ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetic Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. ADH1B
4.2. ADH1B/1C
4.3. CYP2E1
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shastry, B.S. SNPs: Impact on Gene Function and Phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Sripichai, O.; Fucharoen, S. Genetic Polymorphisms and Implications for Human Diseases. J. Med. Assoc. Thail. 2007, 90, 394–398. [Google Scholar]
- Eberhart, J.K.; Parnell, S.E. The Genetics of Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2016, 40, 1154–1165. [Google Scholar] [CrossRef]
- Beaty, T.H.; Ruczinski, I.; Murray, J.C.; Marazita, M.L.; Munger, R.G.; Hetmanski, J.B.; Murray, T.; Redett, R.J.; Fallin, M.D.; Liang, K.Y.; et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet. Epidemiol. 2011, 35, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.F.; Smith, V.C.; The Committee on Substance Abuse. Fetal Alcohol Spectrum Disorders. Pediatrics 2015, 136, e1395–e1406. [Google Scholar] [CrossRef] [PubMed]
- Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e290–e299. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Probst, C.; Gmel, G.; Rehm, J.; Burd, L.; Popova, S. Global Prevalence of Fetal Alcohol Spectrum Disorder among Children and Youth: A Systematic Review and Meta-analysis. JAMA Pediatr. 2017, 171, 948–956. [Google Scholar] [CrossRef]
- Popova, S.; Lange, S.; Shield, K.; Mihic, A.; Chudley, A.E.; Mukherjee, R.A.S.; Bekmuradov, D.; Rehm, J. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. Lancet 2016, 387, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod. Toxicol. 2007, 24, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Popova, S.; Dozet, D.; Shield, K.; Rehm, J.; Burd, L. Alcohol’s Impact on the Fetus. Nutrients 2021, 13, 3452. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Riley, E.P.; Charness, M.E. Clinical presentation, diagnosis, and management of fetal alcohol spectrum disorder. Lancet Neurol. 2019, 18, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Burd, L. Fetal alcohol spectrum disorder: Complexity from comorbidity. Lancet 2016, 387, 926–927. [Google Scholar] [CrossRef] [PubMed]
- Green, R.F.; Stoler, J.M. Alcohol dehydrogenase 1B genotype and fetal alcohol syndrome: A HuGE minireview. Am. J. Obstet. Gynecol. 2007, 197, 12–25. [Google Scholar] [CrossRef] [PubMed]
- May, P.A.; Gossage, J.P. Maternal risk factors for fetal alcohol spectrum disorders: Not as simple as it might seem. Alcohol Res. Health 2011, 34, 15–26. [Google Scholar]
- Oei, J.L. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020, 115, 2148–2163. [Google Scholar] [CrossRef]
- Sambo, D.; Goldman, D. Genetic Influences on Fetal Alcohol Spectrum Disorder. Genes 2023, 14, 195. [Google Scholar] [CrossRef]
- Burd, L.; Blair, J.; Dropps, K. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J. Perinatol. 2012, 32, 652–659. [Google Scholar] [CrossRef]
- Gemma, S.; Vichi, S.; Testai, E. Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome. Neurosci. Biobehav. Rev. 2007, 31, 221–229. [Google Scholar] [CrossRef]
- Edenberg, H.J. The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health 2007, 30, 5–13. [Google Scholar]
- Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis. 2012, 16, 667–685. [Google Scholar] [CrossRef]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: Update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef]
- Warren, K.R.; Li, T.K. Genetic polymorphisms: Impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 195–203. [Google Scholar] [CrossRef]
- Sultatos, L.G.; Pastino, G.M.; Rosenfeld, C.A.; Flynn, E.J. Incorporation of the genetic control of alcohol dehydrogenase into a physiologically based pharmacokinetic model for ethanol in humans. Toxicol. Sci. 2004, 78, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Niederhut, M.S.; Gibbons, B.J.; Perez-Miller, S.; Hurley, T.D. Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci. 2001, 10, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.J.; Bosron, W.F.; Magnes, L.J.; Li, T.K. Human liver alcohol dehydrogenase: Purification and kinetic characterization of the beta 2 beta 2, beta 2 beta 1, alpha beta 2, and beta 2 gamma 1 "Oriental" isoenzymes. Biochemistry 1984, 23, 5847–5853. [Google Scholar] [CrossRef] [PubMed]
- Bierut, L.J.; Goate, A.M.; Breslau, N.; Johnson, E.O.; Bertelsen, S.; Fox, L.; Agrawal, A.; Bucholz, K.K.; Grucza, R.; Hesselbrock, V.; et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol. Psychiatry 2012, 17, 445–450. [Google Scholar] [CrossRef]
- Muramatsu, T.; Wang, Z.C.; Fang, Y.R.; Hu, K.B.; Yan, H.; Yamada, K.; Higuchi, S.; Harada, S.; Kono, H. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior of Chinese living in Shanghai. Hum. Genet. 1995, 96, 151–154. [Google Scholar] [CrossRef]
- Way, M.; McQuillin, A.; Saini, J.; Ruparelia, K.; Lydall, G.J.; Guerrini, I.; Ball, D.; Smith, I.; Quadri, G.; Thomson, A.D.; et al. Genetic variants in or near ADH1B and ADH1C affect susceptibility to alcohol dependence in a British and Irish population. Addict. Biol. 2015, 20, 594–604. [Google Scholar] [CrossRef]
- Frank, J.; Cichon, S.; Treutlein, J.; Ridinger, M.; Mattheisen, M.; Hoffmann, P.; Herms, S.; Wodarz, N.; Soyka, M.; Zill, P.; et al. Genome-wide significant association between alcohol dependence and a variant in the ADH gene cluster. Addict. Biol. 2012, 17, 171–180. [Google Scholar] [CrossRef]
- Macgregor, S.; Lind, P.A.; Bucholz, K.K.; Hansell, N.K.; Madden, P.A.; Richter, M.M.; Montgomery, G.W.; Martin, N.G.; Heath, A.C.; Whitfield, J.B. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: An integrated analysis. Hum. Mol. Genet. 2009, 18, 580–593. [Google Scholar] [CrossRef]
- Lee, S.L.; Chau, G.Y.; Yao, C.T.; Wu, C.W.; Yin, S.J. Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: Significance of first-pass metabolism. Alcohol. Clin. Exp. Res. 2006, 30, 1132–1142. [Google Scholar] [CrossRef]
- Höög, J.O.; Hedén, L.O.; Larsson, K.; Jörnvall, H.; von Bahr-Lindström, H. The gamma 1 and gamma 2 subunits of human liver alcohol dehydrogenase. cDNA structures, two amino acid replacements, and compatibility with changes in the enzymatic properties. Eur. J. Biochem. 1986, 159, 215–218. [Google Scholar] [CrossRef]
- Osier, M.; Pakstis, A.J.; Kidd, J.R.; Lee, J.-F.; Yin, S.-J.; Ko, H.-C.; Edenberg, H.J.; Lu, R.-B.; Kidd, K.K. Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. Am. J. Hum. Genet. 1999, 64, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Iwahashi, K.; Matsuo, Y.; Miyatake, R.; Ichikawa, Y.; Suwaki, H. Characteristics of Japanese alcoholics with the atypical aldehyde dehydrogenase 2*2. I. A comparison of the genotypes of ALDH2, ADH2, ADH3, and cytochrome P-4502E1 between alcoholics and nonalcoholics. Alcohol Clin. Exp. Res. 1996, 20, 52–55. [Google Scholar] [CrossRef]
- Shen, Y.C.; Fan, J.H.; Edenberg, H.J.; Li, T.K.; Cui, Y.H.; Wang, Y.F.; Tian, C.H.; Zhou, C.F.; Zhou, R.L.; Wang, J.; et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol Clin. Exp. Res. 1997, 21, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.; Zois, E.; Vollstädt-Klein, S.; Kirsch, M.; Hoffmann, S.; Jorde, A.; Frank, J.; Charlet, K.; Treutlein, J.; Beck, A.; et al. Association of the alcohol dehydrogenase gene polymorphism rs1789891 with gray matter brain volume, alcohol consumption, alcohol craving and relapse risk. Addict. Biol. 2019, 24, 110–120. [Google Scholar] [CrossRef]
- Oniszczenko, W.; Rybakowski, J.K.; Dragan, W.Ł.; Grzywacz, A.; Samochowiec, J. The ADH gene cluster SNP rs1789891 and temperamental dimensions in patients with alcohol dependence and affective disorders. Scand. J. Psychol. 2015, 56, 420–427. [Google Scholar] [CrossRef]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Sharzehan, M.A.K.; Sito, H.; Abdullah, N.; Alexiou, A.; Papadakis, M.; Jamal, R.; Tan, S.C. Association between CYP2E1 polymorphisms and colorectal cancer risk: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 20149. [Google Scholar] [CrossRef]
- Li, Y.; Marion, M.J.; Zipprich, J.; Santella, R.M.; Freyer, G.; Brandt-Rauf, P.W. Gene-environment interactions between DNA repair polymorphisms and exposure to the carcinogen vinyl chloride. Biomarkers 2009, 14, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Watanabe, J.; Kawajiri, K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J. Biochem. 1991, 110, 559–565. [Google Scholar] [CrossRef]
- Koop, D.R.; Nordblom, G.D.; Coon, M.J. Immunochemical evidence for a role of cytochrome P-450 in liver microsomal ethanol oxidation. Arch. Biochem. Biophys. 1984, 235, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Ande, A.; Kumar, A.; Kumar, S. Regulation of cytochrome P450 2e1 expression by ethanol: Role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis. 2013, 4, e554. [Google Scholar] [CrossRef]
- Sun, F.; Tsuritani, I.; Yamada, Y. Contribution of genetic polymorphisms in ethanol-metabolizing enzymes to problem drinking behavior in middle-aged Japanese men. Behav. Genet. 2002, 32, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Ehrhart, F.; Roozen, S.; Verbeek, J.; Koek, G.; Kok, G.; Van Kranen, H.; Evelo, C.; Curfs, L.M.G. Review and gap analysis: Molecular pathways leading to fetal alcohol spectrum disorders. Mol. Psychiatry 2019, 24, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, M. Genetic and epigenetic insights into fetal alcohol spectrum disorders. Genome Med. 2010, 2, 27. [Google Scholar] [CrossRef]
- Pikkarainen, P.H. Metabolism of ethanol and acetaldehyde in perfused human fetal liver. Life Sci. II 1971, 10, 1359–1364. [Google Scholar] [CrossRef]
- Lieber, C.S. Microsomal ethanol-oxidizing system. Enzyme 1987, 37, 45–56. [Google Scholar] [CrossRef]
- Zelner, I.; Koren, G. Pharmacokinetics of ethanol in the maternal-fetal unit. J. Popul. Ther. Clin. Pharmacol. 2013, 20, e259–e265. [Google Scholar]
- Hakkola, J.; Pelkonen, O.; Pasanen, M.; Raunio, H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: Role in intrauterine toxicity. Crit. Rev. Toxicol. 1998, 28, 35–72. [Google Scholar] [CrossRef]
- Pelkonen, O. Biotransformation of xenobiotics in the fetus. Pharmacol. Ther. 1980, 10, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.P.; Lasker, J.M.; Raucy, J.L. Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes. Mol. Pharmacol. 1996, 49, 260–268. [Google Scholar] [PubMed]
- Edenberg, H.J.; McClintick, J.N. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol Clin. Exp. Res. 2018, 42, 2281–2297. [Google Scholar] [CrossRef]
- Edenberg, H.J.; Xuei, X.; Chen, H.J.; Tian, H.; Wetherill, L.F.; Dick, D.M.; Almasy, L.; Bierut, L.; Bucholz, K.K.; Goate, A.; et al. Association of alcohol dehydrogenase genes with alcohol dependence: A comprehensive analysis. Hum. Mol. Genet. 2006, 15, 1539–1549. [Google Scholar] [CrossRef]
- Thomasson, H.R.; Edenberg, H.J.; Crabb, D.W.; Mai, X.L.; Jerome, R.E.; Li, T.K.; Wang, S.P.; Lin, Y.T.; Lu, R.B.; Yin, S.J. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am. J. Hum. Genet. 1991, 48, 677–681. [Google Scholar]
- Li, D.; Zhao, H.; Gelernter, J. Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol-induced medical diseases. Biol. Psychiatry 2011, 70, 504–512. [Google Scholar] [CrossRef]
- Zintzaras, E.; Stefanidis, I.; Santos, M.; Vidal, F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease? Hepatology 2006, 43, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Park, B.L.; Kim, J.W.; Cheong, H.S.; Kim, L.H.; Lee, B.C.; Seo, C.; Kang, T.-C.; Nam, Y.-W.; Kim, G.-B.; Shin, H.D.; et al. Extended genetic effects of ADH cluster genes on the risk of alcohol dependence: From GWAS to replication. Hum. Genet. 2013, 132, 657–668. [Google Scholar] [CrossRef]
- Luczak, S.E.; Glatt, S.J.; Wall, T.L. Meta-analyses of ALDH2 and ADH1B with alcohol dependence in Asians. Psychol. Bull. 2006, 132, 607–621. [Google Scholar] [CrossRef]
- Viljoen, D.L.; Carr, L.G.; Foroud, T.M.; Brooke, L.; Ramsay, M.; Li, T.K. Alcohol dehydrogenase-2*2 allele is associated with decreased prevalence of fetal alcohol syndrome in the mixed-ancestry population of the Western Cape Province, South Africa. Alcohol Clin. Exp. Res. 2001, 25, 1719–1722. [Google Scholar] [CrossRef]
- Zuccolo, L.; Fitz-Simon, N.; Gray, R.; Ring, S.M.; Sayal, K.; Smith, G.D.; Lewis, S.J. A non-synonymous variant in ADH1B is strongly associated with prenatal alcohol use in a European sample of pregnant women. Hum. Mol. Genet. 2009, 18, 4457–4466. [Google Scholar] [CrossRef]
- Yun, Y.P.; Casazza, J.P.; Sohn, D.H.; Veech, R.L.; Song, B.J. Pretranslational activation of cytochrome P450IIE during ketosis induced by a high fat diet. Mol. Pharmacol. 1992, 41, 474–479. [Google Scholar] [PubMed]
- Neafsey, P.; Ginsberg, G.; Hattis, D.; Johns, D.O.; Guyton, K.Z.; Sonawane, B. Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 362–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, S.; Liu, F.; Zhang, B. CYP2E1 RsaI/PstI polymorphisms contributed to oral cancer susceptibility: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 14685–14692. [Google Scholar]
- Wang, R.Y.; Chen, X.W.; Zhang, W.W.; Jiang, F.; Liu, M.Q.; Shen, X.B. CYP2E1 changes the biological function of gastric cancer cells via the PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep. 2020, 21, 842–850. [Google Scholar] [CrossRef]
- Neuman, M.G.; Malnick, S.; Maor, Y.; Nanau, R.M.; Melzer, E.; Ferenci, P.; Seitz, H.K.; Mueller, S.; Mell, H.; Samuel, D.; et al. Alcoholic liver disease: Clinical and translational research. Exp. Mol. Pathol. 2015, 99, 596–610. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 2E1 and its roles in disease. Chem. Biol. Interact. 2020, 322, 109056. [Google Scholar] [CrossRef]
- Diesinger, T.; Buko, V.; Lautwein, A.; Dvorsky, R.; Belonovskaya, E.; Lukivskaya, O.; Naruta, E.; Kirko, S.; Andreev, V.; Buckert, D.; et al. Drug targeting CYP2E1 for the treatment of early-stage alcoholic steatohepatitis. PLoS ONE 2020, 15, e0235990. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, S.; Wang, J.; Renukuntla, J.; Sirimulla, S.; Chen, J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab. Rev. 2019, 51, 178–195. [Google Scholar] [CrossRef]
- Lucas, D.; Ferrara, R.; Gonzales, E.; Albores, A.; Manno, M.; Berthou, F. Cytochrome CYP2E1 phenotyping and genotyping in the evaluation of health risks from exposure to polluted environments. Toxicol. Lett. 2001, 124, 71–81. [Google Scholar] [CrossRef]
- Bolt, H.M.; Roos, P.H.; Thier, R. The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: Consequences for occupational and environmental medicine. Int. Arch. Occup. Environ. Health 2003, 76, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.D.; Majumder, M.; Roy, B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics 2008, 9, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Perwitasari, D.A.; Atthobari, J.; Wilffert, B. Pharmacogenetics of isoniazid-induced hepatotoxicity. Drug Metab. Rev. 2015, 47, 222–228. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Wang, J.S.; Takase, S.; Takada, A. Hepatic messenger RNA contents of cytochrome P4502E1 in patients with different P4502E1 genotypes. Alcohol Alcohol. Suppl. 1994, 29, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Ikai, E.; Yamada, Y. Genetic polymorphisms in alcohol metabolizing enzymes as related to sensitivity to alcohol-induced health effects. Environ. Health Prev. Med. 1997, 1, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Calvillo, M.; Leng, A.S.; Feng, J.; Lee, T.; Lee, H.; Smith, J.L.; Sial, S.H.; Berman, N.; French, S.; et al. The ADH3*2 and CYP2E1 c2 alleles increase the risk of alcoholism in Mexican American men. Exp. Mol. Pathol. 2003, 74, 183–189. [Google Scholar] [CrossRef]
- Cichoz-Lach, H.; Partycka, J.; Nesina, I.; Celiński, K.; Słomka, M. The influence of genetic polymorphism of CYP2E1 on the development of alcohol liver cirrhosis. Wiad Lek. 2006, 59, 757–761. [Google Scholar]
- Rasheed, A.; Hines, R.N.; McCarver-May, D.G. Variation in induction of human placental CYP2E1: Possible role in susceptibility to fetal alcohol syndrome? Toxicol. Appl. Pharmacol. 1997, 144, 396–400. [Google Scholar] [CrossRef]
- Brzezinski, M.R.; Boutelet-Bochan, H.; Person, R.E.; Fantel, A.G.; Juchau, M.R. Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain. J. Pharmacol. Exp. Ther. 1999, 289, 1648–1653. [Google Scholar]
- Boutelet-Bochan, H.; Huang, Y.; Juchau, M.R. Expression of CYP2E1 during embryogenesis and fetogenesis in human cephalic tissues: Implications for the fetal alcohol syndrome. Biochem. Biophys. Res. Commun. 1997, 238, 443–447. [Google Scholar] [CrossRef]
- García-Suástegui, W.A.; Ramos-Chávez, L.A.; Rubio-Osornio, M.; Calvillo-Velasco, M.; Atzin-Méndez, J.A.; Guevara, J.; Silva-Adaya, D. The role of CYP2E1 in the drug metabolism or bioactivation in the brain. Oxid. Med. Cell. Longev. 2017, 2017, 4680732. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Chung, H.J.; Fischer, L.; Fischer, J.; Gonzalez, F.J.; Jeong, H. Human placental lactogen induces CYP2E1 expression via PI 3-kinase pathway in female human hepatocytes. Drug Metab. Dispos. 2014, 42, 492–499. [Google Scholar] [CrossRef] [PubMed]
hPAE Children Group | n | Age [Years] | Female Sex [n] | Female Sex [%] |
---|---|---|---|---|
total | 303 | 8.94 ± 4.90 | 213 | 70.30% |
FC | 141 | 8.96 ± 5.07 | 84 | 59.57% |
PFC | 42 | 8.60 ± 3.87 | 37 | 88.07% |
NFC | 120 | 9.03 ± 5.06 | 92 | 76.67% |
Mothers Group | n | Age [Years] | ||
total | 251 | 32.77 ± 5.93 | ||
total (hPAE groups) * | ||||
FC | 135 | 33.36 ± 5.97 | ||
PFC | 41 | 33.15 ± 4.53 | ||
NFC | 119 | 32.63 ± 5.91 |
FC + PFC Mothers (n = 176) | NFC Mothers (n = 119) | p a | p b | OR (95% CI) | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
ADH1B rs1229984 | ||||||||
genotype | ||||||||
GG | 157 | 89.21% | 107 | 89.92% | TT + CT vs. CC | 1.00 | 1.08 (0.50–2.32) | |
GA | 19 | 10.79% | 11 | 9.24% | 0.438 | TT vs. CT + CC | 0.40 | - |
AA | 0 | 0.00% | 1 | 0.84% | TT vs. CC | 0.41 | - | |
CT vs. CC | 0.85 | 1.18 (0.54–2.57) | ||||||
TT vs. CT | 0.39 | - | ||||||
ADH1B rs1229984 | ||||||||
allele | ||||||||
G | 333 | 94.60% | 225 | 94.54% | ||||
A | 19 | 5.40% | 13 | 5.46% | T vs. C | 1.00 | 0.99 (0.48–2.04) | |
ADH1B rs1789891 | ||||||||
genotype | ||||||||
CC | 108 | 61.36% | 80 | 67.23% | AA + CA vs. CC | 0.33 | 1.29 (0.79–2.11) | |
CA | 58 | 32.96% | 33 | 27.73% | 0.587 | AA vs. CA + CC | 1.00 | 1.14 (0.40–3.21) |
AA | 10 | 5.68% | 6 | 5.04% | AA vs. CC | 0.80 | 1.24 (0.43–3.54) | |
CA vs. CC | 0.36 | 1.30 (0.78–2.18) | ||||||
AA vs. CA | 1.00 | 0.95 (0.32–2.85) | ||||||
ADH1B rs1789891 | ||||||||
allele | ||||||||
C | 274 | 77.84% | 193 | 81.09% | ||||
A | 78 | 22.16% | 45 | 18.91% | A vs. C | 0.35 | 1.22 (0.81–1.84) | |
CYP2E1 rs3813867 | ||||||||
genotype | ||||||||
GG | 170 | 96.59% | 114 | 95.80% | CC + GC vs. GG | 0.76 | 0.81 (0.24–2.70) | |
GC | 6 | 3.41% | 5 | 4.20% | 0.724 | CC vs. GC + GG | 1.00 | - |
CC | 0 | 0.00% | 0 | 0.00% | CC vs. GG | 1.00 | - | |
GC vs. GG | 0.76 | 0.81 (0.24–2.70) | ||||||
CC vs. GC | 1.00 | - | ||||||
CYP2E1 rs3813867 | ||||||||
allele | ||||||||
G | 346 | 98.30% | 233 | 97.90% | ||||
C | 6 | 1.70% | 5 | 2.10% | C vs. G | 0.76 | 0.81 (0.25–2.68) |
FC + PFC (n = 183) | NFC (n = 120) | p a | p b | OR (95% CI) | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
ADH1B rs1229984 | ||||||||
genotype | ||||||||
GG | 172 | 93.99% | 110 | 91.67% | TT + CT vs. CC | 0.49 | 0.70 (0.29–1.71) | |
GA | 11 | 6.01% | 10 | 8.33% | 0.436 | TT vs. CT + CC | 1.00 | - |
AA | 0 | 0.00% | 0 | 0.00% | TT vs. CC | 1.00 | - | |
CT vs. CC | 0.49 | 0.70 (0.29–1.71) | ||||||
TT vs. CT | 1.00 | - | ||||||
ADH1B rs1229984 | ||||||||
allele | ||||||||
G | 355 | 97.00% | 230 | 95.83% | ||||
A | 11 | 3.00% | 10 | 4.17% | T vs. C | 0.50 | 0.71 (0.30–1.71) | |
ADH1B rs1789891 | ||||||||
genotype | ||||||||
CC | 122 | 66.67% | 78 | 65.00% | AA + CA vs. CC | 0.81 | 0.93 (0.57–1.51) | |
CA | 54 | 29.51% | 37 | 30.83% | 0.954 | AA vs. CA + CC | 1.00 | 0.92 (0.28–2.95) |
AA | 7 | 3.82% | 5 | 4.17% | AA vs. CC | 1.00 | 0.90 (0.27–2.92) | |
CA vs. CC | 0.80 | 0.93 (0.56–1.55) | ||||||
AA vs. CA | 1.00 | 0.96 (0.28–3.25) | ||||||
ADH1B rs1789891 | ||||||||
allele | ||||||||
C | 298 | 81.42% | 193 | 80.42% | ||||
A | 68 | 18.58% | 47 | 19.58% | A vs. C | 0.75 | 0.94 (0.62–1.42) | |
CYP2E1 rs3813867 | ||||||||
genotype | ||||||||
GG | 173 | 94.54% | 111 | 92.50% | CC + GC vs. GG | 0.48 | 0.71 (0.28–1.81) | |
GC | 10 | 5.46% | 9 | 7.50% | 0.475 | CC vs. GC + GG | 1.00 | - |
CC | 0 | 0.00% | 0 | 0.00% | CC vs. GG | 1.00 | - | |
GC vs. GG | 0.48 | 0.71 (0.28–1.81) | ||||||
CC vs. GC | 1.00 | - | ||||||
CYP2E1 rs3813867 | ||||||||
allele | ||||||||
G | 356 | 97.27% | 231 | 96.25% | ||||
C | 10 | 2.73% | 9 | 3.75% | C vs. G | 0.49 | 0.72 (0.29–1.80) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukowka, A.; Brzuchalski, B.; Kurzawski, M.; Malinowski, D.; Białecka, M.A. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes 2023, 14, 1392. https://doi.org/10.3390/genes14071392
Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes. 2023; 14(7):1392. https://doi.org/10.3390/genes14071392
Chicago/Turabian StyleKukowka, Arnold, Bogusław Brzuchalski, Mateusz Kurzawski, Damian Malinowski, and Monika Anna Białecka. 2023. "ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder" Genes 14, no. 7: 1392. https://doi.org/10.3390/genes14071392
APA StyleKukowka, A., Brzuchalski, B., Kurzawski, M., Malinowski, D., & Białecka, M. A. (2023). ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes, 14(7), 1392. https://doi.org/10.3390/genes14071392