Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of Meg8-DMR Mice
2.2. RNA Extraction and qRT-PCR
2.3. RNA-Seq Analysis
2.4. DNA Methylation Analysis
2.5. Allelic Analysis of Gene Expression
3. Results
3.1. CRISPR/Cas9-Mediated Meg8-DMR Deletion in Mice
3.2. The Mode of Inheritance of Meg8-DMR Mutants
3.3. Analysis of DEGs in WT and CRISPR/Cas9-Mediated Meg8-DMR Knockout Mice
3.4. Detection of miRNA DEGs in WT and Meg8-DMR Knockout Mice
3.5. GO and KEGG Pathway Enrichment of DEGs
3.6. Expression of the Imprinted Genes in the Dlk1-Dio3 Domain
3.7. Methylation Status and Allelic Analysis of Gene Expression in the Meg8-DMR Mutants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takahashi, N.; Kobayashi, R.; Kono, T. Restoration of Dlk1 and Rtl1 Is Necessary but Insufficient to Rescue Lethality in Intergenic Differentially Methylated Region (IG-DMR)-deficient Mice. J. Biol. Chem. 2010, 285, 26121–26125. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Ferguson-Smith, A.C.; Surani, M.A. Imprinting and the epigenetic asymmetry between parental genomes. Science 2001, 293, 1086–1089. [Google Scholar] [CrossRef] [PubMed]
- Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447, 425–432. [Google Scholar] [CrossRef]
- Barlow, D.P.; Bartolomei, M.S. Genomic Imprinting in Mammals. CSH Perspect. Biol. 2014, 6, a018382. [Google Scholar] [CrossRef]
- Rocha, S.T.D.; Edwards, C.A.; Ito, M.; Ogata, T.; Ferguson-Smith, A.C. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 2008, 24, 306–316. [Google Scholar] [CrossRef]
- Hagan, J.P.; O’Neill, B.L.; Stewart, C.L.; Kozlov, S.V.; Croce, C.M. At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS ONE 2009, 4, e4352. [Google Scholar] [CrossRef]
- Tierling, S.; Dalbert, S.; Schoppenhorst, S.; Tsai, C.E.; Oliger, S.; Ferguson-Smith, A.C.; Paulsen, M.; Walter, J. High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics 2006, 87, 225–235. [Google Scholar] [CrossRef]
- Da, R.S.; Tevendale, M.; Knowles, E.; Takada, S.; Watkins, M.; Ferguson-Smith, A.C. Restricted co-expression of Dlk1 and the reciprocally imprinted non-coding RNA, Gtl2: Implications for cis-acting control. Dev. Biol. 2007, 306, 810–823. [Google Scholar]
- Labialle, S.; Croteau, S.; Belanger, V.; McMurray, E.N.; Ruan, X.; Moussette, S.; Jonnaert, M.; Schmidt, J.V.; Cermakian, N.; Naumova, A.K. Novel imprinted transcripts from the Dlk1-Gtl2 intergenic region, Mico1 and Mico1os, show circadian oscillations. Epigenetics 2008, 3, 322–329. [Google Scholar] [CrossRef]
- Georgiades, P.; Watkins, M.; Surani, M.A.; Ferguson-Smith, A.C. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development 2000, 127, 4719–4728. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.V.; Matteson, P.G.; Jones, B.K.; Guan, X.J.; Tilghman, S.M. The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev. 2000, 14, 1997–2002. [Google Scholar] [CrossRef]
- Hatada, I.; Morita, S.; Obata, Y.; Sotomaru, Y.; Shimoda, M.; Kono, T. Identification of a new imprinted gene, Rian, on mouse chromosome 12 by fluorescent differential display screening. J. Biochem. 2001, 130, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.; Royo, H.; Bortolin, M.L.; Lin, S.P.; Ferguson-Smith, A.C.; Cavaille, J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004, 14, 1741–1748. [Google Scholar] [CrossRef]
- Cavaille, J.; Seitz, H.; Paulsen, M.; Ferguson-Smith, A.C.; Bachellerie, J.P. Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum. Mol. Genet. 2002, 11, 1527–1538. [Google Scholar] [CrossRef]
- Fahrenkrug, S.C.; Freking, B.A.; Smith, T.P. Genomic organization and genetic mapping of the bovine PREF-1 gene. Biochem. Biophys. Res. Commun. 1999, 264, 662–667. [Google Scholar] [CrossRef]
- Yang, Z.L.; Cheng, H.C.; Xia, Q.Y.; Jiang, C.D.; Deng, C.Y.; Li, Y.M. Imprinting analysis of RTLI and DIO3 genes and their association with carcass traits in pigs. Agric. Sci. China 2009, 8, 101–105. [Google Scholar] [CrossRef]
- Takada, S.; Paulsen, M.; Tevendale, M.; Tsai, C.E.; Kelsey, G.; Cattanach, B.M.; Ferguson-Smith, A.C. Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: Implications for imprinting control from comparison with Igf2-H19. Hum. Mol. Genet. 2002, 11, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.B.; He, H.J.; Han, Z.B.; Zhang, F.W.; Huang, Z.J.; Liu, Q.; Cui, W.; Wu, Q. DNA methylation dynamics of a maternally methylated DMR in the mouse Dlk1-Dio3 domain. FEBS Lett. 2014, 588, 4665–4671. [Google Scholar] [CrossRef]
- Hiura, H.; Komiyama, J.; Shirai, M.; Obata, Y.; Ogawa, H.; Kono, T. DNA methylation imprints on the IG-DMR of the Dlk1-Gtl2 domain in mouse male germline. FEBS Lett. 2007, 581, 1255–1260. [Google Scholar] [CrossRef]
- Lin, S.P.; Coan, P.; Da, R.S.; Seitz, H.; Cavaille, J.; Teng, P.W.; Takada, S.; Ferguson-Smith, A.C. Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development 2007, 134, 417–426. [Google Scholar] [CrossRef]
- Lin, S.P.; Youngson, N.; Takada, S.; Seitz, H.; Reik, W.; Paulsen, M.; Cavaille, J.; Ferguson-Smith, A.C. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 2003, 35, 97–102. [Google Scholar] [CrossRef]
- Takahashi, N.; Okamoto, A.; Kobayashi, R.; Shirai, M.; Obata, Y.; Ogawa, H.; Sotomaru, Y.; Kono, T. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum. Mol. Genet. 2009, 18, 1879–1888. [Google Scholar] [CrossRef]
- Han, X.; He, H.; Shao, L.; Cui, S.; Yu, H.; Zhang, X.; Wu, Q. Deletion of Meg8-DMR Enhances Migration and Invasion of MLTC-1 Depending on the CTCF Binding Sites. Int. J. Mol. Sci. 2022, 23, 8828. [Google Scholar] [CrossRef] [PubMed]
- Beygo, J.; Kuchler, A.; Gillessen-Kaesbach, G.; Albrecht, B.; Eckle, J.; Eggermann, T.; Gellhaus, A.; Kanber, D.; Kordass, U.; Ludecke, H.J.; et al. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur. J. Hum. Genet. 2017, 25, 935–945. [Google Scholar] [CrossRef]
- Court, F.; Tayama, C.; Romanelli, V.; Martin-Trujillo, A.; Iglesias-Platas, I.; Okamura, K.; Sugahara, N.; Simon, C.; Moore, H.; Harness, J.V.; et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 2014, 24, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Lokk, K.; Modhukur, V.; Rajashekar, B.; Martens, K.; Magi, R.; Kolde, R.; Koltsina, M.; Nilsson, T.K.; Vilo, J.; Salumets, A.; et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014, 15, 3248. [Google Scholar] [CrossRef] [PubMed]
- Demars, J.; Gicquel, C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin. Genet. 2012, 81, 350–361. [Google Scholar] [CrossRef]
- Murai, K.; Qu, Q.; Sun, G.; Ye, P.; Li, W.; Asuelime, G.; Sun, E.; Tsai, G.E.; Shi, Y. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model. Proc. Natl. Acad. Sci. USA 2014, 111, 9115–9120. [Google Scholar] [CrossRef]
- Squire, L.R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 1992, 99, 195–231. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.; Zhu, D.; Wang, H.; Shao, H.; Zhang, Y. LncRNA Rian ameliorates sevoflurane anesthesia-induced cognitive dysfunction through regulation of miR-143-3p/LIMK1 axis. Hum. Cell 2021, 34, 808–818. [Google Scholar] [CrossRef] [PubMed]
Mating Pattern | No. of Litters | No. of Pups/Total (%) | ||||
---|---|---|---|---|---|---|
Total | WT | Pat-KO | Mat-KO | Homo-KO | ||
WT (♀) × WT (♂) | 3 | 33 | 33 ± 0.67 (100) | — | — | — |
WT (♀) × Pat-KO (♂) | 4 | 36 | 18 ± 0.75 (50) | 18 ± 1.0 (50) | — | — |
WT (♀) × Mat-KO (♂) | 3 | 30 | 14 ± 0.83 (46.7) | 16 ± 0.63 (53.3) | — | — |
WT (♀) × Homo-KO (♂) | 3 | 39 | — | 39 ± 0.66 (100) | — | — |
Homo (♀) × WT (♂) | 3 | 37 | — | — | 37 ± 1.06 (100) | — |
Homo (♀) × Pat-KO (♂) | 3 | 34 | — | — | 15 ± 1.3 (44.1) | 19 ± 0.76 (55.9) |
Homo (♀) × Mat-KO (♂) | 3 | 30 | — | — | 14 ± 0.5 (46.7) | 16 ± 1.1 (53.3) |
Pat-KO (♀) × Pat-KO (♂) | 3 | 24 | 5 ± 0.5 (20.8) | 13 ± 0.66 (54.2) | 6 ± 0.66 (25) | |
Pat-KO (♀) × Mat-KO (♂) | 5 | 64 | 18 ± 1.12 (28.1) | 30 ± 1.2 (46.9) | 16 ± 1.04 (25) | |
Pat-KO (♀) × Homo-KO (♂) | 3 | 36 | — | 17 ± 0.46 (47.2) | — | 19 ± 0.9 (52.8) |
Pat-KO (♀) × WT (♂) | 5 | 51 | 28 ± 1.2 (54.9) | — | 23 ± 1.5 (45.1) | — |
Mat-KO (♀) × Pat-KO (♂) | 4 | 56 | 16 ± 1.0 (28.6) | 30 ± 1.0 (53.5) | 10 ± 1.0 (17.9) | |
Mat-KO (♀) × Mat-KO (♂) | 4 | 51 | 12 ± 2.0 (23.5) | 28 ± 1.5 (54.9) | 11 ± 0.9 (21.6) | |
Mat-KO (♀) × Homo-KO (♂) | 3 | 39 | — | 21 ± 1.3 (53.8) | — | 18 ± 1.3 (46.2) |
Mat-KO (♀) × WT (♂) | 3 | 27 | 15 ± 0.67 (55.5) | — | 12 ± 1.3 (44.5) | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Han, Z.; He, H.; Zhang, X.; Zhang, M.; Li, B.; Wu, Q. Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice. Genes 2023, 14, 1264. https://doi.org/10.3390/genes14061264
Zhang L, Han Z, He H, Zhang X, Zhang M, Li B, Wu Q. Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice. Genes. 2023; 14(6):1264. https://doi.org/10.3390/genes14061264
Chicago/Turabian StyleZhang, Liang, Zhengbin Han, Hongjuan He, Ximeijia Zhang, Mengyan Zhang, Boran Li, and Qiong Wu. 2023. "Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice" Genes 14, no. 6: 1264. https://doi.org/10.3390/genes14061264
APA StyleZhang, L., Han, Z., He, H., Zhang, X., Zhang, M., Li, B., & Wu, Q. (2023). Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice. Genes, 14(6), 1264. https://doi.org/10.3390/genes14061264