) |
FC + PFC (n = 183) | NFC (n = 120) | p a | p b | OR (95% CI) | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
ADH1B rs1229984 | ||||||||
genotype | ||||||||
GG | 172 | 93.99% | 110 | 91.67% | TT + CT vs. CC | 0.49 | 0.70 (0.29–1.71) | |
GA | 11 | 6.01% | 10 | 8.33% | 0.436 | TT vs. CT + CC | 1.00 | - |
AA | 0 | 0.00% | 0 | 0.00% | TT vs. CC | 1.00 | - | |
CT vs. CC | 0.49 | 0.70 (0.29–1.71) | ||||||
TT vs. CT | 1.00 | - | ||||||
ADH1B rs1229984 | ||||||||
allele | ||||||||
G | 355 | 97.00% | 230 | 95.83% | ||||
A | 11 | 3.00% | 10 | 4.17% | T vs. C | 0.50 | 0.71 (0.30–1.71) | |
ADH1B rs1789891 | ||||||||
genotype | ||||||||
CC | 122 | 66.67% | 78 | 65.00% | AA + CA vs. CC | 0.81 | 0.93 (0.57–1.51) | |
CA | 54 | 29.51% | 37 | 30.83% | 0.954 | AA vs. CA + CC | 1.00 | 0.92 (0.28–2.95) |
AA | 7 | 3.82% | 5 | 4.17% | AA vs. CC | 1.00 | 0.90 (0.27–2.92) | |
CA vs. CC | 0.80 | 0.93 (0.56–1.55) | ||||||
AA vs. CA | 1.00 | 0.96 (0.28–3.25) | ||||||
ADH1B rs1789891 | ||||||||
allele | ||||||||
C | 298 | 81.42% | 193 | 80.42% | ||||
A | 68 | 18.58% | 47 | 19.58% | A vs. C | 0.75 | 0.94 (0.62–1.42) | |
CYP2E1 rs3813867 | ||||||||
genotype | ||||||||
GG | 173 | 94.54% | 111 | 92.50% | CC + GC vs. GG | 0.48 | 0.71 (0.28–1.81) | |
GC | 10 | 5.46% | 9 | 7.50% | 0.475 | CC vs. GC + GG | 1.00 | - |
CC | 0 | 0.00% | 0 | 0.00% | CC vs. GG | 1.00 | - | |
GC vs. GG | 0.48 | 0.71 (0.28–1.81) | ||||||
CC vs. GC | 1.00 | - | ||||||
CYP2E1 rs3813867 | ||||||||
allele | ||||||||
G | 356 | 97.27% | 231 | 96.25% | ||||
C | 10 | 2.73% | 9 | 3.75% | C vs. G | 0.49 | 0.72 (0.29–1.80) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukowka, A.; Brzuchalski, B.; Kurzawski, M.; Malinowski, D.; Białecka, M.A. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes 2023, 14, 1392. https://doi.org/10.3390/genes14071392
Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes. 2023; 14(7):1392. https://doi.org/10.3390/genes14071392
Chicago/Turabian StyleKukowka, Arnold, Bogusław Brzuchalski, Mateusz Kurzawski, Damian Malinowski, and Monika Anna Białecka. 2023. "ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder" Genes 14, no. 7: 1392. https://doi.org/10.3390/genes14071392