Genetic Variants and Their Putative Effects on microRNA-Seed Sites: Characterization of the 3′ Untranslated Region of Genes Associated with Temperament
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. In Silico Analysis to Locate Seed Sites for miRNAs and their Potential Disrupting of SNPs
2.3. Searching for SNPs in 3′UTR and Their Effect on Brahman Cattle Temperament Traits
2.4. Effect of CACNG4-3′UTR SNPs on Temperament Traits
2.5. Statistical Association Analysis
3. Results
3.1. In Silico Analysis of Seed Site and SNP Variants in 3′UTR Sequences
3.2. Search for Variants in 3′UTR of the Four Temperament Candidate Genes in Brahman Cattle
3.3. Association of the SNP rs522648682 Located at 3′UTR of CACNG4 Gene with Temperament Traits in Brahman Cattle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burrow, H.M.; Dillon, R.D. Relationships between temperament and growth in a feedlot and commercial carcass traits of Bos indicus crossbreds. Aust. J. Exp. Agr. 1997, 37, 407. [Google Scholar] [CrossRef]
- Sifuentes-Rincón, A.M.; Trejo-Tapia, A.G.; Randel, R.D.; Ambriz-Morales, P.; Parra-Bracamonte, G.M. Bovine dopamine receptors DRD1, DRD4, and DRD5: Genetic polymorphisms and diversities among ten cattle breeds. Genet. Mol. Res. 2015, 15, gmr.15017725. [Google Scholar] [CrossRef] [PubMed]
- Garza-Brenner, E.; Sifuentes-Rincón, A.M.; Randel, R.D.; Paredes-Sánchez, F.A.; Parra-Bracamonte, G.M.; Arellano Vera, W.; Rodríguez-Almeida, F.A.; Segura-Cabrera, A. Association of SNP in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows. J. Appl. Genet. 2016, 58, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.B.; Chauhan, J.B. Computational analysis of non-synonymous single nucleotide polymorphism in the bovine cattle kappa-casein (CSN3) gene. Meta Gene 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Thusberg, J.; Vihinen, M. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Human Mutat. 2009, 30, 703–714. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Sánchez-Chaparro, M.M.; Garza-Veloz, I.; Zayas-Villanueva, O.A.; Martinez-Fierro, M.L.; Delgado-Enciso, I.; Gomez-Govea, M.A.; Martínez-de-Villarreal, L.E.; Reséndez-Pérez, D.; Rodríguez-Sánchez, I.P. Genetic variants in the 3’UTR of BRCA1 and BRCA2 genes and their putative effects on the microRNA mechanism in hereditary breast and ovarian cancer. Diagnostics 2020, 10, 298. [Google Scholar] [CrossRef]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Millan, M.J. MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr. Opin. Pharmacol. 2011, 11, 11–22. [Google Scholar] [CrossRef]
- Jensen, K.P.; Covault, J.; Conner, T.S.; Tennen, H.; Kranzler, H.R.; Furneaux, H.M. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol. Psychiatr. 2008, 14, 381–389. [Google Scholar] [CrossRef]
- O’Connell, K.S.; McGregor, N.W.; Malhotra, A.; Lencz, T.; Emsley, R.; Warnich, L. Variation within voltage-gated calcium channel genes and antipsychotic treatment response in a South African first episode schizophrenia cohort. Pharmacogenomics J. 2019, 19, 109–114. [Google Scholar] [CrossRef]
- Paredes-Sánchez, F.A.; Sifuentes-Rincón, A.M.; Casas, E.; Arellano-Vera, W.; Parra-Bracamonte, G.M.; Riley, D.G.; Welsh, T.H., Jr.; Randel, R.D. Novel genes involved in the genetic architecture of temperament in Brahman cattle. PLoS ONE 2020, 15, e0237825. [Google Scholar] [CrossRef]
- Schmidt, S.E.; Neuendorff, D.A.; Riley, D.G.; Vann, R.C.; Willard, S.T.; Welsh, T.H., Jr.; Randel, R.D. Genetic parameters of three methods of temperament evaluation of Brahman calves. J. Anim. Sci. 2014, 92, 3082–3087. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Saini, H.K.; Van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2007, 36, D154–D158. [Google Scholar] [CrossRef]
- Kiezun, A.; Artzi, S.; Modai, S.; Volk, N.; Isakov, O.; Shomron, N. miRviewer: A multispecies microRNA homologous viewer. BMC Res. Notes 2012, 5, 92. [Google Scholar] [CrossRef]
- Rehmsmeier, M.; Steffen, P.; Höchsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef]
- Cotrim-Sousa, L.; Freire-Assis, A.; Pezzi, N.; Tanaka, P.P.; Oliveira, E.H.; Passos, G.A. Adhesion between medullary thymic epithelial cells and thymocytes is regulated by miR-181b-5p and miR-30b. Mol. Immunol. 2019, 114, 600–611. [Google Scholar] [CrossRef]
- Hamasaki-Katagiri, N.; Lin, B.C.; Simon, J.; Hunt, R.C.; Schiller, T.; Russek-Cohen, E.; Komar, A.A.; Bar, H.; Kimchi-Sarfatyet, C. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia. Haemophilia 2017, 23, e8–e17. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Brouard, J.S.; Schenkel, F.; Marete, A.; Bissonnette, N. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J. Anim. Sci. Biotechnol. 2019, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G. Untranslated regions of mRNAs. Genome Biol. 2002, 3, reviews0004.1. [Google Scholar] [CrossRef]
- Clop, A.; Marcq, F.; Takeda, H.; Pirottin, D.; Tordoir, X.; Bibé, B.; Bouix, J.; Caiment, F.; Elsen, J.M.; Eychenne, F.; et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38, 813–818. [Google Scholar] [CrossRef]
- Mayr, C. What are 3′ UTRs doing? CSH Perspect. Biol. 2019, 11, a034728. [Google Scholar] [CrossRef]
- Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell. 2007, 27, 91–105. [Google Scholar] [CrossRef]
- Long, D.; Chan, C.Y.; Ding, Y. Analysis of microRNA-target interactions by a target structure based hybridization model. Biocomp. Ser. 2008, 13, 64–74. [Google Scholar] [CrossRef]
- Bug, D.S.; Tishkov, A.V.; Moiseev, I.S.; Petukhova, N.V. Evaluating the effect of 3′-UTR variants in DICER1 and DROSHA on their tissue-specific expression by miRNA target prediction. Curr. Issues Mol. Biol. 2021, 43, 605–617. [Google Scholar] [CrossRef]
- Melaiu, O.; D’amico, S.; Tempora, P.; Lucarini, V.; Fruci, D. Impact of natural occurring ERAP1 single nucleotide polymorphisms within miRNA-Binding Sites on HCMV infection. Int. J. Mol. Sci. 2020, 21, 5861. [Google Scholar] [CrossRef]
- Maziere, P.; Enright, A.J. Prediction of microRNA targets. Drug Discov. Today 2007, 12, 452–458. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Nazarov, P.V.; Kreis, S. Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput. Struct. Biotechnol. J. 2021, 19, 1154–1162. [Google Scholar] [CrossRef]
- Nagpal, N.; Kulshreshtha, R. miR-191: An emerging player in disease biology. Front. Genet. 2014, 5, 99. [Google Scholar] [CrossRef]
- Kumar, P.; Dezso, Z.; MacKenzie, C.; Oestreicher, J.; Agoulnik, S.; Byrne, M.; Bernier, F.; Yanagimachi, M.; Aoshima, K.; Oda, Y. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 2013, 8, e69807. [Google Scholar] [CrossRef]
- Bae, I.S.; Chung, K.Y.; Yi, J.; Kim, T.I.; Choi, H.S.; Cho, Y.M.; Choi, I.; Kim, S.H. Identification of reference genes for relative quantification of circulating microRNAs in bovine serum. PLoS ONE 2015, 10, e0122554. [Google Scholar] [CrossRef]
- Varendi, K.; Kumar, A.; Härma, M.A.; Andressoo, J.O. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell. Mol. Life Sci. 2014, 71, 4443–4456. [Google Scholar] [CrossRef]
- Hanna, L.L.H.; Garrick, D.J.; Gill, C.A.; Herring, A.D.; Riggs, P.K.; Miller, R.K.; Sanders, J.O.; Riley, D.G. Genome-wide association study of temperament and tenderness using different Bayesian approaches in a Nellore–Angus crossbred population. Livest. Sci. 2014, 161, 17–27. [Google Scholar] [CrossRef]
- Parke, W.C. Neural Networks and Brains. In Biophysics; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bezanilla, F. Voltage-Gated Ion Channels. In Biological Membrane Ion Channels. Biological and Medical Physics Biomedical Engineering, 5th ed.; Chung, S.H., Andersen, O.S., Krishnamurthy, V., Eds.; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Castelfranco, A.M.; Hartline, D.K. Evolution of rapid nerve conduction. Brain Res. 2016, 1641, 11–33. [Google Scholar] [CrossRef]
- Nanou, E.; Catterall, W.A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 2018, 98, 466–481. [Google Scholar] [CrossRef]
- Nicoll, R.A.; Tomita, S.; Bredt, D.S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 2006, 311, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, J.; Boudkkazi, S.; Kocylowski, M.K.; Brechet, A.; Zolles, G.; Bus, T.; Costa, K.; Kollewe, A.; Jordan, J.; Bank, J.; et al. An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron 2019, 104, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Manickam, A.H.; Ramasamy, S. Mutations in the voltage dependent calcium channel CACNA1A (P/Q type alpha 1A subunit) causing neurological disorders-An overview. Neurol. India 2021, 69, 808. [Google Scholar] [CrossRef] [PubMed]
- Riley, D.G.; Gill, C.A.; Boldt, C.R.; Funkhouser, R.R.; Herring, A.D.; Riggs, P.K.; Sawyer, J.E.; Lunt, D.K.; Sanders, J.O. Crossbred Bos indicus steer temperament as yearlings and whole genome association of steer temperament as yearlings and calf temperament post-weaning. J. Anim. Sci. 2016, 94, 1408–1414. [Google Scholar] [CrossRef]
GENE | PRIMER | POS | TM | TM_S | AMPLICON (bp) | |
---|---|---|---|---|---|---|
CACNG4 | F | TCTTCCAGCAGGACCTCAGC | 63112792:63112811 | 58 | 58 °C | 2195 |
R | CCCTTCCCTGCCCAACATCA | 63114967:63114986 | 59 | |||
EXOC4 | F | TCATCTGCGAGCAGGCA | 97744687:97744703 | 56 | 54 °C | 1675 |
R | CCTTCCACAGACTCTCCTGG | 97746342:97746361 | 56 | |||
NRXN3 | F | GCTCAAGGAGAAGCCAC | 91099821:91099837 | 52 | 52 °C | 2708 |
R | TAGTTCCCATGAACATGGTC | 91102509:91102528 | 51 | |||
SLC9A4 | F | TGTCCCACAGCCCTTTG | 7296345:7296361 | 54 | 54 °C | 1379 |
R | TGTGGCTGGGTTTTCTCA | 7297706:7297723 | 53 |
GENE | miRNA | Seed Site | Strand |
---|---|---|---|
CACNG4 | bta-miR-10173-5p | AGGAAGUGAGGAAGGAGCCAGA | + |
bta-miR-12046 | UUCUGCUCCCUGCCCUGUAG | − | |
bta-miR-1225-3p | CCGAGCCCCUGUGCCGCCCCCAG | + | |
bta-miR-191 | CAACGGAAUCCCAAAAGCAGCUG | − | |
bta-miR-2284d | AAAAAGUUCGUUAGGGUUUUUC | − | |
bta-miR-2374 | UUGGGGCUGGGGAGAGGCGGG | − | |
bta-miR-2442 | AGAGCAGGGGCUGUGGGCUGCA | + | |
bta-miR-2882 | AGCCCGGGCCCCUCCCCUG | + | |
bta-miR-2882 | GCCCGGGCCCCUCCCCU | + | |
bta-miR-376e | AACAUAGAGGAAAAUCCACAUU | + | |
bta-miR-769 | UGAGACCUCCGGGUUCUGAGCU | + | |
bta-miR-99a-3p | CCCAUAGAAGCGAGC | − | |
EXOC4 | bta-miR-11981 | CAGGGCGGGAACGGGCUGCGGGA | + |
NRXN3 | bta-miR-10175-5p | UGGAGAGAACAGGUGGCUUU | + |
bta-miR-1603 | GUGGUUUGUUUUGUGUUUUU | − | |
bta-miR-1777a | UGGGGGCGGUGGGGGGCGGG | − | |
bta-miR-1777b | GGGGGCGGUGGGGGGCGGGG | − | |
bta-miR-2285bp | AAAACCAGAACGAACUUUGUGU | − | |
bta-miR-2285br | AAAACCUGAAUGAACUUUCUGU | − | |
bta-miR-2293 | UGAUUUUGUUGUUUUGUAUU | − | |
bta-miR-2305 | CGGGGGUGGCGGGGAGGGGG | − | |
bta-miR-2393 | UAGAUUUUUUGUUUUCUUUU | − | |
bta-miR-2421 | UAUUUUUUUGUUUCGUGUUU | − | |
bta-miR-2444 | UUUGUGUUGUUUUUUGUUUU | − | |
SLC9A4 | bta-miR-1256 | AGGCAUUGACUUCUCUCUAGAU | + |
bta-miR-2381 | CAGGCUGCUCUGUGCUUGGCU | + | |
bta-miR-2895 | CCUGCUGAUCUCACAUUAAUUCA | − |
GENE | SNP ID | POS | REF | ALT |
---|---|---|---|---|
SLC9A4 | rs474342472 | 7296410 | G | T |
rs210547017 | 7296519 | A | C | |
rs43657583 | 7296536 | C | A | |
rs43657582 | 7296598 | T | C | |
rs381837194 | 7296603 | T | C | |
rs211375703 | 7296607 | T | C | |
rs43657581 | 7296702 | T | A | |
rs383852181 | 7296963 | G | A | |
rs207631524 | 7296967 | G | A | |
rs43657580 | 7297019 | A | G | |
rs43657579 | 7297241 | A | C | |
CACNG4 | rs109550544 | 63112976 | C | G |
rs721644985 | 63113133 | A | C | |
rs522648682 | 63113244 | T | G | |
rs483247086 | 63113258 | A | C | |
rs109514077 | 63113339 | C | T | |
rs527101469 | 63113346 | T | C | |
rs516574957 | 63114300 | C | T | |
rs520252985 | 63114406 | C | T | |
rs720236805 | 63114561 | C | T | |
rs472138682 | 63114815 | A | T | |
rs724115129 | 63114920 | C | T |
SNP | n | p-Value | Genotype | ||
---|---|---|---|---|---|
rs522648682 | TT | TG | GG | ||
EV | 164 | 0.0054 | 2.93 ± 0.47 a | 3.91 ± 0.468 b | 3.67 ± 0.466 b |
PS | 164 | 0.1913 | 1.96 ± 0.43 | 2.29 ± 0.44 | 2.35 ± 0.44 |
TS | 164 | 0.0097 | 2.3 ± 0.38 a | 2.95 ± 0.38 b | 2.87 ± 0.383 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-De-La-Cruz, G.; Sifuentes-Rincón, A.M.; Casas, E.; Paredes-Sánchez, F.A.; Parra-Bracamonte, G.M.; Riley, D.G.; Perry, G.A.; Welsh, T.H., Jr.; Randel, R.D. Genetic Variants and Their Putative Effects on microRNA-Seed Sites: Characterization of the 3′ Untranslated Region of Genes Associated with Temperament. Genes 2023, 14, 1004. https://doi.org/10.3390/genes14051004
Ruiz-De-La-Cruz G, Sifuentes-Rincón AM, Casas E, Paredes-Sánchez FA, Parra-Bracamonte GM, Riley DG, Perry GA, Welsh TH Jr., Randel RD. Genetic Variants and Their Putative Effects on microRNA-Seed Sites: Characterization of the 3′ Untranslated Region of Genes Associated with Temperament. Genes. 2023; 14(5):1004. https://doi.org/10.3390/genes14051004
Chicago/Turabian StyleRuiz-De-La-Cruz, Gilberto, Ana María Sifuentes-Rincón, Eduardo Casas, Francisco Alejandro Paredes-Sánchez, Gaspar Manuel Parra-Bracamonte, David G. Riley, George A. Perry, Thomas H. Welsh, Jr., and Ronald D. Randel. 2023. "Genetic Variants and Their Putative Effects on microRNA-Seed Sites: Characterization of the 3′ Untranslated Region of Genes Associated with Temperament" Genes 14, no. 5: 1004. https://doi.org/10.3390/genes14051004
APA StyleRuiz-De-La-Cruz, G., Sifuentes-Rincón, A. M., Casas, E., Paredes-Sánchez, F. A., Parra-Bracamonte, G. M., Riley, D. G., Perry, G. A., Welsh, T. H., Jr., & Randel, R. D. (2023). Genetic Variants and Their Putative Effects on microRNA-Seed Sites: Characterization of the 3′ Untranslated Region of Genes Associated with Temperament. Genes, 14(5), 1004. https://doi.org/10.3390/genes14051004